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A theory is developed describing the propagation of high-frequency sound in helium I1 at low temperatures 
(Tc 0.6 K) and high pressures (P> 16 atm), when the energy spectrum of the phonons becomes stable. 
The absorption coefficient and the sound dispersion are calculated under these conditions. The dependence 
of the velocity of second sound on the frequency is determined. The resonance properties of the obtained 
solution are discussed. 
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INTRODUCTION damped solutions of the dispersion equation, has been 

There has recently appeared a large number of 
works devoted to the study of kinetic phenomena in 
helium at low ( T < 0 . 6  K) temperatures (see the re- 
view of Ref. 1). Interest in this region has been raised 
by the assumption of Maris and ~ a s s e ~ ~ ~ l t h a t  the pho- 
non portion of the dispersion curve in He II can be  un- 
stable, i. e., the dependence of the photon energy & on 
the momentum p has the form 

(c is the velocity of sound, Y ,  6 > 0). 

Three-phonon processes become possible in such 
dispersion, and the effect of these processes on the 
kinetics and propagation of sound has been studied by 
Maris. One of the results of this investigation has 
been the conclusion that, in addition to the ordinary 
second sound in He I1 at low temperatures, propagation 
of "new" sounds is possible. Also, it turned out that 
the velocity of ordinary second sound increases upon in- 
crease in the frequency, from the hydrodynamic value 
c / 6 t o  c. The qualitative explanation of this phenom- 
enon has been given by Maris within the framework of 
the theory of ~ande l ' sh tam-~eon tov ich  for sound prop- 
agation in relaxing media. 

connected with the emergence of "quasiconserved" 
quantities, i. e. , quantities which undergo almost no 
change within a t ime of the o rde r  of the period of the 
sound wave. 

Such a situation was possible because wt,, << 1 in the 
equilibrium regime (w is the sound frequency, t,, is the 
time of establishment of equilibrium for phonons mov- 
ing in a single direction) the transition from the  region 
of hydrodynamics wt2<< 1 (t, is the relaxation t ime of 
the second harmonic of the distribution function, ex- 
panded in Legendre polynomials) to the high frequency 
region wt2 >> 1 is described not by a single relaxation 
t2, but by a whole series of t imes t,, each of which cor- 
responds to the relaxation of the harmonic P ,  (cos8). 
For small  I, a dependence t;' - was obtained in Refs. 

3-5. Therefore, with increase in frequency a situation 
becomes possible in  which some of the harmonics are 
"conserved, " and for them wt, >> 1, shile others are in 
the hydrodynamic regime wt, << 1. 

Kinetic phenomena in a gas of phonons for  the case  of 
four-phonon processes (under the assumption that Y < O  
in (1)) was considered by Khalatnikov and Chernikova. 
They assumed that the transition from the hydrodynam- 
ic region to the high-frequency region is described by 
a single relaxation t ime T2. 

The appearance of "new" sounds, i. e. , weakly In the present paper it will be shown that even in the 
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case of four-phonon processes there a r e  a number of 
times 7,  that describe the transition region. This leads 
to a decrease by a factor of two in the absorption coef- 
ficients and the sound dispersion in the region (or2)1/2 
>> 1 in comparison with the work of Ref. 6. Moreover, 
the dependence of the relaxation times on the number 
of the harmonic 1 allows us to extend the results of the 
investigations of Maris, Wehner and  eni in^'*'^" from 
three-phonon processes to four phonon processesrw 

According to the existing representations, the dis- 
persion is anormalous ( y  > 0) a t  low pressures and be- 
comes normal (y < 0) a t  high pressures (P>  17 atm). tel 

Since the relaxation t2 for three-phonon processes con- 
tains the parameter y in second degree[''5'91 (tzml- y'), 
the time tz increases with increase in pressure. 
Therefore, the region of applicability of the present 
paper will be the entire region of normal dispersion 
and that part of the region of anomalous dispersion 
where Z4 >> I,; here 1, and Is a r e  respectively the four- 
phonon and the three-phonon collision integrals. By 
estimates, using the work of JPckle and Kehr, L'O1 we 
find that this inequality is satisfied for pressures p 
a 14 atm. 

1. DERIVATION OF THE KINETIC EQUATION 

We consider the linearized four-phonon collision in- 
tegral 

where do is the scattering cross section and diverges 
if no account is taken of dispersion. As in Ref. 11, we 
have 

~ O - I / ( I - C I I S  t ) ) '  (3) 

(0 is  the angle between the colliding phonons p, and 
pz). The deviation of the distribution function from 
equilibrium is sought in the 

Here p is the density while v, and /3, a r e  the expansion 
coefficients of the local temperature and the relative 
velocity in Legendre polynomials. ') 

As has been shown in Ref. 11 for the second harmon- 
ic, and as we shall show here for all harmonics, the 
four-phonon collision integral diverges if no account is 
taken of the dispersion parameter y. For this reason, 
we can assume that E depends linearly on p and we can 
combine the fuctions P(0) and v(0) in (4), writing bn in 
the form 

i. e., we actually consider four-phonon scattering for 
linear phonons. We shall verify below that such an ap- 
proximation is always valid in the equilibrium regime, 
o t  ,, << 1. 

We shall be interested in the behavior of 1, at I>> 1. 
Since the P,(cos 8) has different asymptotic forms at 

small and large 0, we represent the integration over thc 
angles of the colliding phonons in the form 

Here e0 is a small  angle, such that the transition rrom 
one asymptotic form to the other takes place at ZOO- 1. 
We haveL1' 

0 ~ 0 ~ 0 .  Pi (cos 0 )  -10(10) 
I f-  

(Jo is a Bessel function of order zero), 
, . 

1 cos (10-x/4) 
8,<0<x PI (cos 0 )  -c - 
- 1'" .(sin 0 )  ''2 ' 

The second integral in (6) oscillates rapidly because 
of (8), and a t  0 >go, we can neglect it. Substituting (7) 
in (6), we see  that the zeroth term in the expansion of 
Jo(lO) in powers of 10 is cancelled out because of the 
law of energy conservation. The term that is quadratic 
in ZB is eliminated by subtracting from the expansion 
Jo(18) the quantity t ( 1 -  cos 8) obtained from the differ- 
ence, multiplied by 2, between the law of conservation 
of energy and momentum 

Evidently the equality (9) is valid only for linear pho- 
nons, since we neglect terms - w, i. e., the deriva- 
tion is valid a t  l2yp2 << 1. It becomes clear from the 
foregoing consideration that the relaxation rate of the 
I-th harmonic depends on 1 like 

Recognizing that for the equilibrium regime, we should 
have 

and that for "strong" (see Sec. 3) normal dispersion 

we obtain the required inequality pyp2 << 1. 

Thus, the angular part  of the function f in (6) is of the 
form 

Integrating up to 00, we obtain 

(C,, C, a r e  constants). This derivation is valid for I 
>> 1 and for 0 << 1, respectively. We can write 1, in a 
form that is valid for all  angles if we recognize that the 
function Jo(18) is an eigenfunction of Z4, i. e. ,  1, should 
have the form of a differential Bessel operator 
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At angles 8- 1, this operator is replaced by the angular 
part of the Laplace operator 

- l a  p=-- a 
sin 0 80 z ) '  

We assume the constant C, to be equal to 1, and 
choose Cl from the condition that at 1 = 2 the time 7, 
is identical with that calculated in Ref. 12. Finally, 
we have the following kinetic equation (see Ref. 12): 

" I a P' 
[ i - c o s ~ t - ~ z  v(B)=- - (v .+3vlcos~)+(u+cos~)cos~- .  

7ior,  7 i o ~ ~  P 

(17) 
Here F= w (1 - 1/7iwr2) and 5 = w/kc. We note the fol- 
lowing: the time 7, is determined in this fashion with 
an accuracy to within a coefficient - 1, i. e., we have 
an inconsequential indeterminacy in the boundary of the 
region ( ~ 7 , ) " ~  >> 1. The choice of WT, has practically 
no effect on the absorption coefficient and the sound 
dispersion. 

2. PROPAGATION OF FIRST AND SECOND SOUNDS 

We first  investigate how the considered process af- 
fects the propagation of first sound. For high fre- 
quencies and small angles, where the quantity ? 2 / ~ ~ 2  

is important, we obtain from (17) 

This is an inhomogeneous Bessel equation and its solu- 
tion is described by means of the Lommel function. 
Being interested in the asymptotic form at small 
angles, we write down approximately 

Making use of the connection between the sound ab- 
sorption coefficient and the function v(O), CS1"l we have 

i. e. , smaller than in Ref. 6 by a factor of 2. 

For the anomalous dispersion, Gurevich and ~ A k h t -  
manC141 obtained a result that was smaller than in Ref. 

6 by a factor of 3. What has been said above pertains 
also to the sound dispersion. It is seen from (19) and 
(20) that the result (20) is valid under the condition 
(WT,)"~ >> 1: the characteristic angles in this case a r e  
0'- (wT,)-~". If the frequencies are  not high enough, 
i. e., ws, >> 1, but (wT,)"~ - 1, then the result will be 
practically no different from that obtained in Ref. 6. 

We now take up the problem of the propagation of 
second sound. We consider the range of frequencies 
satisfying the condition 

where p,/p is the density of the normal component. 
This allows us to avoid consideration of the entangle- 

ment of first  sound with second. We then obtain from 
Eq. (17) 

For a qualitative test of the idea of Maris on the con- 
nection of the quasi-conserved quantities with the ap- 
pearance of new sounds, we consider a model in which 
the times t ,  change so rapidly with the number I (i. e., 
t;' - Z" and n is Large) that the following intervals a r e  
possible: 

or2<1, (1) 
I<or2, o r s C l ,  (II) 

I ~ ~ I F ~ ,  l a ~ ~ r ,  o ~ , a l .  
(m) 

Let all the harmonics beginning with the fourth relax 
with the same time 7. The kinetic equation (22) in this 
case can be written in the form ') 

In region I, it then takes the form 

and at wT, << 1 we obtain the well known solution 

In region 11, 

GI 
( Q  - cos 0 ) v ( 0 )  = - ( ~ ( 0 )  -vo-vr cos 0-\.,P2(cos 0 ) ) .  (26) 

b u n  

In region III 
m 

(a - cos 0 ) v  ( 0 )  = - (Y  ( 0 )  -Y , -Y ,  cos O-vlPl (cos 8) -v,P, (cos 0) ) . 
105 

(27) 
Equations (26) and (27) have the form of kinetic equa- 

tions for three and four conserved quantities, respec- 
tively. It is possible to solve them by the method used 
in Ref. 12. 

We obtain the first  three equations by equating the 
coefficients in the case of identical P,(8) in (27). We 
obtain the fourth equation by solving (27) relative to v(8) 
and removing the zeroth harmonic from the solution. 
As a result, we have 

~ ~ " ~ - ' / ~ v , = o .  -\.U+"\~,-2/5~2=0, -2/3.\.1+~~v?-3/iv3=0( 

CT, (28) 
2vo = - - [va2Q0 ( f )  +v,3QL ( f )  +vz2QL ( 2 )  4 ~ S 2 Q 3  ( f )  I 

ior  

(Q,(Z) a r e  the Legendre polynomials of the second kind). 
Expanding the fourth equation in the case wT<< 1 in 
terms of 1/Z with accuracy to (1/~)', we obtain for re- 
gion Ill 
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It is seen that for such a model, the velocity of second 
sound increases with increase in the frequency, in 
agreement with the numerical calculations. C31'51 More- 
over, a new sound appears in region III. '' 

A model with a single relaxation time, as is well 
known, does not give solutions in the region wT2 >> 1. '12' 

3. CONCLUSION. DISCUSSION OF EXPERIMENTAL 
PERSPECTIVES 

An important quantitity in the theory of kinetic phe- 
nomena in helium 11 is t,,-the time of establishment of 
energy equilibrium for parallel phonons. In the calcu- 
lation of t,,, the decisive role is played by two factors: 
1) the sign of y in the expressions (1); 2) the partici- 
pation of multiphonon processes, i. e. , corrections to 
the expression calculated in the lowest order perturba- 
tion theory. The parameter determining these correc- 
tions is the quantityc5*'71 

for the dispersion law (1). This is none other than the 
ratio of the line widths, due to three-phonon processes, 
to some energy "deficit" A& - cpyp2. If  the dispersion 
is "strong", i. e., a<< 1, then the perturbation theory 
series diverges and the time t ,, a s  a function of the sign 
of y is governed either by parallel three-phonon proc- 
esses, ''I o r  by parallel four-phonon processes. C111121 

If a>> 1 (the dispersion is "weak"), then the time t,, 
is calculated from the renormalized perturbation 
theory. [la3 The sign of y here is unimportant. 

In the case of "strong" normal dispersion, the estab- 
lishment of equilibrium in the energy and in the num- 
ber of phonons is controlled respectively by four-pho- 
non and and five-phonon parallel processes, '"*'21 in 
which 

Therefore, for very high frequencies ( W T ~ ) " ~  >> 1, no 
equilibrium in the number of phonons can be estab- 
lished. However, substituting all the values of the 
quantities in the parameter a! (the y(P) dependence is 
taken from Ref. 8, the res t  from Ref. 19), we find that 
the condition a<< 1 is satisfied at P> 17 atm for tem- 
peratures T <  0.5-0.7 K (the corresponding pressures 
a r e  - 20-23 atm). Using the expression for ti,-' from 
Ref. 12, 

we find that for equilibrium we should have 

This corresponds to very long wavelengths (x>> 10 cm) 
and is beyond the limits of experimental possibilities. 

In conclusion, we find the range of temperatures, 
pressures and frequencies, where observation of the 
effects discussed in the present paper is possible. 
Since the quantities t,, increase with increase in pres- 
sure  and with decreasing temperature, i t  is more con- 
venient to work a t  very low pressures and high tem- 
peratures. But at low pressures (P< 10 atm) three- 
phonon processes a r e  more effective, and at much 
higher pressures the parameter CY becomes -1; this 
does not allow the possibility of exactly determining 
the quantity wt,,<< 1. At high temperatures (T>  0.6 K) 
the effect of rotons is important. Therefore, i t  ap- 
pears that the only possible point where observation of 
the effects given in Sec. 2 is possible is the transition 
point PC = 17 atm, where y = 0. Here a>> 1, equilibrium 
is established simultaneously in energy and the number 
of phonons by renormalized three-phonon processes. 

We should have 

(the latter is the condition of absence of rotons). The 
wavelengths a r e  bounded from above by the size of the 
vessel, for which we take d =  10 cm, which leads to w 
>> wC=2.3x10'. 

Taking t,, from Ref. 18, we find 

a-2.10'-3.10' and T-0.4-0.5 K, 
p=17 atm. 

At T> 0.7 K, all the effects a r e  determined by rotons. 
In this same region of frequencies and temperatures, 
observation of the new sounds i s  possible. The param- 
e ters  u= 2.32, c = 3.35 x lo4, p = 0. 166c191 and A = 7.5 K 
were used a s  estimates. 

We note also that the inclusion of parallel processes 
in the kinetic equation (17) leads to the result that in 
the region wt,, > 1, the second sound will also propagated 
also in the case of four-phonon processes (see note 2). 
This follows from the fact that the mathematical form 
of Eq. (17) and the equation used in Refs. 3, 7, and 15 
a r e  identical. Thus, in the region wt,,>l, resonant be- 
havior of f i rs t  sound is possible. ['] Summing up, we 
can say that the unexpected effects associated with the 
propagation of first  and second sound more readily a re  
due to the weak departure of the phonon spectrum from 
the linearity than to the sign of this departure. 

I thank I. M. Khalatnikov who read through the manu- 
script and made a number of useful remarks. 

"~quilibrium with respect to the number of phonons is estab- 
lished (see Sec. 3). 

 he kinetic equation written in this form differs from the 
equation used by  eni in"^' and wehnerr7' for three-phonon 
processes only in the absence of a term describing "parallel" 
processes. In the equilibrium regime, wt,, <<l, this term is 
equal to zero after integration over all energies of the phonon: 
moving in a single direction. 

3 ) ~ h e  results of (25), (28) and (29) can be obtained more for- 
mally by using the method of continued  fraction^."^' To be 
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precise, expanding the function v ( 8 )  in Legendre polynomials, 
we equate the coefficients for the same polynomials. Limit- 
ing ourselves to two, three and four harmonics, we obtain 
the results (25). (28) and (29), respectively. But the role of 
the conserved quantities would not be revealed in such a 
method of solutions. 

 he times t,, calculated for "strong" anomalous dispersion 
d i spers i~n '~ '  and weak dispersionH8' differ only by a numeri- 
cal factor - 2. 
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A consistent analysis of the thermal stability of atom-containing condensed systems, based on recently 
obtained experimental data, shows that, notwithstanding the previous opinion expressed in the literature, 
that when the temperature of the experiment is lowered one should expect an appreciable increase of the 
concentration of the trapped atoms. The analysis shows that to trap atoms in a solid matrix by means of a 
magnetic field the field intensity required is quite large and exceeds by several orders the fields at which 
peB/kBT= 1. In addition, a magnetic field can be effectively used for trapping only if there is no contact 
between the atoms prior to the establishment of equilibrium between them and the magnetic field. The use 
of beams polarized in advance does not facilitate the problem to any extent. 

PACS numbers: 65.90. +i  

Recent p r o g r e s s  i n  cryogenics and in the  technique 
of obtaining s t rong  magnetic f ie lds  have increased  i n  
the  stabilization of appreciable concentrations of a toms  
i n  solid mat r ices  at low temperatures .  T h e  m o s t  at- 
tractive i n  this  respec t  are metstable  (with high energy 
content) mixtures ,  both f r o m  t h e  point of view of the i r  
u s e  as rocket and i n  connection with the possi-  
blity of producing metal l ic  superconducting phases  
(metallic hydrogen and nitrogenLS1) and superfluid 
phases  ( t r iplet  hydrogenL4'). In h i s  reviewL5] devoted 
to prospec ts  of p r o g r e s s  in science,  Ginzburg included 
the  problem of obtaining these  phases  among t h e  mos t  
interest ing and important  t asks  of modern physics. 

are molecules  is that  recombination of t h e  a toms  b e  
kinetically hindered. The  c a u s e  of the  kinetic hin- 
d rances  may be e i ther  t h e  exis tence of a n  energy b a r r i e r  
to  the motion of the a toms  over the  mat r ix  (activated 
diffusion), or the  p r e s e n c e  of a n  activation energy in 
the  recombination act itself,  because of the interact ion 
of the  a toms  with the  mat r ix  and with one  another ,  or 
because of alignment of the i r  e lectron sp ins  in  s t rong  
magnetic fields. 'I 

However, i n  view of the  l a r g e  energy r e s e r v e s  i n  
s y s t e m s  that contain appreciable  numbers  of "quasi- 
f ree"  atoms,  s lowness of the  i so thermal  decay of the 
sys tem i n  comparison with the observat ion t i m e  is f a r  

The  necessary  condition f o r  the  exis tence of meta-  f r o m  a sufficient condition of the  s y s t e m  stability. The  
s tab le  s y s t e m s  containing a toms  whose s tab le  states reason l i es  i n  the  t h e r m a l  explosion of chemically ac- 
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