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The dependence of the threshold value of the field intensity on the wave vector of growing plasma 
perturbations is studied. The spatial region of development of absolute parametric instability is 
determined. It is shown that the size of the region is of the order of the size of the plasma corona 
produced of a laser-irradiated solid target. It is predicted that the generation intensity of the (3/2)u, 
harmonic should increase sharply and have a threshold. The increase is due to the pump field attaining 
such high values that longwave plasmons, capable of producing the harmonic as a result of resonance 
merging with the pump wave, are formed in the decay. 

PACS numbers: 52.35.Mw, 52.35.Py, 52.50.Jm 

Studies of the generation of the harmonic (3/2)~,, when 
a plasma is exposed to laser radiation with frequency 
wo are  being carried out intensively a t  the pi-esent time 
(see, for example, Refs. 1-4). Studies of this sort  
have great value for the understanding of phenomena 
which take place in the plasma corona of a target i r -  
radiated by a laser. Generation of the harmonic 
(3/2)wo is connected with the process of parametric in- 
stability which arises in the plasma region with a den- 
sity close to one-fourth critical. 

It is assumed at the present time that an absolute in- 
stability is  developed in the vicinity of such a region in 
a spatially inhomogeneous plasma, '-'I due to the decay 
of the pump wave into two plasmons. In the present 
communication we evaluate, on the basis of analysis of 
the boundary of such an absolute instability, the region 
of its spatial localization. The size of this region is 
essential for understanding the possibility of absorp- 
tion of the pump wave by the plasma a s  a consequence 

in the electric field of the pump wave, c is the velocity 
of light, and L, is the characteristic size of the plasma 
inhomogeneity in the vicinity of the point corresponding 
to one-fourth the critical density. The function q(s) is 
expressed in terms of the complete elliptic integral of 
the f i rs t  [ ~ ( s )  and second [ ~ ( s ) ]  kind: 

Finally, n is an integer equal to the number of plasmon 
waves that fit inside the region of localization of the 
plasmon. 

It follows from Eq. (1) that the effect of the inhomo- 
geneity of the density on the excitation of plasmons with 
wave numbers k,> k, [where ki = (2n+ 1)(4~,v , , ) - '~]  is 
insignificant. For these values of k, the instability 
boundary is described by the formula of the theory of a 
homogeneous plasma (see Ref. 8) 

of two-plasmon decay, since the corresponding optical 
thickness T of the plasma increases with increase in the 
size of the region of localization of the instability. On 
the other hand, analysis of the instability boundary al- 
lows us to deduce the possibility of a sudden increase 
(having a threshold) in the generation of the harmonic 
(3/2)wo at fluxes exceeding a certain value, which is 
generally greater than the threshold of parametric in- 
stability. 

1. The boundary of the instability of an inhomogene- 
ous plasma relative to decay of the pump wave into two 
plasmons is, according to our previous work, deter- 
mined by the following equation: 

Here 

In Fig. 1 (case a )  this dependence i s  shown as curve 1. 
With decrease in the quantity k ,  the effect of the plasma 
inhomogeneity increases and a t  k, < ki i t  becomes deci- 
sive. For such plasmons, the last term in Eq. (1) is 
the principal one. At ki >> k,, this leads to the follow- 
ing value of the instability boundary. 

Curve I1 corresponds to the dependence described by 
Eq. (3). 

n I %  The dependence of the instability boundary on the 
( k )  = i v , + i i ,  (-1 ."(I k.lro)-' erp[-'/.(kUra)-'l 

8 quantity k,, which i s  a solution of Eq. (I), is shown in 
the drawing a s  curve 111 and represents the result of 

is the damping decrement of the plasmon with wave the addition of the asymptotically continued curves I 
number k,, v,, is the frequency of the electron-ion col- and II. It must be noted that such a dependence of the 
lisions, V E  is the velocity of oscillations of the electron instability boundary on the quantity k, takes place at 
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FIG. 1. Instability thresh- 
old of the plasma (a). The 
region of localization of the 
instability (b). The rela- 
tively small change in the 
amplitude of the pump wave 

I inside the region of local- 
I ization of the instability is 

where 1 = rD(f&/2vei) is the free path length of the elec- 
trons. In such a case, we shall speak of a weakly in- 
homogeneous plasma. 

In the opposite case of a strongly inhomogeneous 
plasma, when 

we have k, - k,,. Therefore the first  term in formula 
(1) in such a case is not very important. This means, 
in particular, that the instability boundary at all k,< k,, 
will be determined by Eq. (3), which, for the case con- 
sidered, corresponds to curve II'. For k,> k,,, the in- 
stability boundary is described a s  before by the portion 
of the curve I corresponding to Cherenkov interaction 
of the electrons with the plasmons. As a result, for 
the instability boundary a t  

we have curve III'. 

The instability threshold at a given value k, = k, cor- 
responds to a minimum in the boundary curve. In'a 
weakly inhomogeneous plasma, this threshold corre- 
sponds to the result of the theory of a homogeneous 
plasmaz81 

Here 

k,= (2r,)-'  ln-"'[2(2n)'!'LN/(2n,+l)r,]. 

We note that in a weakly inhomogeneous plasma, the in- 

stability boundary is close to the threshold value (4) 
over a wide range of wave numbers k,. The quantity 
k, is close to the right boundary of this region. The 
left boundary k"' can be determined by requiring that 
the boundary value, for example, should not exceed the 
threshold (4) by more than a factor of two. Then 

Since L,>> I in the case (4), k,>> k"', which corre- 
sponds to a wide region in which the boundary value is 
close to (4). 

In the case of a strongly inhomogeneous plasma, the 
instability threshold significantly exceeds the value (4) 
and is equal toc5' 

Here 

k,,, = (2r,)-'In-'  [ 4 L , , / ( 2 n )  ( 2 n + l ) r , ]  

The line TV in the drawing corresponds to the result 
of Ref. 7, in which the effects of thermal motion of the 
particle a r e  considered, which a re  important for a col- 
lisionless plasma, and according to which the absolute 
instability ar ises  a t  

U ~ C - ' > ~ U , ~ - ~  1 k,I r,, 

where v,, is the thermal velocity of the electrons. 
Comparing this boundary value with the values (4) and 
(5) for the instability threshold, we can conclude that 
curve 111 (or III') will not cross  the line N if 

in the case (4) and if 

(&, i s  the pump wavelength) in case (5). It follows from 
the inequality (6) that the curve 11 will not intersect the 
curve I in a weakly inhomogeneous plasma in the case 
in which the plasma is sufficiently cold, and the ion 
charge Z of the plasma is large. Under conditions of 
a strongly inhomogeneous plasma, a s  follows from the 
inequality (7), intersections will be lacking in the exci- 
tation of plasmons only with a sufficiently large number 
n. For example, a t  L N =  100 b, & =  1.06 p and plasma 
electron temperature 1 keV, the inequality (7) is satis- 
fied at n > 110. However, a s  the density profile be- 
comes steeper, the inequality (7) can exist for smaller 
values of n. Thus, a t  LN= 10 A,,, this inequality is al- 
ready satisfied a t  n 2 12. 

If conditions exist for the plasma that a re  the oppo- 
site of the conditions (6) and (7), then intersection of 
the line N with the curve III will take place, In this 
case, the point of intersection with ccordinates (cf. 
Ref. 7) 
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determines the instability threshold and the threshold 
value of the wave number. Since, by definition, vE2c-' 
> 4 ~ , , ( 3 ' / ~ ~ ~ ) ~ ' ,  the threshold (8) is realized a t  I 
> ( b ~ ~ ) ' / ~ .  

The curves shown in the drawing allow us to answer 
the important question of the spatial localization of the 
two-plasmon parametric instability. Thus, a t  suffi- 
cient excess over threshold, curve 111' o r  the curve 
composed of portions of curves 111 and lV allows us to 
find the maximum and minimum values of the wave vec- 
tor of the plasmons whose generation is allowed at a 
given field of the pump wave (in the drawing, this val- 
ue of the field is shown by the horizontal line V). Ac- 
tually, according to this Eq. (I) ,  we obtain the result 
that at a given value of v, excitation of the plasmons 
takes place, with wave vectors k, such that k,,>k, 
>kmin, where 

1 r r ( 2 n f l )  c 
k,," = .- 

L, 2.3" U E  

According to the previous work, lgl a plasmon with 
given wave vector is localized in the region Alx 
= ( 3 1 1 2 / 2 ) ~ / E ~ ' ~ N .  However, the region of localization 
of the plasmon i s  not identical, generally speaking, 
with the region of localization of the instability. The 
reason is that the position of the region Alx on the den- 
sity profile depends on the value of by. This depend- 
ence leads to i ts  own definition of the width of the re- 
gion of localization of the instability, which is equal to 

11?5=6 (kmo,f k,,,,) 6kroZL,, 

where 6 k =  k,, - k,,, is the spread of wave numbers of 
the plasmons excited a t  a given value of v, The re- 
gion A2x is illustrated in the drawing (case b). As a 
result we have for the region AX of instability local- 
ization the interpolation formula AX= Alx+ k x .  In the 
immediate vicinity of threshoid, when k," k,,,, the 
second term is small, i. e. , AX= A1x. However, the 
situation changes qualitatively with increase in the 
quantity I),. Since k,> k,,, at ug>> ue thr it follows 
that 

Comparing the values of Alx and A2x, we can conclude 
that since cvE-'> 1 the size of the region of instability 
localization at v, > v, ,,, greatly exceeds the size of the 
region of localization of the individual plasmons. It 
follows from the expression for A2x that a t  VE > Vatb 
the size of the region of localization of the instability 
is comparable with the plasma inhomogeneity dimen- 
sion L,. Thus, at an Nd-laser radiation flux - 10" 
w/cm2 we have A2xL? = 30%. 

We note that the increase in the region of localization 
of the instability in excitation of plasma waves with dif- 
ferent wave number is a general phenomenon. In Ref. 
10, i t  was studied for the case of parametric decay of 
the pump wave into a Langmuir wave and an ion-sound 
wave. Comparing the value of A2x with the value of Ax 
from Ref. 19, we can conclude that in the case 

(here y, and w, a r e  the decrement and frequency of the 
ion-sound wave) the region of localization of the two- 
plasmon decay exceeds the region of localization of the 
parametric decay. 

2. We shall concern ourselves briefly with analysis 
of the decrement of two-plasmon decay, the equation for 
which is obtained from (1) by the substitution " y y +  y, 
i. e. , 

In the case of a weakly inhomogeneous plasma, i t  
then follows that 

where v,,, is determined by the formula (2). Accord- 
ing to (101, a t  UE >> VE,, the increment takes on the value 

If the plasma is strongly inhomogeneous, then the in- 
crement is determed by Eq. (10 at I VE-  vE,bl <7G1 VE, 
where the boundary value VE,~ is determined by Eq. (3). 
Withincrease in v,, when already I VE - VE, bI <%L+,~'VE,~, 
the increment of the instability is determined from the 
equation 

It then follows, in particular, that the increment again 
takes the value (11) in the case of increase of VE, 

In such an analysis of the increment we have assumed 
the value k ,  to be fixed and the amplitude of the pump 
wave to vary. The obtained formulas allow us to under- 
stand the behavior of the increment for different values 
of k,, excited a t  a fixed value of vg. For  this, we re- 
turnto the drawing and consider VE to be given and equal 
to a quantity shown by the line V. Then the increment 
of growth at k,= k,,, will be determined by the expres- 
sion (10) with VE,~ given by Eq. (3). With increase in 
k,, the growth increment of the plasmons increases. 
At 

the increment is described by Eq. (12), and at k, sig- 
nificantly different from k,,, (but still k,<k,) we ob- 
tain the formula (11) for the increment. Upon further 
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increase in the value of k,, Cherenkov interaction of 
plasmons with electrons of the plasma becomes signifi- 
cant. Therefore, the contribution of "yil l  increase 
with increasing k, and the increment will decrease. As 
a consequence, near k,= k ,  the increment will again 
be described by the formula (lo), where VE,b is deter- 
mined by the formula (2). 

3. The above discussion allows us now to make clear 
one important dependence of the intensity of radiation of 
the harmonic (3/2)w0 on the energy flux density of the 
light incident on the plasma. For this we use the for- 
mula for the flux density q3/2 of the harmonic (3/2)%, ob- 
tained under the assumption that i t  ar ises  a s  a result of 
nonresonant action of the pump wave with the plasmon 
(see Ref. 11): 

where q is the flux of laser radiation with wavelength 
A,,, TT = AXvturb/c is the turbulence optical thickness 
(v,,, is the turbulence frequency of the absorption). 
Substituting the value k,,, in formula (131, we find the 
upper bound of the transformation coefficient K3/, 
= q3/2q-1 of the radiation of the Nd laser in the harmonic 
(3/2)%: 

It then follows that even for such a small transforma- 
tion coefficient a s  found in  Ref. 3 it is necessary to as- 
sume that TT is not very small in comparison with uni- 
ty. But even under this assumption, the results of the 
experiments of Refs. 1, 2, and 4 cannot be explained 
by means of the formula (131, which describes coales- 
cence with a plasmon whose the wavelength is much 
smaller than the pump wavelength. 

In this connection, for an understanding of the results 
of the experiments of Refs. 1, 2, and 4, we can assume 
that under the conditons of these researches, the ener- 
gy flux density reaches such a value for which the mini- 
mum value of the wave vector of the plasmon becomes 
comparable with 2n/A,,. In particular, in accord with 
the expression (9), which for such Longwave plasmons 
can be used only as an estimate, this is possible a t  

which corresponds to a laser-radiation flux 

where the size of the inhomogeneity L,  and the laser 
wavelength A,, a r e  measured in microns and the flux q3 
in w/cm2. For the longwave plasmon waves excited in 
such fluxes, resonance of the plasmons with the pump 
wave turns out to be possible. As a result, the flux 
4312 increases by several orders of magnitude in com- 
parison with the right side of Eq. (13), thank to the ap- 
pearance of a factor - %/vet. 

It follows with certainty from our consideration that 
the region of localization of the longwave plasmons can 
be much smaller than the region of two-plasmon para- 
metric instability. This assertion can help us to un- 
derstand the possibility of use of the harmonic (3/2)* 
for the study of local properties of plasma corona. 

" ~ c c o r d i n ~  to the results of Ref. 4, we can assume that two- 
plasmon decay takes place in a region with size - 100 P . 
Evidently, the characteristic size of the inhomogeneity of the 
plasma density under experimental conditionst4' amounts to  
hundreds of microns. We can therefore discern an agree- 
ment between the measured value of the region of generation 
and the value Ax calculated by us. 
- 
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