
TABLE 11. Temperature dependence of the degree of polar- 
ization pLfor an exciting beam directed along [loo]. 

Values of parameters used in the calculation. 

Note. In the calculations we used the values 7 = 0.85, 7, = 7.65, 
Irz 1 = 2.41, 7, = 3.28Lel. 

PL. % 
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24.0 
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trons due to the non-parabolicity of the conduction band 
(see, e. g. ,"I). TO illustrate this, column II to Table 
11 shows the results of the calculations m, = 0.1%. A 
noticeable increase of y (Table 11, column III) does not 
improve significantly the agreement between the calcu- 
lated and experimental data at q = 0. The reason for 
some discrepancy between them still remains unclear. 

0 

In the high-temperature limit, T >> A gTv,, the popula- 
tions for the different directions become equalized. 
However, a s  shown by the corresponding calculations 
(see the data for  T = 10' OK in Table II), the degrees of 
polarization for different excitation directions still dif- 
fer  noticeably. This "residual" anisotropy is obviously 
due to the anisotropy of the matrix elements for the in- 
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[ ?!a 100 

40 (calculation) 

I / I1 ( 111 

terband transitions and leads to values of p, equal to 
0.105 and 0.17 for 0 and 45', respectively. 

45 

4.7 
7.4 

1:: 
21.4 

We note in conclusion that the experimental results 
obtained in this paper serve a s  a direct confirmation of 
the correctness of the interpretation proposed inc3' for 
the polarization effects in the hot-photoluminescent 
spectrum. ''I 
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sion of the results. 
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We study the interaction between magnetohydrodynamic waves and a plasma with P<1. We show that 
this leads to a modulational instability for the fast magnetosonic waves at a well defined level of 
oscillation energy. As a result of the development of this instability the particle density and wave energy 
density start to increase in a certain region. The modulational instability of a beam of almost parallel 
waves can be stabilized in the weakly non-linear stage and a wave channel is then formed with an 
increased plasma density to which the waves are confined due to refraction. In the case of an isotropic 
wave distribution the compression of the plasma may proceed until the energy of the oscillations and of the 
particles becomes comparable with the energy of the stationary magnetic field. We discuss the possibility 
of observing the modulational instability of fast magnetosonic waves under natural conditions. 

PACS numbers: 52.35.Bj, 52.35.Dm, 52.35.P~ 

Modulational instabilities play an important role in ment of the modulational instability of magneto-hydro- 
the formation of plasma turbulence. They affect the dynamic waves, since MHD turbulence is widespread 
spectrum of the turbulent oscillations, the accelera- in cosmic and laboratory plasmas. The modulational 
tion and heating of particles, the emission of electro- instability of MHD waves must qualitatively differ 
magnetic waves, and so on. It is of interest in that strongly from the modulational instability of Langmuir 
connection to consider the possibility of the develop- waves which has been studied in much more detail. t1'41 
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In the first  place this difference is connected with the 
fact that the spatial dispersion of the frequencies is 
linear. 

One of the peculiarities of the modulational instabil- 
ity of MHD waves has a rather trivial nature. It refers 
to Alfv6n waves and beams of parallel MHD waves of 
other types. In a system of coordinates moving with 
the wave velocity, the dispersion disappears almost 
completely and even weak non-linear effects can cause 
their modulation. Longitudinal modulations of this 
nature move with the waves and a r e  responsible for the 
formation of shock waves, discontinuities, and solitary 
waves. Transverse modulations lead to the self-focus- 
ing of waves. 

Somewhat unexpected is the fact that, as  we shall 
show below, in one of the MHD branches-that of the 
fast magnetosonic oscillations-the modulational in- 
stability can develop also for  an isotropic spectrum. 
This instability is accompanied by an increase in the 
plasma density and of the wave energy. If the waves 
a re  sufficiently strongly mixed in directions, for in- 
stance, due to scattering, the process may lead to a 
very high concentration of oscillation energy. 

We study in the present paper the modulational in- 
stability of fast magnetosonic waves in a low density 
plasma. We determine in Sec. 1 the ponderomotive 
forces averaged over the f i rs t  oscillations which act 
on the plasma particles a s  a result of the MHD waves. 
We calculate in Sec. 2 the growth rates of the modula- 
tional instability in the geometric optics approximation. 
Section 3 i s  devoted to a study of the transverse modu- 
lation of a monochromatic fast magnetosonic wave. We 
give in Sec. 4 qualitative discussions of the develop- 
ment of the instability for the case of an isotropic os- 
cillation spectrum, taking into account the induced scat- 
tering of the waves. We discuss in the Conclusion pos- 
sible applications of the theory. 

1. INTERACTION BEWEEN MAGNETO-HYDRODY- 
N A M E  WAVES AND PLASMA PARTICLES 

In what follows in this paper we deal with a two-com- 
ponent isothermal plasma with a strong stationary uni- 
form magnetic field H, and an oscilla~ing field of the 
MHD waves-the electric field E = -A/c and the mag- 
netic field H= curlA. We assume everywhere that the 
energy of the stationary magnetic field is much larger 
than the kinetic energy of the particles and than the 
wave energy: 

here p is the ion density and T the plasma temperature. 
We also assume that the longitudinal conductivity is 
sufficiently large so that E and A a r e  at right angles to 
Ho . 

Three kinds of MHD waves can propagate in a mag- 
netized isothermal plasma. These a r e  sound waves, 
Alfv6n waves and fast  magnetosonic (FMS) waves. We 
consider only waves of the last two types. Their veloc- 
ity is equal to the Alfv6n speed c~ = ( ~ : / 8 ~ p r n ~ ) ~ ' ~ .  

If condition (1) is satisfied, the Alfv&n speed is much 
higher than the velocity of the plasma motion. We can 
split the motion of the plasma into two parts: high-fre- 
quency drift pulsations a t  right angles to the magnetic 
field H, and low-frequency motions along H, under the 
action of the pressure of the waves. 

The transverse motion of the particles is caused by 
the electric field of the waves E. To a first  approxi- 
mation the electric drift does not create an electric 
current as  electrons and ions move together. A cur- 
rent appears only in the next approximation in the ratio 
of the wave frequency to the ion cyclotron frequency 
u/whi due to the difference in the electron and ion iner- 
tia. Up to small terms of the order of w/w,,, vTi /cA,  
H/Ho the current density is equal to1) 

Substituting (2) in the Maxwell equations we get 

The symbol rot, indicates here the part of the curl 
which is at  right angles to Ho. 

Equation (3) corresponds to a Lagrangian density 

and an energy density 

The second term in (4) is proportional to the particle 
density. It is clear that it can be interpreted as  the 
Lagrangian of the interaction of the ions with the wave 
field. Starting from this we find that the ponderomotive 
force acting upon the ions is given by a effective poten- 
tial 

The density of the force component in the direction of 
the stationary magnetic field 

determines the slow plasma displacement. 

2. GEOMETRIC OPTICS APPROXIMATION 

In this section we consider the evolution of inhomo- 
geneities in the plasma density with sizes I which a re  
much larger than the characteristic wavelength X of the 
oscillations. We can describe the propagation of the 
waves in the geometric optics approximation. 

If there occurs an inhomogeneity in the particle den- 
sity in the plasma, there ar ises  a redistribution of the 
waves due to the change in their velocity; the wave en- 
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ergy density w becomes inhomogeneous and the force 
(7) begins to act upon the plasma. It follows from (7) 
that when w increases faster than p this force is direct- 
ed in the direction of the density increase so  that the 
initial state turns out to be unstable. 

Alfvdn waves propagate only along &. Therefore, 
we have for them 

Hence, a uniform distribution of Alfv&n waves is stable 
and their interaction with the plasma leads to the possi- 
ble appearance of second-sound type oscillations. 

The situation changes for FMS waves, which can 
propagate in all directions. The wave propagation 
proceeds almost in stationary conditions as  their veloc- 
ity is appreciably larger than the plasma velocity. It 
is well known that in that case the density of waves in 
momentum (wavevector) and coordinate phase space 
must be constant along a trajectory. When the wave 
velocity changes the momentum volume occupied by 
them changes d3km l / c ~ ~ .  If the waves a r e  a t  all points 
distributed more o r  less isotropically their density 
changes a s  l/c: a p9I2. From this it follows that a uni- 
form, isotropic distribution of FMS waves must be un- 
stable with respect to modulations. 

We find the frequency dispersion law for modulations 
of Alfvdn and F'MS waves. To do this we need a se t  of 
equations which determine simultaneously the motion of 
the waves and of the particles. We shall describe the 
waves by the kinetic equation 

where nk is the spectral density of the waves, while wk 
= cAk,,, respectively, for Alfvdn and FMS waves. To 
describe the motion of the plasma along I& we can use 
the one-dimensional hydrodynamic equations 

To close the set (9), (10) we still must give the connec- 
tion between kinetic pressure P and the density. For 
the sake of simplicity we shall assume that 

We consider small perturbations of the density of the 
waves and of the particles, which a r e  proportional to 
exp[i((la r - at)] on a background of a distribution nk, p 
which is uniform is space. Linearizing (9) to (11) we 
find 

where 4 = awk/alt is the group velocity and w, = w,nk 
the spectral density of the wave energy. 

Assuming that 51 <<qo U, we can obtain from (12) the 
dispersion equation for modulations for a well defined 

spectral composition of the waves. In the case of Alf- 
v6n waves i t  takes the form 

For FMS waves the dispersion equation depends 
strongly on their angular distribution. For an isotropic 
spectrum we have 

whence i t  follows that a uniform isotropic field of FMS 
waves is unstable, if 

For a beam of FMS waves with an angular spread 6<< 1 
we get 

if 11/2-@I>6, and 

if I1/2n- PI < 6. In Eqs. (16), (17) Pis  the angle be- 
tween Ho and the beam axis. A beam of FMS waves is 
unstable with respect to transverse modulation when 

3. TRANSVERSE MODULATION OF A 
MONOCHROMATIC FMS WAVE 

It is clear from (18) that the modulation of a beam of 
almost parallel waves occurs even when the energy den- 
sity of the waves is considerably lower than the thermal 
one. In that case the process can proceed for the case 
of a relatively small non-linearity. .We consider the 
propagation cf a monochromatic weakly non-linear FMS 
wave in the plasma. Let the wave propagate along the 
z-axis and let the stationary magnetic field lie in the 
yz-plane a t  an angle 8 to the z axis. We write the field 
of the wave in the form 

1 
A (r, t) - - [A, (r) ei("'-"'I + C. c .], 

13 

where A,(r) is a slowly varying function of the coordi- 
nates such that A,(r) - 0 a s  r, -a. 

The plasma density is given by the Boltzmann distri- 
but ion 

p (r) =po exp ( m , < A ' i / 2 2 ' ~ , ~ )  ). (20) 

The pointed brackets indicate averages over the fast 
oscillations. Together with (3) Eq. (20) leads to the 
equation 
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a r  terms corresponding to 2'. This equation corresponds to the variational principle 
6 / 9 d s r =  0 with 

ZTH,' r n , ( k )  
(rot A)' - - eup -- 

rnr,.' ( ZTH: 11 
In a uniform plasma the vector potential of the FMA 

waves satisfies the condition 

Within the accuracy sufficient for our needs this condi- 
tion is also satisfied in the case considered. We use i t  
to find the connection between the components of the 
vector potential. As the vector potential is perpendicu- 
lar to Ho and satisfies (23), it is mainly directed along 
the x axis, provided the angle 9 is not too small. Apart 
from small corrections of the order of X/Z, where X is 
the wavelength and I the size of the modulation, we get 
from (23) 

We introduce a new variable 

We choose as  the unit of length along z the quanity 
kcA;/d, and in the transverse direction cAO/w. We as- 
sume further that we a r e  considering a wave with a 
modulation along the z axis which is much weaker than 
the transverse modulation, so  that we can neglect terms 
containing second derivatives of $ with respect to z.  

Substituting (24), (25) into (22) and dropping divergent 
and small terms we get with an accuracy O(I $1 ') 

P=P,+B,+9,, 

where p = 02/8scA; while 5' = c ~ ; k ' / d  - 1 <<I. When the 
assumption of weak non-linearity of the wave is satis- 
fied the part of the Lagrangian is small compared to 
PI. We retain it nonetheless a s  i t  will become clear 
from what follows that the corresponding small correc- 
tions appreciably affect the behavior of the wave. 

From (26) we get an equation for the field 

Equation such a s  (27) rather often occur in problems 
about the propagation of waves in a non-linear medium 
so that it will be pertinent here to analyze i ts  solution 
in more detail. 

Beforehand we consider the solution of the truncated 
equation 

It is obtained from (27) by dropping the small non-line- 

Equation (28) has two integrals which a re  conserved 
along the z-axis: 

Here and henceforth in this section we understand by r 
that part  of the radius vector which is at right angles 
to the z axis. 

We define the square of the width of the wave by the 
relation 

Using (28) we find 

whence 

It follows from (33) that the behavior of the solutions 
of Eq. (28) depends strongly on I!. If I! >O the wave 
widens without bounds with increasing z. If, however 
I! < 0, it contracts and fo r  finite z the quantity D would 
become negative which, clearly, means the appearance 
of a non-integrable singularity in 1$12. 

Solutions of Eq. (27) which a re  independent of z 
(stationary) a r e  possible only when I: = 0. Stationary 
solutions $, corresponding to different values of 5 a re  
connected through a similarity transformation so that 
we can express them in terms of ql, the solution for 
(=I: 

Hence it follows that in the stationary case the inte- 
gral I, like I!, is independent of 5 .  It is just because 
of this degeneracy that the small non-linear corrections 
in Eq. (27) may appreciably change the nature of the 
solutions. '' 

For Eq. (27) Eqs. (30), (32) a re  replaced by 

and 

We consider the change of the solution of Eq. (27) along 
the z axis. Let I, < 0, and the width of the wave be suf- 
ficiently large: D>>II/I,I. The right-hand side of (36) 
is then negative and the wave contracts a s  z increases. 
The field amplitude then increases: 1 $1 '-I/D and a t  the 
same time the absolute magnitude of the second term in 
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(36) increases while the first  term stays constant. The TABLE I. 
contribution of I :  to the integral Il consists of two parts. 
The first  of those is positive-definite and the second 
negative-definite. If the first  one dominates, ultimate- 

", I F  l a  I 
ly the whole right-hand part of (36) can become positive $:At *2:y6 
and the contraction of the wave stops. This occurs when I 7.61 5.19 625 

1 23.6 20.7 21.5 
D-1/11 and i f  11/111 << 1 the wave will still be weakly non- 2 14.3 6 9  

2 36.3 26.7 30.9 linear. 

The small non-linear corrections to Eq. (27) can thus 
prevent the collapse of the wave. A consideration simi- 
lar to the one just given shows that stable stationary 
weakly non-linear solutions of Eq. (27) can exist. 

We shall look for stationary solutions of Eq. (27) in 
the form qt = $: + 6q1, where $! is a stationary solution. 
of Eq. (28) and 6$, a small correction. It follows from 
(36) that 

Hence we find 

where 

Comparing (35) and (37) we get 

The functional I :  vanishes when J I G $ ! .  By virtue of 
(28) i ts  variation also vanishes when I =  const. There- 
fore only remains on the left-hand side of (40) the varia- 
tion 

One can easily check the last equation using (28) and 
(30). From (38), (40), (41) we get 

It is clear from (38), (42) that the small corrections in 
Eq. (28) lift the degeneracy and the integrals I, Il be- 
gin to depend on [. When 1 this dependence is de- 
termined by the three constants I0, a, b which can be 
found by numerically integrating Eq. (28). Some of 
their smallest values obtained for solutions of the form 
@(r) = $,(r)eimv a r e  given in Table I. 

In order that the stationary solutions of Eq. (27) a r e  
stable, the integral Il must be negative for them, and 
the first  term in 1: must dominate over the second one. 
It follows from (38) that these conditions a r e  satisfied 
simultaneously, if a> b cos29. For those states which 
a re  given in the table axially symmetric waves (m = 0) 
a re  stable for all  angles of propagation for which Eq. 
(27) is applicable. For other m there occur regions 
of instability, The interaction of the plasma with the 
field of a monochromatic FMS wave can thus lead to 

the formation of a stationary wave channel with a some- 
what increased plasma density. Thanks to refraction 
the wave is contained in the channel, while the plasma 
is under the influence of the force (7). However, the 
wave is not always stabilized. If the condition for 
stabilization is not satisfied, the wave contracts, at 
least until i t  becomes strongly non-linear. 

4. PLASMA COLLAPSE UNDER THE ACTION OF 
FAST MAGNETOSONIC WAVES 

If condition (15) is satisfied a uniform isotropic wave 
distribution is unstable. When fluctuations in the den- 
sity arise the plasma s tar ts  to contract into a region of 
enhanced density. The compression occurs along the 
magnetic field so that the shape of the blob turns out to 
be anisotropic. We noted already earlier that the in- 
crease in the energy density of the FMS waves with in- 
creasing plasma density is caused by the change in the 
momentum volume occupied by the waves. If the waves 
a r e  distributed relatively isotropically at all points of 
space, their density changes a s  p 3 f 2 .  For small plasma 
inhomogeneities a mixing of the waves with respect to 
directions is guaranteed by refraction. This also sup- 
ports the modulational instability in i ts  initial stage. 
However, when the density modulation turns out to be 
large, the role of the refraction reduces to confining 
the waves trapped in the region of compression and one 
needs include other mechanisms for the trapping of the 
waves. Scattering may serve a s  one of such mecha- 
nisms. 

We consider how wave-wave scattering affects the 
development of the process. The rate of induced scat- 
tering of two FMS waves with wavevectors k, and k, into 
waves with k, and k, is important when I wl - w31 
S I kl - k,Iv,,. One can show that in that case 

Let the compression region have a characteristic size 
I and let the velocity of the compression be U - V T * .  For  
sustaining the compression the energy density of the 
waves must increase faster than the particle density: 

Hence 

This condition is always satisfied when the condition 
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(15) for the occurrence of the modulational instability 
is satisfied. Hence, the scattering of the waves guar- 
antees that they a re  trapped sufficiently fast in the 
compression region, and the compression of the plasma 
must continue until the condition for the applicability 
of Eq. (7) i s  violated, i. e . ,  until the density of the ki- 
netic energy of the plasma o r  of the energy becomes 
comparable to ~ , 2 / 8 n .  

CONCLUSION 

Two distinctive characteristics of MHD waves give 
particular importance to modulational processes in 
them. 

1. MHD waves a r e  oscillations with very long wave- 
lengths which propagate in a plasma with relatively 
weak dissipation. The modulational instability of MHD 
waves can therefore proceed a s  a large-scale process. 

2. Magneto-hydrodynamic turbulence often contains 
in it an appreciable amount of energy with a transfer 
velocity c~ which for small P is much larger than the 
thermal velocity. This guarantees a fast supply of en- 
ergy to the compression region so that a large amount 
of energy can be released when the modulational insta- 
bility develops. 

These characteristics give us a basis for expecting 
that the modulational instability of MHD waves can be 
observed directly in natural conditions. One of the 
most appropriate objects where the effects considered 
might take place is the solar plasma, especially in the 
chromospheric region. If we take the following values 
for the parameters for the chromospheric plasma: 
magnetic field Ho- 10 to 100 gauss, density p -  1012 
~ m - ~ ,  temperature T- lo4 K ,  turbulent velocity of the 
order of 10 to 30 km/s, which are ,  probably, rather 

typical[5' we get P -  lo-', w / p ~  2 1. In that case all con- 
ditions for the occurrence of the modulational instabil- 
ity a re  satisfied in the chromosphere. In this connec- 
tion it is fully realistic that one can identify some of the 
chromospheric phenomena with the modulational insta- 
bility of MHD waves. 

In conclusion the author expresses his gratitude for 
discussions of the problems raised in this paper to 
A.A. Galeev. D.D. Ryutov, V.D. Shapiro, And V.I. 
Shevchenko. The author is also grateful to G. L. Kot- 
kin for reading the proofs of the paper and for making 
a number of important observations. 
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what follows when we consider the low-frequency longitudinal 
motion of the plasma take into account non-linearities caused 
by the pressure  of the waves which a re ,  a s  will be clear,  de- 
termined by the parameter H'/~T. 

''we note that the above-mentioned degeneracy of Eq. (28) is 
connected with the fact that the space orthogonal to the z-axis 
i s  two-dimensional. 
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radiation 
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We report a theoretical analysis and an experimental investigation of the cooling of a molecular gas by 
resonant intermode absorption of laser radiation. The actual results pertain to cooling of a C02-N, gas 
mixture by C0,-laser radiation. The rate and depth of the cooling are investigated as functions of the 
partial composition of the mixture (including pure C02 gas) at different intensities and waveforms of the 
laser pulse. Good agreement is obtained between the theoretical and experimental results. 

PACS numbers: 51.70. + f, 42.60.He 

It was shown theoretically by a number of work- ance of the kinetic-cooling effect i s  due to intermode 
e r s ~ ~ - 4 ~  thatwhen C0,-laser radiation i s  absorbed in resonant absorption of the C02-laser radiation by the 
air ,  the gaseous medium may be cooled rather than molecules of the carbon dioxide. The initial interest 
heated during the initial instants of time. The appear- in this effect was due to the possibility of resongnt 
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