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The exact Lagrange function of a constant electromagnetic field is considered as a competitor for the 
photon propagator in the investigation of questions of principle in quantum electrodynamics. A condensed 
gauge-invariant method is proposed for the calculation of radiative contributions to the Lagrange function, 
based on a closed functional expression. For extremely strong fields all radiative effects are concentrated 
in a scale multiplier of the field variable which is universal for quantum electrodynamics (or the Callan- 
Symanzik /3 function). In addition to the expansion terms of the /3 function in spinor electrodynamics 
which were determined before, we have obtained the first two terms in its expansion for scalar 
electrodynamics. A comparison is carried out between the renormalization-invariant charges determined by 
the photon propagator and the Lagrange function and the bare charge determined by the Z,-factor. It is 
proved that their Cell-Mann-Low functions are different, the latter containing a3 terms which makes the 
appearance of a common zero in these functions possible; this corresponds to a finite limit charge. Integral 
transformations of the renormalization-invariant charges are considered, which do not change their 
boundary and limit values, but subject their Cell-Mann-Low function to a transformation. 

PACS numbers: ll.lO.Ef, ll.lO.Gh, 11.1O.Np 

I. INTRODUCTION function ~ ~ ( z ) ,  i. e. , does not depend on a multiplicative 

As i s  well known, the behavior of quantum electro- 
dynamics at small distances and the problem of i ts  in- 
ternal self-consistency a r e  usually studied by means 
of the exact photon propagator, cf. the classical papers 
of Landau, Abrikosov and Khalatnikov, "I and Gell- 
Mann and Low. Based on the renormalizability of 
quantum electrodynamics (QED), Gell-Mann and Low 
have shown that in the region of large squared four-mo- 
menta the photon propagator becomes a function of a 
single variable: if the exact propagator i s  D = k'2d, the 
renormalization -invariant quantity ~ q ? ( k ~ / m ~ ,  a )  - 9,(cp(a)k'/m2)-the contribution of all the radiative 
corrections reduces to the scale factor (p(a) multiply- 
ing the dynamical variable k2/m2. This means that the 
form of the charge distribution a t  small distances from 
the center does not depend on (2. 

For the internal consistency of QED it  is essential 
whether the limit of the function al(z) is finite o r  infi- 
nite for z em. Indeed, if @,(z) tends to a constant a*, 
this means that for very large k2 the exact photonpropr 
agatorbecomes a f r e e  propagator up to the factor @,/a, 
which replaces the fine-structure constant a by i ts  
limit a,. In this case the charge density at small dis- 
tances is described by the function (4nc~,)"~b(x), i. e . ,  
corresponds to a finite bare  point charge e* = (4n(~*) ' /~ .  
If the function @,(z) tends to infinity a s  z - m ,  the charge 
distribution a t  small distances has at the origin a sin- 
gularity which i s  worse than the delta-function, and i t  
is hard to attribute a physical meaning to such a sin- 
gularity. Even more intriguing is the situation when 
al(z) has a pole for a finite z. In this case the theory 
may "exist" only for vanishing physical charge, cf. the 
papers by Landau and ~orneranchuk[~]and Fradkin. ['I 

The most economical description of the situation is 
realized in terms of the Gell-Mann-Low function $,(y) 
which is an invariant characteristic of the form of the 

change z - tz of the argument of the latter. To a finite 
limit a*  of the function al(z) for z -a corresponds a 
zero of high enough order of $, at y = a*. In a series of 
 paper^^^'^] Johnson, Baker and Willey have shown that a 
zero of the Gell-Mann-Low function is also a zero 
of the simpler function f,(a) which is the one-loop con- 
tribution to the f i rs t  expansion coefficient of the recip- 
rocal propagator dm' in powers of 1n(k2/m2) for k2/m2 
-rn. Presently only the f i rs t  three terms in the expan- 
sion of these functions have been obtained by means of 
perturbation theory. 

In addition to the photon propagator, the Lagrange 
function of the electromagnetic field plays an essential 
role in quantum electrodynamics. As is well known, 
in classical (Maxwell) electrodynamics the Lagrange 
function is quadratic in the field. The radiative quan- 
tum effects of the interaction of the electromagnetic 
field with the field of the charged particles in the vac- 
uum leads to the appearance of essentially nonlinear 
terms in the Lagrange function. The f i rs t  radiative 
correction to the Lagrange function of the constant elec- 
tromagnetic field has been found by Heisenberg and 
Euler. ['I A significant contribution to the investigation 
of this correction was made by ~ e i s s k o ~ f [ ' ~ ~  and 
Schwinger, ["I the latter creating an elegant method 
fo r  the consideration of the problem of vacuum polar- 
ization by an external electromagnetic field. 

In a previous paperc121 the author has determined the 
radiative correction to the Lagrange function of a con- 
stant electromagnetic field which follows after the 
Heisenberg-Euler term, and i t  was shown that on ac- 
count of renormalization invariance, the exact La- 
grange function of the electromagnetic field, taking in- 
to account all radiative corrections, becomes a func- 
tion of one variable in the asymptotic region of strong 
fields: if I = 9/4'') is the ratio of the exact Lagrange 
function to the Maxwell Lagrange function, then at1 
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- tB2(q(a)eF/rn2) with the same scale multiplier q ( a )  
of the dynamical variable eF/rn2 a s  for the case of the 
exact photon propagator. This makes the Lagrange 
function of the strong field a convenient object for the 
investigation of questions of principle in QED. In par- 
ticular, the Lagrange function may serve a s  a source 
of information about the universal function q ( a )  of QED, 
function which reflects the role of radiative corrections 
in extreme conditions, when one has to go beyond per- 
turbation theory. 

In the present paper i t  is shown that the functions 
@l(z) and tBz(z) a r e  different and cannot be identified 
by any multiplicative change of their arguments: @,(z) 
+@,(tz), t =  const. This follows from the fact that the 
corresponding Gell-Mann-Low functions $,(y), a = 1,2 
differ in the third of their expansions. However, if for 
z -m the function tB1(z) tends to the constant a, then @, 
also tends to a*. Indeed, if for very large k2 the pho- 
ton propagator becomes f ree  up to a factor @*/a then 
both the field equations and the Lagrange function from 
which they a r e  derived must differ from the Maxwellian 
quantities only by a factor a*/& Here the Maxwellian 
character must exist exactly in the region of very 
strong fields, where, a s  one can see  from a calcula- 
tion, the distances which a re  essential for the formation 
of the Lagrange function a re  of the order ( e ~ ) - ' / ~ < <  m" 
and thus small compared to the Compton wave lengths. 
To this class of quantities which tend to a* belongs 
also the bare fine structure constant a,, considered 
as  a function of a and of the dimensionless regular- 
ization parameter x - (c. f.  Sec, 3). Thus, the 
problem of whether the constant a* is or  is not finite 
can be studied in terms of that function @,(z) o r  in 
terms of that Gell-Mann-Low function $,(y) whichis 
more convenient for the purpose. Among the advan- 
tages of the Lagrange function one can list the sim- 
plicity of its computation, which at each step pre- 
serves gauge invariance, and the fact that the corre- 
sponding Gell-Mann-Low function q2(y) has a negative 
mrd-order term, which makes it easier fo r  this func- 
tion to have a zero (in distinction from the Gell-Mann- 
Low function of the photon propagator). 

The structure of the paper and i ts  main results a re  
a s  follows. In Sec. 2 we briefly expose the method of 
calcultition of the Lagrange function for the electromag- 
netic field, on the example of electrodynamics of scalar 
charged particles. This method is described in more 
detail in the author's devoted to the Lagrange 
function of the electromagnetic field in spinor electro- 
dynamics. However, this time we start  from the 
closed functional relation between the exact action of 
the electromagnetic field, taking into account all the 
radiative corrections, and the first  approximation to 
this expression. Moreover, scalar electrodynamics 
has some specific pecularities compared to spinor 
electrodynamics, owing to the more complicated struc- 
ture of the current (which is proportional to the mo- 
mentum operators ll, and not to the c-number y,-ma- 
trix), and owing to the higher divergences, i. e. , the 
terms proportional to @ (or reciprocal to the proper 
time). In spite of this, the method described here is 
sufficiently flexible and compact for an adequate deal- 

ing with these peculiarities. The correction to second 
order in a to the Lagrange function is obtained, as well 
as the 2,-factor in the corresponding approximation and 
the f i rs t  two terms in the expansion of the Callan-Sym- 
anzik /3 function. 

By means of the renormalization group, we deter- 
mine in Sec. 3 the behavior of the exact Lagrange func- 
tion of the electromagnetic field for extremely strong 
fields and carry  out a comparison of various renormal- 
ization-invariant charges in the asymptotic region of 
their respective dynamical variables. In addition to 
the usual renormalization-invariant charge, defined in 
terms of the photon propagator, we consider the invari- 
ant charge defined in terms of the exact Lagrange func- 
tion of the constant electromagnetic field, and the bare 
charge defined in terms of the 2,-factor. In spinor 
electrodynamics we have determined for the two latter 
charges the Gel1 -Mann -Low functions $z(y) and &(y)  
in the a3 approximation. These two functions turn out 
to differ from each other and from the Gell-Mann-LOW 
function $'(y) for the first  charge: 

The negative third terms enhance the possible existence 
of zeroes for these functions, zeroes which a r e  neces- 
sary  for the internal consistency of quantum electro- 
dynamics. 

Finally, Sec. 4 contains some integral transforma- 
tions of the renormalization invariant charges which do 
not change the limit ( a )  and the asymptotic (a*) values 
of these charges, but subject their Gell-Mann-Low 
functions to a transformation. It is shown that the in- 
tegral transformations may render the third term of 
the expansion of the Gell-Mann-Low function negative. 

2. THE LAGRANGE FUNCTION OF THE 
ELECTROMAGNETIC FIELD 

One can indicate two methods of calculation of the 
Lagrange function of the electromagnetic field. The 
first  consists in integrating the expression for the vari- 
ation of the action for a change of the potential A,(x) of 
the external field by bA,(x) 

where ( j ,  ( x ) )  is the expectatton value of the current 
density operator, induced in the vacuum by the external 
field. In scalar QED 

Making use of this expression of the current and e6A, 
= - 6II,, one can write (1) in the form 

where Go = -i(? + m2)-' is the Green's function of the 
particle in an external field without radiative correc- 
tions and T r  is the diagonal sum over space-time coor- 
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dinates. Thus, in a f i rs t  approximation, when GI: Go 
we obtain w") = i T r  lnGo. This expression, a s  does 
(3), differs by a sign from the corresponding expres- 
sion in spinor electrodynamics. Further radiative cor- 
rections to the action can be obtained taking into ac- 
count the next corrections to G in integrating (1) o r  (3). 

It is however more convenient to make use of closed 
functional expressions for the exact vacuum-to-vacuum 
amplitude in the presence of the field (cf+ e. g. , ~131) 

where Do is the vacuum photon propagator. In this re- 
lation i s  expressed the universality of the electromag- 
netic interaction: the amplitude exp(iW"'[e~]) which 
takes into account only the interaction of electrons with 
an external field, determines the exact amplitude 
e x p ( i M e ~ ,  a]), which also takes into account the radia- 
tive interactions of the electrons with each other via the 
quantized electromagnetic field. Both interactions a r e  
characterized by the same charge e. In particular, we 
obtain for w ' ~ )  

tV'"=&e2 J d.x d-x' L), (x-x' )  { ( s l  II,Golxl) (x' I II,Golz) 

+(*III,G,II.lz') (x'lGolx)+4i6(x-x') (xlG,ls')+(xlII,GoIx) (z'lII,Golx')) 

(5) 

For a constant and homogeneous field F, ,  the last term 
in (5) does not contribute to w ' ~ ) ,  since the average 
current induced in the vacuum by such a field vanishes. 

It will be convenient to use the F o c k - ~ c h w i n ~ e r ~ ' ~ ~ ~ ~ ~  
proper-time representation for the Green's function of 
a scalar particle in a static field 

where 

P=eF cth eFs, 

a r e  a matrix and scalar function of the matrix F,,, re- 
spectively, z = x - x' , 7 is the nondiagonal phase of the 
Green's function, equal to the line integral of the poten- 
tial eA,( y )  along a straight line j oining the points A! and x. 

It is not hard to see  that the matrix elements 
(XI lIaGoI x') and (XI Gona l x') differ from (6) by the 
additional factors 1/2@ + eF)aBzE, 1/2(8 - eF),,zE 
under the sign of the proper-time integral, and the 
matrix element (XI n,GoIIaIx') can be represented in 
the form 

Taking these remarks into account and utilizing for 
Do the proper-time representation 

exp[ - im2(s f  s f ) -L-L ' ]  

izAz 
x dlr  exp (7) [- z ( P ~ P - 3 e z ~ ~ ) r - m 2  1 

Here A = 8 + P) + t-' i s  a symmetric 4 x 4 matrix and 
P ' ,  L' a r e  obtained from P ,  L by means of the sub- 
stitution s - s'. 

The integration over z in the first  term, and the 
subsequent integration with respect to t a r e  carried 
out just a s  in [I2]. In the second term the integral 
with respect to t is regularized by introducing a low- 
e r  integration limit to, and the integral with respect 
to s, by means of subtracting a term which does not 
depend on the field. As a result of this we obtain: 

9,,, - - ia  ds ds' exp[-lm2(s+s') ] (eZqe)2 i  
6*nZ sin q s  sh ees sin ens' sh ees' 

(-m21. - - I )  
2 

where 2") is the Lagrange function of the Maxwell 
field, .Y$' is the nonlinear correction to it found by 
~ c h w i n ~ e r ' " ~ :  

L 

1 -ds e2qe 
9:"- -- jTexp( - imas )  [ sin eqs  sh ees --- sZ 

and the functions I,, I a r e  defined in Eq. (36) of '12', 

where the parameters a, b ,  a r e  the same a s  for the 
spinor case, and the parameters p ,  q a r e  different: 

p=2eZq'(ctg eqs  ctg eqs1+3) ,  

q=2e2e2(cth E E S  cth ees l -3 ) .  

The integral term in (9) does not vanish when the field 
is switched on and requires regularization. This is 
done in the same way a s  inC12]. As a result '2' has 
the following representation: 

where 

- ia  " ' Ko ( s )  7 
9n - - ~ d s { J  d s ' [ ~ ( s , s ' ) - T ] + ~ o ( s )  ( l n i T m 2 s - F ) ) ,  

32n 0 o 

( eZqe)Zexp[ - imz ( s+  s') I i  r (13) 
K (s, s f )  = sin eqs sh ees sin eqs' sh ees' 

m' exp [-im2(s+s') 1 i  + 

(14) 

eZqe ---- 
6 

we obtain from (5) the following expression for 9"': and the radiative correction to the particle mass i s  
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We call attention to the divergences linear in ti'  in^'^' 
and 6m2. 

The radiative correction of first  order in a to the 
Lagrange function is ["I 

where 9;) is defined by Eq. (10) and the unrenormal- 
ized values of the fine structure constant and the mass 
a re  denoted by the subscript zero. Thus, up to radia- 
tive corrections of order 2 we have 

where the expression on the left is defined in terms of 
the unrenormalized values of the field, charge and 
mass, and the expression on the right in terms of the 
renormalized ones. The renormalized mass is related 
to the bare mass by m2 = mi + 6m2. The relation 9'2) 
= P0)q1 between the renormalized and unremoralized 
Lagrange functions of the Maxwell field, leading to the 
field renormalization 77 =q0.Z;1/2, & = and the 
charge renormalization e = e,,~;/~, is achieved with the 
2,-factor 

Owing to the use of the renormalized mass, only loga- 
rithmic divergences have remained in q'. Whereas 
the coefficient of the first  logarithm is well estab- 
lished, C'5"61 the existing calculations of the coefficient 
in front of the second l ~ ~ a r i t h m [ ' ~ " ~ ~  do not agree with 
each other. The coefficient we have determined agrees 
with the one obtained by Zofia Bialynicka-Birula. [17] 

Making use of the expression for 2, and Eq. (31) of 
Sec. 3, we obtain the following expansion: 

for the Callan-Symanzik function of scalar QED. 

The correction 2f) has the following asymptotic 
properties: 

Equation (21) does not exhibit an imaginary part  which 
is exponentially small compared to the real  part. In 
the case of a weak electric field the imaginary part of 
the Lagrange function(l8) equals 

ae2 exp (-nm2/ee) 
~ r n  9, = ~m (~d"+92.h2' ) = (i+na+. . .), 

4nZ 

We note that in spinor electrodynamics the correspond- 

ing limit is twice a s  large on account of the doubled 
number of states for a pair  with vanishing orbital angu- 
lar momentum projection. 

Whereas the behavior of the real  part  of the Lagrange 
function in a weak field determines the charge and mass 
renormalization, the behavior of i t s  imaginary part for 
a weak electric field determines the radiative correc- 
tion 6m2 to the square of the bare  mass, namely it fixes 
the constant 7/6 in the expression (16). If one chooses 
another constant b in place of 7/6 in the expression for 
6m2, then b would appear in place of 7/6 also in the last 
term of (13). Then in the parentheses of Eq. (23) for  
the imaginary part  of the Lagrange function of the weak 
field there would appear the additional term (3am2/4e&) 
x(b - 716) which, then translated into the exponent of the 
exponential function would change the parameter m2 by 
-(3am2/4n)(b - 7/6), which is finite for & - 0. This 
would mean that m is not the mass of a real  particle, 
since according to the physical principle of renormal- 
ization the observed mass already contains all  the ra- 
diative correction. Thus, the parameter m which is 
related to the bare mass mo by mi = 4 +6m2 can be inter- 
preted a s  the mass of a real  particle only for b = 7/6. 
The expression for 6m5 was verified by means of the 
mass operator and the position of the pole of the modi- 
fied Green's function of the particle in the vacuum. 
Thus, the renormalization of the field strength, charge 
and mass is uniquely determined by the behavior of the 
exact Lagrange function in the weak field limit, i. e. ,  
by a boundary condition: i ts  real  part must be Max- 
wellian, and the imaginary part  must be equal to 

The coefficient f characterizes the spin of the polarized 
charged field and is inessential for the mass renormal- 
ization. 

We note that in the calculation of the exact photon 
propagator in the vacuum the charge and mass renor- 
malizations can also be defined only by a boundary con- 
dition on the behavior of the propagator: Red- 1 for 
k2- 0 and Imd- - (1 + 4m2k-2))i'2gi(a) o r  Imd- (1 
+ 4m2k-2)3/2g2(a) for k2  - -4mz, respectively for the 
spinor and scalar charged fields. 

As is evident from Eq. (18), the Lagrange function 
is a renormalization-invariant quantity, i. e. , i t  does 
not change when one replaces in i t  the unrenormalized 
parameters by the renormalized ones. This property 
stems from the a Priori invariance of the amplitude 
exp i(W0'+ W )  for  the vacuum to vacumm transition 
with respect to this substitution, and together with the 
fundamental properties of the Lagrange function i t  
makes i t  into a convenient object for the investigations 
of questions of principle in quantum electrodynamics. 

3. A COMPARISON OF THE VARIOUS 
RENORMALIZED CHARGES I N  THE ASYMPTOTIC 
REGION 

We consider three quantities which a r e  invariant with 
respect to the renormalization group in QED (spinor o r  
scalar). 
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1) The invariant charge adR(x, a )  defined by the exact 
propagator of the photon k-'d and depending on the fine 
structure constant ff and the ratio x =  k2/m2 of the 
square of the photon momentum to the square of the 
electron mass. C21 

2) The invariant charge a IR(x, y,  a)" defined by the 
ratio lR = YR/9;) of the Lagrange function PR of a 
strong constant electromagnetic field to the Lagrange 
function pi0) of the Maxwell field, and depending on ff 

and the magnetic field 7 and the electric field c in the 
frame in which they a r e  parallel, and appropriately 

2 [I21 made dimensionless: x = g/m2, = e&/m . 
3) The bare coupling constant cro = a Z,(x, a)-', de- 

pending on o! and the cutoff parameter x = (im2so)-I for 
which we use the proper times so, o r  more precisely, 
the spacelike interval iso. [lZ1 

As a consequence of the renormalizability of quantum 
electrodynamics, in the limit x-o3 all these quantities 
a r e  described by their asymptotic (subscript 00) func- 
tions which depend only on one variable z = xcp(a): 

ud,, (x, a )  =@, ( z ) ,  al&(x, a )  =02(z) ,  
(24) 

aZ,(x, a)- '=@:(z).  

where cp(ff) is a universal function in quantum electro- 
dynamics which occurs in the solution of the equation 
ctO = aZ,(x, a)'' with respect to the cutoff parameter: 

2 xm's im so = q ( a )  X(cro). The factorization of the right- 
hand side into a product of functions of a and a. is a 
consequence of the same renormalizability. 

Indeed, one can write the relation (18) in the form 

if in the left-hand side one effects a mass renormaliza- 
tion and makes use of the invariance of the product eoFo 
= eF. When one of the field parameters tends to infini- 
ty, e. g. , x =  eq/& the asymptotic expression for 1 
in the second approximation, 1 = 1 + 1")+ 1") does not de- 
pend either on m2 o r  the second parameter e&. We as- 
sume that this important property is valid for I in any 
order in cu,. Then lim l =  1, (ieqso, aO). Substituting 
into 2, the quantity iso = m2rp(ff, %) obtained from the re- 
lation a = C Y O ~ 3 ( i m 2 ~ 0 ,  aO) we obtain according to (25) 

Since the right-hand side does not depend on %, the 
left-hand side must also be independent of %. This 
can happen only if @(a ,  %) factorizes into a product of 
functions of a! and a,, respectively: 

im2s,=q (a ,  ao)  =q ( a ) x ( a a ) .  (27) 

After a. disappears from it  the left-hand side of (26) 
becomes a function only of (ev/&)cp(cu), and thus, from 
Eqs. (26) and (27) weobtain for a;', and &J = f f ~ ; '  the 
expressions (24). 

Since, a s  we assume, the boundary conditions im- 

posed on the exact Lagrange function and on the' exact 
propagator determine the same coupling constant-the 
fine structure constant-the relation between a and q, 
is unique fo r  the same regularization method and does 
not depend on whether it has been determined through 
the Lagrange function o r  through a calculation of the 
photon propagator. Consequently, when calculating 
adRo. we obtain the expression (24) with the same func- 
tion @(a). 

It i s  clear that the function cp(ff) is defined up to a 
multiplicative constant, on which the invariant charges 
(24) do not depend, but the functions *,(z) do. This 
constant is a parameter of the renormalization group. 
Since 

xq~(a)=@~-'[c*dn- ( x ,  a )  1 (28) 

etc. , for a =  2, 3, then the functions which a r e  
the inverses of @,(2) a r e  defined up to the same multi- 
plicative constant. But the logarithmic derivatives 

which determine the Callan-Symanzik /3 function and the 
Gell-Mann-Low functions $, a r e  uniquely defined and 
a r e  renormalization-invariant characteristics of the 
representation (24). 

Equations (28), (29) imply the functional relations 

etc. , for a = 2, 3. The first of these is the Callan- 
Symanzik satisfied by the functions cudRm, 
a&, a~g'. The second relation is a differential form 
of the Gell-Mann-Low equation. c21 A consequence is 
the functional relation between the /3 and $, func- 
tions, [20'2' I 

If in (27) one considers a a function of ~ = ( i m ~ s ~ ) - ~  
and cu, then differentiation yields 

In general we obtain from (28) in a similar manner 

where a,_ is the a-th renormalization-invariant charge 
in the asymptotic x region. 

Thus, if the physical meaning of the parameters a, 
m is fixed by the renormalization conditions, any re- 
normalization-invariant charge and the Z, factor ob- 
tained through any regularization method (momentum 
cutoff, proper-time cutoff, etc. ) contain universal in- 
formation on quantum electrodynamics in the form of 
the same function ap(ff). We use for a, m the fine 
structure constant and the physical electron mass. 
This physical meaning of a, m is guaranteed by definite 
boundary conditions for the exact Lagrange function for 
F - 0, o r  for the exact photon propagator for k2  - 0 and 
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k2 - -4m2, cf. Sec. 2. To another physical meaning of 
of a, m would correspond to a different function ap(a). 
In general one can say about the Callan-Svmanzik B- 
function and the Gell-Mann-Low $,-functions that their 
form is determined by the physical meaning of their 
argument. 

The explicit forms of these functions a r e  known only 
within the framework of perturbation theory. Accord- 
ing to perturbation theory the functions dl;', , I;',, Z3 can 
be expanded in double series in powers of a and Inx: 

According to the Callan-Symanzik equation (30) the 
coefficients a,, can be expressed in terms of ad and the 
coefficients of the power series'' for H a )  

via the recurrence relations 

- 6  + i - ) a , - , - ,  ,>I. (35) 

It follows from the last relations that in terms of the 
order an, n 2 2, the highest power of the logarithm is 
n - 1. The coefficients of the highest powers of the log- 
arithms in (33) a r e  determined only by the coefficients 
8, Pz: 

and the coefficients a,,, 2 r c  n - 1 of the other log- 
arithms a re  determined by the coefficients Pi, &, . . . , 

and the constants azO, a3,, . . . , a,o. The constants 
a,, reflect the individual traits  of the functions @,(z) and 
their one-parameter arbitrariness due to the renormal- 
ization group. 

The series (33) for the functions d;',, IRm, Z3 can dif- 
fer  only in the constants a,,,,. On the other hand, under 
a group transformation q (a )  - t-'cp,(a), *(z) - @,(tz) the 
constants a,,,, transform in the following manner: 

Such a transformation does not change the form of @,(z) 
described by the invariant function $,(y). Therefore 
the differences in the form of the functions @,(z) which 
do not reduce to a multiplicative change in the argument 
a re  reflected in the differences in their Gell-Mann- 
Low functions. Expanding the latter in ser ies  

stants a& is understood) 

The constants ad entered into the right-hand sides of 
the relations (39) in combinations which a re  invariant 
with respect to the transformations (37). It is just by 
such combinations that the functions $,(y) differ from 
the universal function yHy) and from each other, and 
the difference can s tar t  only from terms of third order,  
n r  3, and in nth order is determined by the combina- 
tion of p, and am of order k S n - 1. 

Table I lists the constants alo, azo, and the coeffi- 
cients $, determined from (39) and (34) for the functions 
di',, lRm, and Z3 of spinor electrodynamics. Here In y 

= 0.577 is the Euler constant and 5(x)  is the Riemann 
zeta function. The data for the d;', function have been 
obtained inC23'26171 and for 1 ~ -  and Z3 in the present pa- 
per, based on Ref. [I2] cf. also the preliminary publica- 
tion. C271 The constant azo for IR- is defined by the fol- 
lowing expression containing a double integral: 

where the function Q(u, 5 )  equals 

1 2w 2 cthz I + - -  - 4- 
/ ( I - / )  [ sh'u u' z 4 ~ ~ :  :- (41) 

/ ( I - e )ushu  
w =  z=u( l - / ) ,  

sh uE sh u(1-E) ' 

and the derivative is taken with respect to u. This in- 
tegral was done numerically: 

Thus, all  three functions $,(y) a r e  different, and in 
distinction from $l(y), the functions and $3(Y) con- 
tain negative third-order terms. The latter enhances 
the possibility of these functions vanishing for y- 1. 
As is well known, the existence of a sufficiently strong 
zero at y = a, in the Gell-Mann-Low function means 
that the corresponding invariant charge becomes a, 
in the limit x - a .  For  internal consistency of QED 
the finiteness of the limit a, = limaO(x, a ) ,  X-OO of the 
bare charge, with respect to which one expands the in- 
itial perturbation series,  is necessary. If this fact 
has physical significance, then the limit a, must not 
depend on the cutoff method which determines the val- 

Table I. 

br 

and using (30) to relate the coefficients $2' with /3, and 
a$', we obtain (the index a in the coefficient $, and con- 
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ues of the constants a* in the representation (33) for 
Z,, i. e. , the form of the function %,(z). A change in 
the cutoff method allows one to make the function @,(z) 
agree either with the function %,(z) o r  with @,(z), and 
consequently the limits of these functions for x-* 
must also be finite and equal to a*. The finiteness of 
all limiting values is possible i f  P(a) = 0 for a! = 11137 
(cf. (30) and c211), orfor  a!= a *  which is more likely, 
o r ,  if there exists yet another reason for the vanishing 
of all $,(y) for the same y = a*-  1. 

4. INTEGRAL TRANSFORMATIONS OF THE 
RENORMALIZATION-INVARIANT CHARGES 

In the Introduction and in Sec. 3 we have produced 
general arguments in favor of the fact that all the re- 
normalization-invariant charges have the same limit, 
i f  that limit exists at least for one of them. It would 
be desirable to give a mathematical proof of this as- 
sertion. ') In this section we can only indicate the ex- 
istence of some renormalization-invariant charges 
which differ in the asymptotic region, i. e. ,  have dif- 
ferent Gell-Mann-Low functions, but have manifestly 
identical asymptotic limits. 

We consider the charge eq(mzr2, a )  situated within a 
sphere of radius r surrounding a point source of the 
field with physical charge e: 

It follows from this integral transformation that aq(t, a )  
is a renormalization-invariant quantity which for t = * 
and t = 0 has values coinciding with ad(0, a )  = cr and 
ad(*, a )  = a*. Using the KSll6n-Lehmann representa- 
tion[28,291 

d(x,  a)=l+x J dzp(z,a) I 
p(z, a )=  - - Im d(-z, a ) ,  :44) 

, z (z+x-ie) ' 

we obtain for q(t, a )  the following expression: 

The first  term of the expansion of the spectral function 
p(z, a )  = p")(z) + p")(z) + . . . was found by Schwinger, C301 

the second term was calculated by KXllBnand ~ a b r y ' ~ ~ ] :  

With the help of this spectral function we find, accord- 
ing to (45) the following expansionfor q in the asymptot- 
ic  region t= mzr2  - 0 o r  x =  (yrnr)-2 -*: 

This expansion has the common structure (33) of the 
asymptotic behavior of invariant charges. The coeffi- 
cient $, extracted from this expansion and Eq. (39) is 

Thus, the invariant charges ad  and a!q have different 
Gell-Mann-LOW functions but the same limits for  x 
-*, i f  those limits exist. 

It i s  easy to see  that the Kffllgn-Lehmann represen- 
tation (44) can also be written in the form of a Laplace 
integral transform: 

j -., 
" 

d ( x ,  a )  =I+ x dt e ~ ( t ,  a )  =s j d t  e-"q, ( t ,  a ) ,  (49) 
0 

where 

It i s  obvious that aq1(t, a!) is a renormalization-invari- 
ant quantity which for t = *  and t= 0 takes respectively 
the values a and a,. A calculation of q1(t, a )  with the 
help of (50) and the spectral function above leads to the 
following result in the asymptotic region t- 0 o r  x 
= (,/t)-l- *: 

Thus, to the invariant charge aql corresponds the Gell- 
Mann-Low function with negative coefkicient 

Equations (45) and (50) admit the generalization 

" dz 
pv(t, a )  =I+  - p (z, a )  e-'a')v, (52) 

i 

where v is a positive parameter. It is obvious that 
aq, is a renormalization-invariant quantity which at the 
points t = * and t = 0 takes on the values a! and a*. It 
coincides with a q  for v = 1/2 and with aql for v =  1. In 
the asymptotic region t- 0 o r  x =  (yi'v t)-'-cw the function 
q,(t, a )  behaves in the following manner: 

Thus, the invariant charge aq, has a Gell-Mann-Low' 
function with third expansion coefficient 
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depending on v. As v varies from 0 to * the coefficient 
$3 decreases monotonically from +* to (1/3)C(3) 
- 101/288 - n2/81 = -0.071856. . . We call attention to the 
fact that the integral transforms considered here do not al- 
low one to make J13 into a large negative number. Con- 
sequently, if the Gell-Mam-Low function has a posi- 
tive zero a* this zero cannot be small. Nevertheless, 
a richer family of transformations could decrease q3 
further. 

The author is  grateful to V.  0. Papanyan for check- 
ing the calculations of the last section. 

' ) ~ t  present in spinor electrodynamics the f i r s t  three terms 
in  the expansion of the 8-function a r e  known. [221 The t e rms  
a re  listed in Eq. (34). For scalar  electrodynamics Pi = & 
and ,Bz = f as  follows from Eqs. (IS), (31) o r  (22), (36). 

2 ) ~ u r t h e r m o r e ,  the equality of the limits of the d and 2;' func- 
tions follows from the spectral  representations. 
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