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On the basis of the concept of the growing role of nonadiabatic effects of the nonconsewation of the 
quantum number K a theory has been developed of the phenomenon which has been given the name of 
backbending. Above the transition point, for J >  J, ,  all the values - Js K I  J are equally probable. An 
investigation is made of the singularities possessed by the ordering parameter (proportional to the 
spectroscopic quadrupole moment of a nonspherical nucleus), the rotational angular velocity and the 
moment of inertia of a nucleus at the Curie point. Formulas have been derived for the intensity of 
quadrupole radiation in the more symmetric n-phase J >  J,.  By analyzing the experimental values of the 
moments of inertia belonging to the n-phase the radius of the mass distribution in the nucleus was 
determined. It agrees with the radius of the proton distribution derived from data on the scattering of 
electrons by nuclei. On the basis of the simplest form of the singularity of the parametric derivative of the 
Hamiltonian of the system a general theory of zero-temperature second-order phase transitions is 
developed in the Appendix. 

PACS numbers: 21.10.H~ 

1. INTRODUCTION. ESTIMATE OF THE CRITICAL 
VALUE J, OF THE ROTATIONAL QUANTUM 
NUMBER. ROTATIONAL DENSITY MATRIX 

In recent decades there perhaps has not been in nu- 
clear physics an event more outstanding than the dis- 
covery made at the beginning of the 1950's by A .  Bohr 
and B. Mottelson of rotational levels in nonspherical 
nuclei. Having confirmed as  a subsidiary result the 
well-known assertion of quantum mechanics concern- 
ing the inability of a perfectly spherical body to under- 
go purely mechanical rotation (cf., for example, Refs. 
1,  2), this discovery became the starting point for a 
detailed study of the so-called rotational bands in the 
energy spectra of nonspherical nuclei. The initial 
simplest theoretical treatment i s  expressed by the 
widely known formula 

for the energy levels. Here J i s  the rotational quan- 
tum number, i.  e. , the total angular momentum of the 
whole system (nuclear spin); I' i s  the "adiabatic"mo- 
ment of intertia which refers to the neighborhood of 
the origin of the band and the value of which i s  deter- 
mined from experiment. Avoiding as  far a s  possible 
complications which do not have particular significance 
a s  to principle we shall in future a s  a rule, have in 
mind the case of a rotational band based on the ground 
state of an even-even nucleus. Then in fact the allow- 
able values a re  J = 0 ,  2, 4,  . . . . 

Progress of the experiment upward along the band 
stimulated an ever more critical attitude to formula 
(1). One of the methods of generalizing it consists of 
the following: we adopt the point of view which appears 
to be natural that the conserved quantity J i s  the only 
significant physical (thermodynamic) characteristic of 
which the energy E is  a function within the band under 
consideration in the case of not too light a nucleus. 

Any scalar constructed from the components of the vec- 
tor J will be reduced to the combination J ( J +  1). 
Therefore 

(the reason for indexing the rotational energy of the nu- 
leus by m will become clear from subsequent discus- 
sion). From a practical point of view doubt immediate- 
ly ar ises  whether the understandable tendency to break 
off the ser ies  (2) after a finite number of terms would 
lead to a situation that is sufficiently stable from a 
purely computational point of view. However with time 
an even deeper difficulty involving matters of principle 
became apparent. About six years ago due to the ap- 
plication of new experimental methodology penetration 
began into the domain of st i l l  greater values of J.1s'61 

This led to the discovery of a very characteristic phe- 
nomenon which was called backbending in foreign litera- 
ture." When a noticeable effect was observed it con- 
sisted of the following: the principal characteristics 

d E  
-- 

dE - d(trC2) h2 -- dl -hO, 
dl' dJ I 

(51 is the rotational angular velocity, I is the moment' 
of inertia) of the rotational motion of a nucleus under- . 
go a sharp change over a very narrow region of the ro- 
tational band. The angular velocity of rotation S2 here 
falls off precipitously in spite of an increase in the to- 
ta l  angular momentum J. It is also very characteris- 
tic that in some cases immediately beyond the transi- 
tion point the rotational spectrum turns out to be close 
to an equidistant one. For example, quite typical in 
this regard is the rotational band based on the ground 
state of the nuclide w'". The segment J= 10-14 in 
this case contains only two intervals. But over this 
segment the angular velocity tiS2 (measured in energy 
units) manages to decrease by -100 keV-or by ap- 
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proximately 30%. The sector J= 12-16 which is mini- 
mally displaced in the positive direction also contains 
two energy intervals. But the second of them exceeds 
in the first  one by only 3%, and the increase in angular 
velocity of rotation here is just a s  insignificant (cf., 
formula (3)). 

At first  glance i t  might appear that the discovery of 
the phenomenon of backbending compromises the very 
basis for arguing in favor of relations of the type (1) or  
(2). However i t  appears to us to be not quite logical 
and excessively hasty to cast doubt on the determining 
role of the independent (and, with macroscopic accura- 
cy, essentially unique) thermodynamical variable J. 
In particular, the arguments leading to formula (2) by 
no means exclude the possibility that this ser ies  would 
have a finite radius of convergence. In accordance with 
the spirit of experimental data the point J = J, of the in- 
tersection of the boundary of the circle of convergence 
with the real axis could then have an important physical 
meaning. If nuclear states situated on opposite sides 
of this point differ by some qualitiative property of a 
symmetry type then for  J > J, the energy E(J)  must be a 
different function which does not coincide with the ana- 
lytic continuation of expression (2). Due to the pres- 
ence of a singularity a t  J = J, such an analytic continua- 
tion could, strictly speaking, turn out to be not single- 
valued and even complex. 

In order to discuss the specific physical nature of the 
phenomenon we turn to the properties of the component 
J n = K  (n is a unit vector along the axis of the non- 
spherical nucleus) of the total angular momentum of the 
nucleus along its  symmetry axis. Although this is not 
a matter of principle and does not in any manner affect 
exact calculations, in order to make the subsequent dis- 
cussion more easily visualizable one can, i f  one so 
wishes, call upon a crudely classical vector model; one 
can set J,= (J,),,= J and then K z  J cos0. The quantum 
number K is not conserved since the operator J .  n does 
not commute with the Hamiltonian of the system. How- 
ever for J<< J, near the origin of the rotational band the 
commutator is small. It is well known that this corre- 
sponds to adiabatic slowness of rotation. As a result 
we obtain 

where WK is the probability of having the correspond- 
ing value of K i n  the quantum state under consideration 
of the nucleus a s  a whole. Here formula (1) is valid. 
In practice we most frequently have to deal with the 
simplest case KO = 0 for even-even nuclei. 

But a s  one moves along the rotational band the ad- 
mixture of components with K+Ko increases more and 
more rapidly. A rough estimate making use of pertur- 
bation theory leads to a relation of the type 

to express the law of growth of a given component near 
the threshold J =  I KI where i t  f irst  appears. High 
above the threshold we obtain the expression w,(J) 

a J ~ ' ~ ' ,  which remains pufficiently steep and also fa- 
vors the appearance of large K-  J. As long a s  pertur- 
bation theory is applicable the initiating component K 
= K,  appears to serve, in agreement with unitarity, a s  
a source of growth for the others. However, when the 
latter cease being relatively small, then all  the compo- 
nents become qualitatively on the same footing in the 
process of their, so  to say, interaction with each oth- 
er. The result will be a kind of equilibrium, an equi- 
distribution with respect to K(wK = 1/(2J+ 1) = const), 
which will be attained, say, a t  the point J = J,. Of 
course, here one should not expect any appreciably 
sharp change in the state of the system a s  such, for 
example a discontinuity in i t s  energy. Physically the 
important feature of such a new situation is contained 
in a different attribute-in the change in the symmetry 
of the rotational state of the nucleus. It can be easily 
understood that an equidistribution with respect to K 
corresponds to isotropy, to an equal probability of all 
spatial directions of the vector n (we recall that we a re  
dealing with an individual specific quantum state of the 
nucleus a s  a whole: J and J, a re  given quantities! ). At 
the same time in the Hamiltonian of the system a s  a 
whole one also should not be able to discern any favored 
directions for the vector n in empty space. It would 
be naive to think that this correspondence will be vio- 
lated in the course of a further increase in J when 
physically there a re  even fewer grounds for some val- 
ues of the quantum number K to become favored com- 
pared to others. Having acquired stability the more 
symmetric iosotropic phase will not lose it for J>J , .  

The attainment of isotropy with respect to the direc- 
tions of n can also be interpreted from a somewhat dif- 
ferent point of view. In a sufficiently strong rotational 
"field" the mechanical angular momenta of the individu- 
a l  quasiparticles line up . parallel . to the vector J and 
cease to line up along the vector n. Therefore the lat- 
ter  turns out to be "free," i. e. , it is in fact distributed 
isotropically (for J 2 J,). This constitutes the difference 
from the old adiabatic region J << J, where the internal 
state of the nucleus is  determined, roughly speaking, 
by i ts  deformation and, in turn, determines the ap- 
proximately conservedvalue K = J .  n - KO. At the tran- 
sition point itself the number of lined-up quasiparticle 
is of order unity, i. e. , 

(kf i s  the limiting momentum of the Fermi distribution; 
R is the nuclear radius). This estimate does not con- 
tradict experimental data (cf., also Sec. 5). 

Thus, J= J, is the point of a phase transition of the 
second kind-the zero-temperature Curie point. In 
analogy with the terminology adopted in Ref. 7 we shall 
refer to the states of a nonspherical nucleus with a 
completely isotropic distribution of i ts  axis in space a s  
the n-phase, and we shall call the region J <  J, of "spon- 
taneous symmetry violation"-the m-phase. We then have 
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(0 and 40 are  the spherical angles defining the direction 
of the vector n with respect to fixed axes). We empha- 
size that these properties of the n-phase presuppose a 
most essential indeterminancy in the value of the polar 
angle 0 which does not in any way diminish with in- 
creasing J. In the m-phase the relations (6) a r e  vio- 
lated as  a result of the "ordering" of the rotational 
state. Having in mind, primarily, the special case KO 
= 0 and taking into account the fact that in the adiabatic 
region J <<Jc (cf., formulas (1) and (4)) a change in the 
quantum number J has little effect on the quantity R2, 
we shall, in order to be specific, set  

It can be easily verified that for a state which is a 
superposition of components with different values of K 
it  is  not possible to construct any purely rotational 
wave function which depends only on n. For  J J ,  the 
quantum mechanical description of the rotation of a non- 
spherical nucleus is achieved with the aid of the density 
matrix p(n, n'). However, due to the conservation of 
the z-component of the total angular momentum the 
"azimuthal" wave function 

nevertheless exists. In the quasiclassical case J, 
=(J,),,= J >> 1 it corresponds to the so-called regular 
precession of an ordinary symmetric top (cf., for ex- 
ample, Ref. 8). As regards the polar angle 0, suffi- 
ciently far above the Curie point the density matrix 
which depends upon it must have the following proper- 
ties: p(@, @') = O  for 6 + @', whiletheangular dependence 
of the diagonal element p (0, 0') corresponds to isotropy 
in three-dimensional space. However the formula ap- 
pears more attractive if  one utilizes a representation 
which is based not on angles, but on the more custom- 
ary quantum numbers J, M and K. Then we have 

in a state of angular momentum Jo and its  component 
J,. For diagonal elements the region of applicability 
of this relation is wider and encompasses the whole 
n-phase including the Curie point. But for J - J c + O ,  
apparently, nondiagonal (with respect to K) elements 
of the density matrix which reflect the correlations be- 
tween different K also become significant. It is even 
more difficult to form judgements concerning the spe- 
cific form of the rotational density matrix in the m- 
phase J < J,. For J = Jc i t  has some kind of a singularity 
which hinders the formal continuation of the corre- 
sponding expression into the "foreign" region J > Jc, 
The physically important functional of the rotational 
density matrix-the so-called ordering parameter-has 
a radical singularity a s  J-Jc - 0 (cf., next section). 

2. THE AVERAGE ("SPECTROSCOPIC") QUADRUPOLE 
MOMENT AS AN ORDERING PARAMETER. 
DISCONTINUITY IN  THE ROTATIONAL ANGULAR 
VELOCITY OF THE NUCLEUS. 

If we keep (6) and (7) in mind the following definition 
suggests itself 

for the ordering parameter which characterizes the 
m-phase from isotropy (the approximate expression 
involving the angle refers to the quasiclassical case 
J ,  = J >> 1 and is stated here only for ease of visualiza- 
tion). In the important special case KO = 0 it in fact 
varies from unity to zero at the Curie point. Natural- 
ly, for a given J and q quite different nuclear states a re  
in principle conceivable-both rotational states, and 
ones differing microscopically. However, we shall 
assume that for J < J, one canutilize the concept of the 
energy of that one of k e s e  states which is "most nearly 
in equilibrium" and which we shall denote by E(J, q). 

Intending to analyze the situation for sufficiently 
small  Jc - J in'the neighborhood of the Curie point we 
expand the general expression fo r  the energy in powers 
of q and limit ourselves to three terms: 

The function E,(J) in fact refers to the unordered n- 
phase. The inequalities 

express the advantages of positive q and the stability of 
the energy minimum with respect to this quantity. Sub- 
stitution into (11) of the true value of q determined from 
the equilibrium condition 

transforms E(J,~) into the energy E,(J) of the rota- 
tional levels of the m-phase 

Figure 1, which shows the curve: for the energies 
of the phases, requires some explanation. At the 'knd- 
point" J = Jc the function E,(J) has a certain singularity. 
However, the question is: which of the derivatives of 
the function will be first  affected by this, which of 
them will become infinite at this point? According to 
(3) this cannot happen in the case of the first  deriva- 
tive: there a r e  no slightest theoretical o r  experimental 
bases for supposing that the rotational velocity of nu- 
clei becomes infinite. Moreover, a s  may be seen from 

FIG. 1. 
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formula (3), the second derivative also does not be- 
come infinite. A zero value of the moment of inertia 
agrees neither with the fact that the nucleus is non- 
spherical, nor with the experimentally observed tend- 
ency for moments of inertia in the m-phase to vary 
(cf. Sec. 5). Thus, although the dotted line extrapola- 
tion of the E,(J) curve is somewhat arbitrary, a t  least 
the first  two derivatives have meaning along it. As a 
result of this assumption illustrated by Fig. 1 that at 
J=J, a simple point of intersection 

of the curves under investigation occurs is not contra- 
dictory and agrees well with the nature of the experi- 
mental data. 

Comparison of (15) with (14) yields 

Consequently 

and 

Differentiating relation (18) we obtain a discontinuity in 
the rotational angular velocity of the nucleus a t  the 
point of "backbending" 

Here A(hQ) = horn- EC2,,. AS far  a s  one can judge ac- 
cording to experimental data the thermodynamic in- 
equality 

is never violated. 

It is well that for the value averaged over 
the state J,=J of the z-component of the quadrupole mo- 
ment (the so-called spectroscopic quadrupole moment) 
of a nonspherical nucleus the following formula i s  valid 

Here, Qo is the component of the "collective, " macro- 
scopic quadrupole moment along the nuclear axis wholly 
determined by i ts  axially-symmetric deformation. 
Taking (10) into account we have 

Now comparing this with (17) we verify that both the 
quadrupole moment Q and also the ordering parameter 
vanish at the Curie point according to (5,- 5)'''. In the 
n-phase J a  J, there can no longer be any collective 
(spectroscopic) quadrupole moment because of i ts  isot- 
ropy.. 

3. POSITION OF THE ROTATIONAL LEVELS I N  THE 
n-PHASE J >J,. MOMENT OF INERTIA. 

First  of all  we touch in a couple of words upon the 
problem of the stability of either of the phases. The 
corresponding condition 

has a fairly natural appearance.'' The symmetric n- 
phase becomes unrealizable for J < J, becauseof the ab- 
solute instability of the state in which the mechanical 
angular momenta of the quasiparticles lining up along 
the vector J vector ignore the direction of the vector n 
determined by the deformation (cf., the in a certain 
sense opposite nature of the states which a re  in fact 
realized in the adiabatic region J<< 4; cf. , also the 
Introduction). Therefore we have 

and 

near the Curie point. Substitution into the second of 
formulas (3) yields 

Here j is a certain constant coefficient; 

is the solid body value of the moment of inertia; M 
=m,A is the nuclear mass; m, is the nucleon mass; 

i s  the nuclear radius. We arrive at an important con- 
clusion that the moment of inertia of a nonspherical nu- 
cleus becomes infinite in accordance with the law (26) 
if one approaches the Curie point from above. This i s  
what explains the observed approximate uniform spacing 
of levels in corresponding segments of the rotational 
spectra (cf., the Introduction). In the opposite limiting 
case of large J- J,, for a sufficiently clearly pro- 
nounced lining-up of mechanical angular momenta of 
the quasiparticles along the direction of the vector J 
the moment of inertia of the Fermi system becomes the 
same a s  that for a solid body: 

If the right-hand sides of (26) and (29) a r e  added, 
then an interpolation formula will be obtained for the 
moment of inertia of the n-phase, which satisfies both 
limiting cases. By itself it, of course, is devoid of 
any to some extent deep physical foundations. More- 
over, in the case of a literal acceptance of this inter- 
polation a situation would ar ise  of a monotonic approach 
to the solid body limit Zo from above, while experi- 
mentally, apparently, a minimum was observed in the 
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variation of the moment of inertia (cf. ,  Sec. 5). How- 
ever, in a purely technical respect the interpolation 
formula i s  a convenient route for obtaining correct 
limiting expressions fo r  Sl,(J) and E,(J) by means of 
integrating it twice. Retaining everywhere in addition 
to the terms containing constants of integration, a sin- 
gle term of the corresponding expansion we obtain the 
following formulas 

for J - J c < < j / Z o  and 

h2 
E=E, +hR,, ( I - I , )  + - ( J - l c )  

LI, 

for J - J, >> j/Io. 

It i s  desirable to keep in mind that, generally speak- 
ing, the last formula predicts the position of the rota- 
tional levels with good relative but not absolute accura- 
cy. We note that for nuclides fo r  which j/Zo- 1 the do- 
main of applicability of formulas (31) is broadened en- 
compassing pratically the whole n-phase. 

4. ELECTRIC QUADRUPOLE RADIATION I N  THE 
n-PHASE 

The basic property of the n-phase can be formulated 
a s  the absence of an observable (average) quadrupole 
moment; 

This does not mean that i ts  matrix elements nondiagonal 
with respect to the levels of the band also vanish. They 
a re  responsible for the quadrupole radiation the proba- 
bility of which we can write in the form 

We have for the sake of brevity symbolically denoted by 
((Q')) (reduced intensity of the transition) the square of 
the absolute value of the matrix element between the f i -  
nal state J - 2 and the initial state J summed over the fi- 
nal orientations of the nuclear spin. The transition fre- 
quency of interest to us  amounts to w = 251. 

For the subsequent discussion i t  is convenient to ex- 
press this collective quadrupole moment in terms of the 
components of the vector n: 

From this i t  can be seen that it is immaterial over 
which state the square of the tensor is averaged: 

With the aid of the usual rules for matrix multiplica- 
tion we verify the validity of the relation 

Here the indices a and b enumerate the individual 
states of a nonspherical nucleus irrespectively of to 
which rotational band they happen to belong. 

Above the Curie point the quadrupole radiation can 
be calculated quasiclassically. Setting rp = Slt we cal- 
culate in accordance with (34) the classically varying 
quadrupole moment. Then in accordance with the isot- 
ropy of the n-phase it is averaged uniformly over cose' 
(K= Jcos6  in the quasiclassical case). Finally the 
square of the absolute value of the spectral component 
w = 2f2 is substituted in formula (33) in place of ((q)). 
As a result of elementary calculations we obtain3' 

Thus, within the bounds of the n-phase all  the radia- 
tive transitions have the same reduced intensity. In 
addition to the transition responsible for the real radia- 
tion there also exists an analogous transition in the op- 
posite direction upwards along the band. The sum of 
the reduced intensities of both transitions is obtained by 
doubling the right hand side of the f i rs t  of formulas 
(37). Comparing this with the sum rule (36) we find 
that it is saturated to one-third within the band under 
consideration, while the remaining two-thirds refer to 
transitions to other rotational bands. 

5. COMPARISON WITH EXPERIMENT 

Data on the states of nonspherical even-even nuclei 
with high spins were taken primarily from Ref. 11. 
The variation of the rotational angular velocity ti5dm in 
the m-phase was extrapolated graphically into a rela- 
tively small  region near the Curie point (cf., also com- 
ments on Fig. 1 in Sec. 2), while the latter was identi- 
fied with the position of 'the energy interval which al- 
ready belongs, a s  far  a s  the available data enable us to 
judge, to the n-phase. The results of this treatment of 
data a r e  shown in Table I. The two cases marked by an 
asterisk refer to the rotational band originating from 
the 0' level of the excitation of 0 oscillations (the fully 
symmetric oscillation of a nonspherical nucleus). The 
quite unsystematic variations in the magnitude of the in- 
crement A(l5-2) of the rotational velocity from one nu- 
cleus to the next a r e  noteworthy. The critical angular 
velocity mm, behaves in a much more stable manner, 
but i t  also is subject to random fluctuations. It is 

TABLE I. 
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somewhat more difficult to judge how real on the aver- 
age is the tendency to a certain amount of decrease in 
IiSl,, with increasing atomic weight. 

In addition to those given in Table I there a r e  six 
more nuclides in which rotational levels have been dis- 
covered up to 5, = 14-18: win, wt7', 0S176, OS"' 
Osl*, and ~ h ~ ~ ~ .  NO significant effect was observed: 
However. let us turn to the rotational velocities at- 
tained. For the three osmium isotopes mentioned 
above we have IiSl,= 280-315 keV. This is lower 
than the values characteristic of the end of Table I and 
is close to the lower limit of critical velocities in the 
whole table. For both tungsten isotopes m, = 300 
keV. The thorium nucleus in the experiment attained 
the value Fin, = 200 keV. A conclusion suggests itself 
that in the nuclides "suspected" of not showing the ef- 
fect there was simply a lack of sufficient rotational ve- 
locity to equalise the intensities of the components of 
the wave function with different values of K. There- 
fore there is every reason to suppose that with a fur- 
ther increase in J the situation will become clarified 
and, a s  usual, a phase transition will be found. We 
note, in order to avoid misunderstanding, that even in 
the case of a vanishingly small increment A(I5-2) (a sit- 
uation close to this already occurred in the case of 
~ f ' " ,  cf. , Table I) it still will be possible to recognize 
the n-phase by its moment of inertia. 

The study of the variation of the moment of inertia 
of a nonspherical nucleus in both phases is of consider- 
able interest. The most characteristic and complete 
data in this respect a r e  those concerning the principal 
rotational band for w"'; cf. , Fig. 2. The increase 
in the moment of inertia in the m-phase can be qualita- 
tively understood in the spirit of the Le Chatelier- 
Brown principle a s  a "resistance to an external action. " 
Indeed, the rotational perturbation responsible for the 
growth in the components with K# & is determined not 
directly by the mechanical angular momentum J, but by 
the angular velocity Om. Therefore the system tr ies  to 

FIG. 2. Dependence of the moment of inertia of the wLTO nu- 
cleus on the angular momentum. The point J =  12 which falls 
just on the discontinuity of the curve has descended into the 
negative region and is  not shown in the diagram. This excep- 
tion to the general picture should not be ascribed a physical 
meaning of a negative moment of inertia. The origin of the 
paradox becomes clear from relationship (25). 

TABLE 11. 

Nucleus 

lo I 11.0 I 12.4 I I 4 . 8  1 1 5 . 7  / 13.0 1 IS1  I 13.6 I 11.9 
j / I ,  2 . 1  2.12 6.76 2.63 3.98 2.11 1.88 4.20 

diminish the derivative d(m)/dJ.  ') On the other side of 
the Curie point in the n-phase, the moment of inertia 
drops somewhat below I,,, passes through a minimum 
and then rapidly tends to approach the solid body as- 
ymptote from below. Analogous nonmonotonic behavior 
in the variation of the quantity d 2 ~ , / d y  was also ob- 
served for the nuclide yb16'. An interesting case was 
encountered in the P-vibrational band of dysprosium 

according to the notation of Table I). From all 
indications here the very first  two experimental points 
belonging to the n-phase turned out to be situated on op- 
posite sides of the minimum in the moment of inertia. 
A final verification of the hypothesis will have to be 
postponed until the position of the rotational levels of 
the band with J> 18 is established. 

On the whole the data concerning the n-phase a r e  so 
far relatively scarce. When both experimental values 
closest to the Curie point belong to the left wing of the 
moment of inertia curve formula (26) yields 

These relations enable us to obtain the "extrapolated" 
(from the domain of the n-phase) position of the point 
of phase transition, and also to evaluate j/Io. For the 
eight nuclides the results a r e  shown in Table 11. Ba- 
sically good agreement is observed with values of J ,  
shown in Table I determined by a different method. 
The greatest discrepancy occurs in the case of osmi- 
um. However, it must be stated that the value of J, 
= 12 given in Table I1 falls just in the middle of that 
segment of the rotational band where a decrease in the 
rotational angular velocity occurs. The region occu- 
pied by the phase transition is here anomalously wide 
and encompasses three energy intervals. Possibly this 
is in some way associated with the closeness of osmi- 
um to the point of phase transition of nonspherical nu- 
clei into spherical onesc7] (cf., also the striking anom- 
alies at the beginning and at the end of Table I). We al- 
so note that for specific nuclides the values of the ratio 
j/I0 vary no less randomly than the increments  fin). 

The universal character of the asymptotic properties 
of the n-phase far from the Curie point in principle 
opens a path to the determination of the radius of the 
mass distribution in a nucleus. Unfortunately at the 
present time such high spins of rotational states have 
not yet been attained for which the relation (29) could 
be confidently regarded a s  a sufficiently strict  equality. 
However one can try to circumvent this difficulty in the 
following manner. On the right wing of the moment of 
inertia curve for the n-phase where it is increasing the 
corresponding values a re  lower than the rigid body val- 
ues. This very fact provides us with a lower bound on 
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the possible values of the nuclear radius. A less rig- 
orous but still quite plausible assumption consists of 
the following: in cases of the type selected for Table 
I1 the experimental values of the moment of inertia of 
the n-phase closest to the Curie point a re  higher than 
the rigid body values. This provides an upper bound 
on the radius. Making use of the fact that data a r e  
available concerning eight different nuclides we narrow 
down a s  much a s  possible the bounds of the inequality: 

( I F =  lo-'' cm). Thus, with reasonable accuracy we 
have 

This agrees with the measurements of the radius for 
the distribution of electrical charge in the nucleus from 
electron scattering. ["I In the preceding discussion the 
value (40) was utilized everywhere in the calculations of 
the rigid body moment of inertia using formulas (27) 
and (28). 

For a comparison of formulas (30) and (31) with ex- 
periment one must have in the n-phase a sufficiently 
large number of experimental points referring to the 
same nuclide. The most favorable case is the one of 
w"'. Since the value of j/Io given in Table I1 is not 
large we may use formula (31). It is not difficult to un- 
derstand the reason for the good agreement over the 
whole n-phase demonstrated in Table III. Being quite 
well founded under the condition J - Jc >> j/Zo formula , 
(31) at the same time has a correct interpolation behav- 
ior: a s  J - Jc it  gives an experimental value a,, for the 
rotational angular velocity of the nucleus which is 
known to be correct (cf., also the remark at the end of 
Sec. 3). In order to illustrate the application of for- 
mula (30) we in contrast select a nuclide with the great- 
est value of j/~,,; in accordance with Table 11 this will 
be D ~ ' ~ ' .  AS Table 111 shows, the theory agrees well 
with experiment. 

We now pass to the question of the electric quadru- 
pole radiation from a nonadiabatically rapidly rotating 
nucleus. In a recently published experimental paper[1s1 
a study was made of the radiation within the limits of 
the principal rotational band of celS4. Two observed 
transitions belong to the n-phase. For comparison 
with previous formulas we reproduce the value of ((@)) 
for K =  KO = 0: 

TABLE In. 
W"' Nucleus 

*., kev 

Di:sa Nucleus 

nn, keV 

experiment. I theory ;;Pf- ) theory 

13 216.4 15 

19 308.3 306 
21 342.6 339 

TABLE IV. 

(cf., for example, Ref. 14; we neglect the corrections 
- 1/~ ' ) .  Dividing the right hand side of the first  of for- 
mulas (37) by (41) we obtain the reduced intensity F 
measured relative to i ts  purely adiabatic value: 

Setting J =  12 we have F,,,,,= 0.48. According to Ref. 
13, F,,= 0.65 . 13 for the transition 12'- lo+, while 
the next transition 14+ - 12' has the intensity Fa, = 0.64 
& 0.28. 

In conclusion we touch upon the case of odd nuclei. 
Because it is difficult to sor t  out the numerous rotation- 
a l  bands until now there a r e  relatively few data con- 
cerning them. We know that the principal source of ex- 
perimental information concerning the problem of in- 
terest  to us a re  the quadrupole y quanta corresponding 
to transitions with &J= 2. Therefore the usual adiabatic 
"rotational band" characterized by certain KO and parity 
should be separated into two appropriate bands and 
treated a s  distinct bands. 5' Results referring to six 
nuclides and based on the experimental  paper^^'"'^] a re  
given in Table IV. They give no cause for doubting the 
universal character of the phenomenon. 

We express our gratitude to A. I. ~ a z ' ,  I. I. Gure- 
vich, I. M. Pavlichenkov and K. A. Ter-Martirosyan 
for discussions of questions touched upon in this paper 
and i ts  results. The authors a r e  particularly grateful ' 

to I. M. Pavlichenkov for many stimulating discussions 
of the nature of experimental data concerning the phe- 
nomenon of backbending. 

APPENDIX 

It appears to be of some interest to analyze certain 
specific features of zero-temperature phase transitions 
of the second kind from a more general point of view. 

Let the energy E of the ground state of a macroscopic 
body and the state a( ( )  itself depend on a certain ther- 
modynamic quantity x, and the corresponding condition 
for stability be represented for the sake of brevity and 
simplicity in the form 

(A. 1) 

analogous to (23). We shall assume that for x<x, a 
spontaneous breaking of symmetry occurs which is 
characterized by the ordering parameter 7. An analy- 
tic continuation of the symmetric n-phase into the re- 
gion x<xc  is not physically realizable because of 

dZE,/dz2 I x=xc=O. (A. 2) 
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Formally this can be only the result of some kind of 
singularity of the parametric derivatives of the Hamil- 
tonian H(x) acting on the variables 5 of the system. In 
accordance with 

p(z )y i (E;  z)=Et(x)Yi(E; 5) (A. 3) 

it determines the eigenfunctions and the energy eigen- 
values (the Latin subscript enumerates the stationary 
states of the system which parametrically depend on x). 
The simplest imaginable possibility is the following: 
the singularity in the derivative al?/~x leads to the 
'break" in the curve of E(x) of the type shown in Fig. 1. 
Then proceeding in the same manner as in Sec. 2, i. e. , 
actually replacing J formulas (11) and (14)-(18) by x we 
obtain the following results: 

(A. 4) 

However, we emphasize that so  simple a possibility 
exists only when the following important condition is 
satisfied: the thermodynamic quantity dE/dxl ,, must 
wt reduce to a functional of the wave function *'p5; xo). 
In the opposite case a discontinuity in the functional can 
only be the result of a discontinuous variation of the 
function itself. But this would already be a first-order 
transition and not a second-order phase transition in 
which we a r e  interested for which we always have 

(A. 5) 

We consider the case when the quantity x has the 
properties of a dynamic variable (this is possible-cf., 
fo r  example, Ref. ?-although not necessarily so). In 
the presence of a velocity x an additional kinetic energy 
proportional to its square appears, and the total energy 
can be expressed in the form 

Here B(x) is a mass coefficient. Suppose that the sys- 
tem is moving in the negative direction along the x 
axis. At first  sight the hypothesis seems plausible that 
it, generally speaking, will approach the point x, with a 
certain finite velocity f,,. But then in the relation 

q = ~ f  (A. 7) 

the condition 

T=O, z>z. (A. 8) 

must hold also for x=xc: the domain of the more sym- 
metric n-phase extends up to the point of phase transi- 
tion inclusively. [91 Having all this in mind we apply the 
law of conservation of energy directly at the Curie 
point: 

1/~B,3,'+E,=1!~Rb,Z+ E,, x=x,. (A. 9) 

In accordance with the second of formulas (A. 4) (cf. , 
also (A. 5)), we ignore the "potential energy" E(x). 
The system cannot pass to the left with a finite velocity 
f ,: differentiation of the f i rs t  of formulas (A. 4) shows 
that in violation of condition (A. 8) at x=xc  the coeffi- 
cient y(x) would change discontinuously from zero to 
infinity. Thus, 2, = 0 within the framework of the fore- 
going assumption and, consequently, 

B,,(x,) =O. (A. 10) 

Switching on adiabatically smoothly a t  t -* the varia- 
tion At) of the coordinate and solving the time-pepen- 
dent Schrijdinger equation with the Hamiltonian H(x(t)) 
we obtain the well-known expression 

(A. 11) 

for the mass coefficient (in order to ascribe to the no- 
tation a more concrete character we denote by the index 
n the ground states i = 0 within the domain of the n-phase 
x>x,). Since all  the denominators a r e  positive substi- 
tution into (A. 10) yields 

(A. 12) 

Regarding the amplitude (*,I a*,/ax), i t  a s  a result of 
normalization turns out to be purely imaginary and can 
be everywhere made equal to zero with an appropriate 
choice of the indefinite phase multiplier e'u'X) in the 
wave function of the ground state. Then all the compo- 
nents of the derivative BP,/ax along the basis vectors of 
the Hilbert space turn out to have zero values at the 
Curie point 

a ~ , , / a ~  1 ,=,=o. (A. 13) 

Expanding the parametric derivative a*,/a, in ser ies  
and now measuring the coordinate x from the position 
of the point of phase transition we represent the mass 
coefficient of the n-phase in the form 

where 

(A. 14) 

(A. 15) 

For  the solution of equations of classical mechanics it 
is simplest of all to make use of their f irst  integral 
(A. 6) . 

(A. 16) 

Here the time is so reckoned that at the instant t=O 
the system would be passing through the point x = 0 of 
the phase transition and the energy I is measured from 
the "potential energy" E(0). The upper sign corre- 
sponds to motion in the positive direction of the x axis 
and the lower sign to motion in the negative direction. 
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By B, we have denoted the limiting value of the mass 
coefficient of the m-phase a s  x-  -0. The singularity 
which the solution of (A. 16) in fact has a s  x - +  0 de- 
prives the proportionality relationship (A. 7) of a strict  
mathematical interpretation directly at the origin. By 
this the paradox is removed concerning the simultane- 
ous retention both of the law of conservation of energy 
and the nature of the phase transition a s  the system 
passes through the Curie point. 

Strictly speaking the states that have been considered 
a r e  not entirely equilibrium states, since the macro- 
scopic motion is accompanied by inevitable friction. 
In the general case in order to achieve complete equi- 
librium it is necessary to add to the Hamiltonian a 
term of the form -Ax which does not affect the nature 
of the phase transition. Equilibrium at  x=xo  corre- 
sponds to X=dE/dxl ,xo. If the zero-temperature sec- 
ond-order phase transitions have to a large extent a 
common nature, then the result (A. 13) must not depend 
on whether the quantity x does in fact have the proper- 
ties of an autonomous dynamical variable. Indeed, i t  
is sufficient to require complete thermodynamic equi- 
librium-"rest, " in order that the abstract capability 
in principle of the system to be "in motion" would in no 
way manifest itself physically. From this point of view 
the condition (A. 13) imposed on the wave function of the 
n-phase a t  the Curie point appears to be of a sufficient- 
ly general nature. 

We now return to the dynamic case. The solution 
(A. 16) was classical. The question ar ises  whether the 
limiting expansion (A. 14) for the variation of the mass  
coefficient of the n-phase might not lose i ts  concrete 
physical content when quantum effects a re  taken into 
account. In order to check this, we turn to the indeter- 
minac y relation 

.18~z-h.+ (A. 17) 

(cf., for example, Ref. 1). According to (A. 16) we 
have 

i. e., 

I fi 1 

x ALP ( b 8 ) ' -  x ' 

(A. 18) 

From this it can be seen that the requirement Ax<< x 
cannot be satisfied only for 

X< (A'/b8)'h-0 as 8 - t ~ .  (A. 19) 

Thus, there exists a possibility in principle to check 
by a purely classical method the validity of the expres- 
sion (A. 14) down to the smallest values of x. 

In the foregoing friction accompanying motion was 
not taken into account explicitly. Generally speaking, 
the question concerning dissipative processes is quite 
complicated and requires a more concrete investiga- 
tion in each individual case. However, in the region 
wher the n-phase is sufficiently close to the point of 

phase transition the situation is simplified. Indeed, 
projecting the time-dependent Schrodinger equation on- 
to the base vector system defined by (A. 3), we establish 
that the connection between the amplitudes of states with 
different i is realized exclusively by means of coeffi- 
cients which in addition to the velocity 2 contain matrix 
elements of the form (*,I a*,/ax). They must also be 
responsible for the irreversible quantum jumps from 
level to level which a r e  the cause of dissipation. But, 
a s  is clear from (A. 13), such matrix elements vanish 
a t  the Curie point and near i t  friction is suppressed. 
Therefore results which concern the limiting behavior 
of the n-phase in the neighborhood of the phase transi- 
tion point remain valid. 

Finally, we briefly touch upon the relation of the 
foregoing to the special case x =  J of nuclear rotation 
considered in the present paper. The complete wave 
function of a nonspherical nucleus can be written as a 
product 

Y, , , z (J ,M,  E)=~,J .~MJ~+J , (E) .  (A. 20) 

By 5 we have denoted variables commuting with J 
and M and with one another (among their number is con- 
tained also the macroscopic quantity K= J .  n). Thewave 
functions * ~ ( 5 )  depend on J a s  on a parameter. They 
obey an equation of the form (A. 3) in which the role of 
the "Hamiltonian" is played by the block diagonal with 
respect to J and M of the complete Hamiltonian for the 
nucleus (parametrically dependent on J ) ,  while rotation- 
a l  energy levels serve a s  eigenvalues. Since the quan- 
tity ES2, = dE/dJI does not reduce to a functional of * J~([),  the rotational velocity a can undergo a discon- 
tinuity at the transition point as the energy itself E(J) 
undergoes a continuous variation along the band, and 
this is in fact observed. The discontinuous diminution 
of signifies in essence a change in the "coupling 
scheme" of angular momenta in the system (cf., Intro- 
duction). 

 his is due to the external appearance of graphs that illustrate 
the position of rotational levels of the band and constructed in 
terms of somewhat artificially chosen coordinates. In the 
present work we shall not make use of such coordinates. 

"1t is not difficult to verify that negative moments of inertia 
correspond to absolute instability both thermodynamic and 
purely mechanical. The latter in the present case has the 
following meaning: free rotation of a body corresponds, a s  
is well known, to thermodynamic equilibrium and is not ac- 
companied by friction (cf. , for example, Refs. 9 and 10). If 
the regular precession with respect to the angle cP is treated 
in accordance with the laws of classical mechanics (cf. the 
Introduction, formula (8) and the text referring to it), then 
for negative moments of inertia the principle of least action 
is violated. 

3 '~ince the operator for collective quadrupole moment is di- 
agonal with respect to K the correlations mentioned at end of 
the Introduction do not affect the result. 

4 ' ~ n  analogous interpretation can also be given to the increase 
in the moment of inertia of the n-phase on the right wing of its 
curve (cf., Fig. 2)-only here the system resists the lining 
up which begins to acquire a macroscopic scale of the me- 
chanical angular momenta of the individual quasiparticles 
along the direction of the vector J (cf., the Introduction). 
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This is what explains the existence of the minimum in the 
variation of the moment of inertia of the n-phase which will 
be discussed subsequently. 

5 ' ~ h e  division into two "sub-bands" is equally well-founded 
also from a purely theoretical point of view. Indeed, one 
does not expect any considerable differences in principle 
from even-even nuclei in the present case, while it is desir- 
able to exclude the not entirely clear and nonmacroscopic ef- 
fect of the "lining up" of the odd nucleon. It is well known 
that for KO = 4 a similar effect occurs even in the adiabatic 
region where i t  is more easily susceptible of being investi- 
gated (cf., for example, Ref. 1). 
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Possibility of studying the structure of weak neutral 
currents in optical transitions in heavy atoms 
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Effects of parity nonconservation, caused by the weak interaction of neutral electronic vector and 
nucleonic axial currents, are examined in optical transitions in thallium, lead, bismuth, and cesium. 
Degrees of circular polarization of the light are calculated for ordinary and strongly forbidden M 1 
transitions. 

PACS numbers: 31.90. +s, 12.30.C~ 

1. Experiments  on  par i ty  nonconservation effects  i n  
heavy a toms  (f i rs t  discussed inc1]) are now being con- 
ducted by  s e v e r a l  r e s e a r c h  groups.C2-61 F r o m  o u r  
point of view, the  mos t  promising of these  experiments  
are those on  t h e  rotation of the  plane of polar izat ion of 
light f r o m  heavy-metal vapors ,  as proposed inc7'$]. 
They have a l ready  given a significant limit on  the  con- 
s tant  f o r  the  weak interact ion of the  neutral  vector  cur-  
ren t  (VC) of nucleons with t h e  axial-vector cur ren t  
(AC) of electrons. P a r i t y  nonconservation effects i n  
heavy a toms  can  a l s o  b e  produced by another  type of 
weak interaction, that between nucleonic AC and elec- 
t ronic  VC. T h e  investigation of th i s  interact ion would 
not b e  unimportant even if t h e r e  w e r e  no interact ion of 
electronic  AC with nucleonic VC (which is at presen t  
the  mos t  popular interpretat ion of the p re l iminary  ex- 
perimental  resul ts) .  In  fact ,  the  absence of a n  axial  
p a r t  i n  the neutral e lectronic  cur ren t  by no means  in- 
dicates  that  it is a l so  absent  f o r  nucleons. Moreover ,  
neutrino experiments  evidently show that the  neutral  

hadronic c u r r e n t  contains both a vec tor  and a n  axial  
par t .  

We have previously pointed t h e  possibility of 
studying t h e  interact ion of the  nucleonic AC and the  
electronic  VC via t h e  measurement  of t h e  angle of ro- 
tation of t h e  plane of polar izat ion of t h e  light at f re -  
quencies corresponding to opt ical  t ransi t ions between 
individual hyperfine components of levels  i n  heavy 
atoms.  A complicat ingfeature of t h e  observat ion of th i s  
interact ion is that its size is s m a l l e r  than that of the  
interact ion between the  nuclear  VC and the  electronic  
AC by  roughly a fac tor  2, t h e  nuclear  charge,  s ince  
only the valence nucleon contr ibutes  to the  nucleonic 
AC. However, the  accurac ies  at ta inable i n  experiments  
on  the  opt ical  activity of heavy-metal vapors  are already 
c lose  to  that  needed to detect  t h e  effect i n  question. In 
th i s  paper  we  make  a detailed calculation of the  s i z e  of 
the  effect. In addition to this ,  we  find the  contribution 
of th i s  interact ion to the c i r c u l a r  polar izat ion of the ra- 
diation emit ted i n  s t rongly forbidden M1 transitions. 
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