
Concerning the scattering of light by nematic liquid 
crystals 

V. L. ~okrovski and E. I. Kats 
L D. Lundau Institute of Theoretical Physics. USSR Academy of Sciences 
(Submitted April 5, 1977) 
Zh. Eksp. Teor. Fu. 73, 774-784 (August 1977) 

We investigate the role of longitudinal and biaxial fluctuations of the order parameter in the scattering of 
electromagnetic waves in the nematic phase. It is shown that singular longitudinal scattering predominates 
in a defmite range of angles, polarizations, and frequencies. At short wavelengths, A <  3X cm, 
however, biaxial fluctuations make an appreciable contribution to the scattering. The general conditions 
for thermodynamic equilibrium are analyzed. 

PACS numbers: 78.20. - e 

1. INTRODUCTION 

Light scattering in liquid crystal is the subject of 
many theoretical and experimental studies. The pres- 
ent status of the question is described in the reviews of 
Stephen and ~ t r a l e ~ " ~  and ~handrasekhar.~'] The main 
cause of the anomalously strong scattering in liquid 
crystals a r e  the fluctuations of the director orientation. 
Excitation of homogeneous transverse fluctuations (i. e., 
of uniform rotations of the director in the entire space) 
does not call for overcoming an erngy barrier. The 
corresponding light scattering has therefore the charac- 
ter  of critical opalesceilce. This situation is common 
to a large class of systems having a continuous symme- 
try group, the so-called degenerate systems.c91 

Simple analysis shows that the transverse fluctuations 
do not lead to scattering of light when the polarization 
satisfies certain conditions (see below). For example, 
there is no scattering of the vectors of the initial and 
final polarizations a re  in the equatorial plane, i. e., in 
the plane perpendicular to the director. More accurate- 
ly speaking, the transverse scattering is small in a 
small interval of angles a t  which the polarization is close 
to the equatorial plane. In this region, the scattering of 
the light is determined by fluctuations of another type, 
namely longitudinal and biaxial fluctuations. Nor do 
transverse fluctuations lead to scattering for polarization 
along the director if the wave vectors of the incident and 
scattered light a r e  in the equatorial plane. By longitu- 
dinal fluctuations mean fluctuations of the modulus of the 
order parameter. From the general theory of degener- 
ate systemscs1 i t  is known that longitudinal fluctuations 
a re  also anomalously strong, although much weaker 
than the transverse ones. 

The biaxial fluctuation is defined in the following man- 
ner. It is known that in liquid crystal the order  param- 
eter is a second-rank tensor Sd with zero trace. Such 
a quantity is determined in the general case by five in- 
dependent components. But the tensor S d  of all  the 
known nematic liquid crystals @LC) is uniaxial, and 
is therefore determined by one vector, i. e., by three 
quantities. Naturally, in long-wave fluctuations the 
local properties of a liquid crystal remain unchanged, 
i. e. , the tensor SaB is uniaxial at each point as before. 

However, with decreasing wavelength of the fluctuations, 
an ever increasing role is assumed by fluctuations that 
upset the uniaxiality of the tensor S, . Even in the 
wavelength region where these fluctuations a r e  small, 
they turn out to be influential in the scattering, for ex- 
ample in the equatorial plane (at certain polarizations). 

We investigate in the present paper the influence of 
longitudinal and biaxial fluctuations on light scattering 
in NLC. In Sec. 2 we investigate the general conditions 
of thermodynamic equilibrium of NLC and discuss the 
reason why all  NLC are  uniaxial. It is shown that this 
is caused by the well known "weakness" of the first- 
order phase transitions from the isotropic phase in the 
NLC. In Sec. 3 we consider longitudinal scattering of 
light and show that in the parameter region of interest 
to us the multiple scattering can be neglected. Section 
4 is devoted to a general examination of the order-pa- 
rameter fluctuations, including biaxial ones. The prob- 
lem reduces to diagonalization of a certain quadratic 
form that determines the fluctuation energy. We succeed 
in effecting this diagonalization in the most general case. 
An analogous problem was solved by de ~ennes'" for the 
isotropic phase. In Sec. 5 we obtain the intensity of the 
light scattering due to the biaxial fluctuations. 

Within the framework of the Landau theory, longitu- 
dinal (nonsingular) scattering and biaxial fluctuations in 
NLC were considered by ~tratonovich.'~] He, however, 
did not take into account the free-energy terms cubic 
in the order parameter, nor the presence of two corre- 
lation lengths. For sufficiently short wavelengths (see 
below), Stratonovich's results agree qualitatively with 
ours. 

2. GENERAL CONDITIONS FOR THERMODYNAMIC 
EQUILIBRIUM OF NLC 

We consider a homogeneous NLC. The thermodynam- 
i c  potential @ of this phase is a function of the invariants 
of the order parameter Sd . Likely any symmetrical 
r ea l  second-rank tensor, Sa has three invariants. We 
can choose these invariants to be, for example the 
three eigenvalues sl, s., and s, of the matrix 8= (S,). 
It is more convenient, Ahowever, to  useAa different sys- 
tem of invariants: T r  S, T r  @, and T r  9, which a r e  re-  
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lated to st,-s2, and s, in obvious fashion. As already 
stated, Tr S =0, and we are left w i 3  only two indepen- 
dent invariants, x = Tr  3 and y = Tr  9. 

The thermodynamic potential @ is in the general case 
an arbitrary function of the two variables x and y. As- 
sume that this function has an absolute minimum at the 
point (xo, yo). By the same token, this determines 
completely, in the state of the thermodynamic equilib- 
rium, the two invariants and consequently all the eigen- 
values. Equality of two eigenvalues would in this case 
be rather improbable happenstance. It does not follow 
from the foregoing reasoning, however, that the biaxial 
situation is  the most general one. The point is that even 
if the absolute minimum (xo, yo) of the thermodynamic 
potential @ does exist, it may turn out to be unattahable 
This circumstance is connected with definite inequali- 
ties that restrict the value of y for a given x. It is easy 
to derive the rigorous inequality 

Therefore, if  it turns out that y o > x ~ ' 2 / 6  at the mini- 
mum, then the minimum cannot be attained. 

Another possible situation is  one in which @(x, y) has 
no absolute minimum at all. In both cases, minimiza- 
tion of the thermodynamic potential, given Tr  S =0, 
leads to the equations 

with 88/8x and B8/By different from zero. It is  easy to 
verify that Eq. (2) is satisfied by the uniaxial tensor 
S, =s (n,n, - 36*), where n i s  an arbitrary unit vector. 
The modulus of the order parameter s satisfies the con- 
dition 

We shall show that Eq. (2) has no other solutions. In 
fact, we transform to a coordinate frame in which SorB 
is diagonal. We write down Eqs. (2) for a = f l =  1 and 
a = p = 2 :  

We divide Eq. (4) and (5) and change over the variable 
z =sl/s2. We obtain for z a cubic equation that does not 
depend on the values of B@/Bx and B@/By. Since the uni- 
axial tensor S, i s  a solution of Eq. (2), the cubic equa- 
tion for z has the roots z = l, z = - 2, and z = - 1/2. Con- 
sequently this equation has no other roots. Thus, if the 
absolute minimum of the function @(x, y) is unattainable 
(or nonexistent), then the order parameter can be only 
uniaxial. 

There are weighty arguments for stating that this is  
precisely the situation for all known NLC. In fact, 
measurements of the heats of transition and of the crit- 
ical scattering in the isotropic phase, of birefringence 

in electric in magnetic fields, and others show that the 
phase transition from an isotropic liquid into an NLC is 
quite close to a second-order transition. From the point 
of view of Landau's theory of phase transitions this 
means that the thermodynamic potential can be expanded 
near the phase-transition point in the series 

The coefficient A vanishes at a certain temperature T * 
close to the phase-transition temperature T, , 

The coefficient B should be small enough. It is precise- 
ly the smallness of B which determines the quantity 

which in turn determines the intensities of the critical 
phenomena. It is known from the experimental datac1' 
that ( T, - T *)/T,- 10". The characteristic value of 
the order parameter i s  relatively small (s, = 2  B/3C). 
On the other hand, the region of the existence of the 
NLC is small in comparison with the transition tem- 
perature. There are grounds therefore for assuming 
that the Landau theory is a good approximation in the 
entire region where the NLC exist. In the Landau mod- 
el, the derivative B8/By = - B/3 differs from zero). We 
are therefore justified in expecting the order parameter 
to be uniaxial in the entire region of the existence of the 
NLC. 

The reason why the coefficient B i s  small for all NLC 
is still unknown. We are stating only that the smallness 
of B leads to the uniaxiality of the order parameter. It 
is therefore of interest to investigate the phenomena that 
occur in liquid crystals under pressure. Were it to turn 
out that the coefficient B (or the heat of transition) de- 
creases substantially with increasing pressure and it is  
possible to come close enough to the critical point, where 
B =0, then biaxial static configurations would be on a 
par with the uniaxial ones. 

If we put B = 0 in the Landau thermodynamic potential 
(6), then this potential tepends only on one invariant, 
Tr  s2. The value of Tr s2 can be represented as  the 
square of the modulus of a five-dimensional vector 
whose components are (apart from inessential numeri- 
cal factors) the independent components of the tensor 
S, . Thus, at B = O  the thermodynamic potential has the 
symmetry group O, of rotations in five-dimensional 
space, which is much higher than the usual symmetry 
0,. It is clear that the number of static configuration 
is substantially increased thereby. In addition, the 
number of zero-gap fluctuations (Goldstone fluctuations) 
responsible for the anomalous scattering also increases. 
At B f 0 only two Goldstone fluctuations connected with 
the transverse dimensions of the director a re  possible. 
At B = 0 the number of Goldstone fluctuations is four 
(corresponding to the number of components of the five- 
dimensional components th$t are  orthogonal to the initial 
component). These phenomena would be observable were 
it possible to cause the coefficient B to vanish in one way 
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o r  another. In the real  situations, however, B is small 
enough, s o  that biaxial fluctuations in a certain frequency 
region play the principal role (see Secs. 4 and 5). 

It is useful in this connection to  investigate the varia- 
tions of the thermodynamic potential in the case of trans- 
verse fluctuations of the most general form. We shall 
again regard the potential ch a s  an arbitrary function of 
x and y, and assume the equilibrium configuration to 
be uniaxial: 

where 6SL satisfies the conditions 

It is convenient to introduce the new variables 

6S=rL=tl (n,el,+ noel.) +Et(&eg+npelp) 
+fr (e l .e t~+el~era)  +&'(etoelp-er.ers), 

(11) 

where n, el, and e, constitute a right-hand triad of unit 
vectors. It is easily seen that 6 S L ,  which is defined 
by formula (11), satisfies the conditions (10) for any 
choice of 2, . Substituting (9) and (11) into the function 
ch(x, y) and taking the condition (3) into account, we get 

Formula (12) is valid accurate to terms of cubic order in 

[, . We note that, as expected, the energy increases 
only when biaxial fluctuations, to  which the variables 
t3 and t4 correspond, se t  in. Thermodynamic stability 
calls for Bch/Bx>O. It is easy to  verify that this con- 
dition is satisfied in the Landau theory. 

We point out that the value of s in the vicinity of the 
transition point need not be too small (experiment yields 
s -0.3 to 0.4), since the critical scattering is connected 
with quantities quadratic in s. We assume none the less 
that the Landau theory is a good approximation both 
above and below the transition point. The justification 
for this statement is the splendid agreement between the 
experimental data on scattering in the isotropic phase 
and the Curie law, a s  well as other critical phenom- 
ena:leZ3 

3. LONGITUDINAL SCATTERING 

The longitudinal fluctuations of the order parameters 
a re  fluctuations of the quantity s: 

It is known from the general theory of degenerate sys- 
ternsLg1 that by virtue of the principle of the conserva- 
tion of the modulus, strong transverse fluctuations give 
r ise  to weaker longitudinal fluctuations: 

We consider long-wave fluctuations and neglect in this 
section biaxial fluctuations, the excitation of which re- 
quires that an energy barr ier  A-@/c be surmounted. 
It is then necessary to se t  t3 and f 4  equal to zero in (11). 

We use the known expression for the elastic energy of 
a liquid crystalc11 : 

I as,, i as., = ~ m = - ~ . ( - ) ' + ~ ~ ( - )  2 ax, axp , 

where Kl and K2 a re  phenomenological constants con- 
nected with the Frank moduli. Substituting formula (9) 
for S* in (15) and changing t o  the Fourier representa- 
tion, we obtain 

It is convenient to choose the vector el perpendicular 
to  the plane defined by the vectors n and q, and let el 
lie in this plane: 

where 0 i s  the angle between the vectors n and q. 
Changing over to the quantities [,(q) and 5,(q) we obtain 

From (18) we obtain the mean values ( 1 1') and 
( I k ( 4 )  19: 

The quantities ( I tl 1') and ( I & 1') determine in turn Ron. 
zero mean values of the type (as'crg(q)6~~,(-q)): 

To find the longitudinal correlator, we use the modu- 
lus-conservation principle (14) : 

i 
(6s  (r) 6s (r') ) - - (6SaPL(r) 8SapL(r') ) I .  

2sf (21) 

Changing over in (21) to the Fourier representation, we 
obtain 

Substituting (20) and (19) in (22) after the integrations, 
we get 

where the function f(u) is an elliptic integral. The gen- 
era l  expression for f (u) is too unwieldy to  be presented 
here. Several values of the integral in (23) in the equa- 
torial plane a r e  given below: 

Here 
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The mean squared longitudinal fluctuation can be cal- 
culated directly within the framework of the Landau the- 
ory. To this end it is necessary to find the change of 
the thermodynamic potential (6) when s deviates from the 
equilibrium value. The result is 

We note that for the isotropic phase an analogous expres- 
sion was obtained by ~tra tonovich.~~ '  From a compari- 
son of (24) and (23) we obtain the wave-vector region in 
which the singular longitudinal fluctuations (23) pre- 
dominate : 

where ao"3 A is the distance between the atoms. Thiso 
upper bound corresponds in fact to wavelengths "5000 A. 

We proceed to calculate the cross sections for light 
scattering. We use the known formula for the differen- 
tial cross section in the frequency and solid-angle inter- 
vals dw and do "': 

where 6&@ is the fluctuation of the dielectric tensor, 
p and p' a re  the polarization vectors of the incident and 
scattered light, and we use a system in which the speed 
of light c =l. By virtue of the symmetry, 6~~ is con- 
nected with the fluctuation ~ s L  of the order parameter 
by the relation 

where M = B&,/BS and E ,  is the anisotropy of the dielec- 
t r ic  constant. The value of M can be obtained from the 
experimental data on the temperature dependences of &, 

and s, namely, M = (B&,/BT)/(Bs/aT). Substituting (27) 
and (13) in (26) we get 

Since we a re  interested in the longitudinal scattering in 
the equatorial plane only (this is the usual experimental 
situation), we shall examine this case in particular. 
Greatest interest attaches to two types of polarization: 
1) the vectors p and p, lie in the equatorial plane; 3) the 
vectors p and p' a r e  parallel to the director. In the 
former case the expression in the square brackets of 
(28) is equal to - cosx, where x is the scattering angle. 
An additional angular dependence is contained in (6s') 
in the case when singular longitudinal fluctuations pre- 
dominate (see (23)). Thus, in this case the dependence 
of the cross section depends on the scattering angle is 
given by 

do cos'x - .  
dodQ sin (;l/2) 

In the case of polarization along the director we have 

d.- d o  d~ i / s i u $ .  (30) 

When the polarization deviates from the equatorial 
plane, the rapidly growing transverse scattering sup- 
presses the effects of the longitudinal fluctuations. Let 
us estimate the range of angles in which the longitudinal 
fluctuations a r e  effective. The contribution of the trans- 
verse fluctuations to the scattering cross  section is de- 
termined by formulas (26) and (19): 

We denote the angle of inclination of the polarization 
from the equatorial plane by a. It is then seen from 
(31) that the cross section behaves like mad$, (0 - ~ r /  

2)']. Comparing (31) and (28), we find that the longitu- 
dinal scattering is significant in the angle region 

Putting in (32) M-E,, T "300 K, K - ~ O - ~  erg/cm, s-0.3, 
and q "lo5 cm", we obtain (@, 0 - 7r/2) -5  to  lo0,  a range 
perfectly accessible to experimental observation. 

If the light is polarized along the director, an analo- 
gous estimate is valid for the angles 0 - 1r/2 and B, where 

is the angle between the polarization and the director. 

We note that the transverse fluctuations do not cause 
scattering also under other conditions, when the wave 
vectors k and k' of the incident and scattered light and 
the director n lie in the same plane, and the polariza- 
tion vectors p and p' a r e  perpendicular to this plane. 

Longitudinal-scattering effects can be observed only 
i f  the secondary scattering due to  transverse fluctuations 
is weaker than the latter. Let us estimate the secondary 
scattering. According to the general theory,"' the field 
E" of the secondary scattered wave is expressed in 
terms of the field of the primary scattered wave E': 

E"(R)= - exp'ikaol [ k 2 x  [ k ,  b i ~ ' ( r ) s x ~ ( - i ~ d d . r  , (33) 4nRoeo 11 
where & is the wave vector of the secondary scattered 
wave. Similarly, E' is expressed in terms of the field 
of the incident wave E. 

As usual, it is required to calculate quadratic mean 
values of the type (E"E?). Analysis shows that the 
main contribution is made by terms of two types. Those 
of the first type a re  proportional to the sample volume 
(just as in primary scattering). Their contribution to 
the average energy is 

EZ V 
k: sin' ~ ' ~ 1 ( q ' ) ,  

16n2Rozeo' (2n)  

where x'. is the secondary-scattering angle, q' =% -k, 
and I (q') is determined by an integral of the product of 
two correlators of the transverse fluctuations. A rough 
estimate yields I (q') = 25 T 'K"~". 

The ratio of the intensity of this contribution of the 
secondary scattering to the primary one is of the order 
of 
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Since ~ ~ " 1 0 ,  the contribution of the secondary scat- 
tering in the frequency region of us can b e  neglected in 
comparison with the longitudinal scattering, which 
amounts to  -lo4( I E' 1'). The terms of the second type 
a re  proportional to v4I3, and a r e  therefore significant 
in the case of scattering by large samples. The coeffi- 
cients depend on the shape of the scattering volume. 
An estimate for a spherical volume yields 

where R is the radius of the scattering sphere. It i s  
easy to estimate that at R - 1 cm this ratio is - lo4/.$, , 
i. e., it is again small  compared with the longitudinal 
one. 

4. GENERAL INVESTIGATION OF THE FLUCTUATION 
OF THE ORDER PARAMETER 

Our problem reduces to diagonalization of a quadratic 
form that constitutes the deviation 6ih of the thermo- 
dynamic potential from the equilibrium value in an arbi- 
trary fluctuation. This problem was already solved in 
part in Secs. 2 and 3 (see (111, (12), (15), and (18)). It 
remains to diagonalize the quadratic form (16) without 
the assumption 5, = tr =O. We use the variables 5 ,  (see 
(11) in the unit-vector system (17). Substituting (11) in 
(16) and adding (12) we get 

4 
1 

6 @ = ~ 1 9 '  I E ~ I ~ + ~ ~ ' [  (E, cos ~ + t  sin 8)2+gal 
i-i 

1 
(35) 

+E," sin2 8-EzE, sin 281 +-A (Eaa+g,2), 
2 

where A=12 B@/Bx. 

We introduce in standard manner the new variation 

ql=gl cos p+ts sin p, q2=ez cos y-f, sin y, (36) 

43=-b sin P+E, cos $, q4=fz sin y+E4 cos y, 
1 sin 28 1 

$=-arctg- r--arctg 
sin 28 

2 p-cos20 ' 2 -p+cos2 8 ' (37) 

where 1 = A/K2q2. In terms of the variables 94, the 
form (35) can be diagonalized: 

Q,=p sin2 p+cos2 (8i-p), 

Q2=p sinz y+cosl y+sin2 7 sin2B+cos 7 sin y sin 28, 
(39) 

Qs=p cos"+sinz (8+$), 
4,511 cos2 y+ sin2 y+ cosZ y sinz 8-cos y sin y sin 28. 

From (38) i t  is easy to obtain the mean values 

With the aid of (36) and (40) we can obtain all  the nonzero 
mean values of the type (5,5 :) (see the Appendix). Us- 
ing formula (l l) ,  we can obtain the mean values 
(6 S& 6 $a), which a re  also given in the Appendix. 

The difference between 5, and Ed becomes substantial 
when Kg2- A, i. e., a t  sufficiently short wavelengths. 
Let us estimate the corresponding wavelength for MBBA. 
We use the experimental data on the values of s, , T, 
- T *, and the transition heat L,"' namely s, =O. 3, T, 
- T * a1 K, and L = 381 cal/mole. These data determine 
uniquely the coefficients a = 5X 10el cm" and B a C =2 
x 10' erg/cm3 (Boltzmann's constant is assumed equal 
to unity). In the Landau theory, the gap A is connected 
with the parameters B and C by the relation A = 20 B2/ 
9C. Using the foregoing values, we obtain A-4x 10' 
erg/cm3. Recognizing that K - 1 r 6  erg/cm, we obtain 
the wavelength region in which the biaxial fluctuations 
a r e  significant: h i 3  x lo-' cm. We note also that the 
correlators of the order parameter were calculated 
under certain simplifying assumptions by Vigman, Lar- 
kin, and F'ilevJB1 

5. LIGHT SCATTERING BY BlAXlAL FLUCTUATIONS 

The formulas derived in the preceding section (see 
also the Appendix) enable us to calculate the light-scat- 
tering intensity without neglecting the biaxial fluctuations. 
We use the general formula (26). In our case the con- 
nection between the tensor 6~~ and the fluctuation 6 S k  
of the order parameter is more complicated than in the 
case of uniaxial fluctuations (see (27)). From symme- 
try considerations we can write in the general case 

To obtain a general formula for the scattering cross sec- 
tion we must substitute (41) in (26) and use formulas 
(A. 1)-(A. 3). The resultant expressions a r e  very cum- 
bersome. We confine ourselves here only to scattering 
in the equatorial plane. We consider again the two types 
of polarization mentioned above: in the equatorial plane 
and along the director. In the former case the general 
formula is greatly simplified, so  that the result takes 
the form 

( 1 t4 12) is given by one of the formulas in (A. 1). For 
the latter case, the scattering cross section is zero as 
before (and a s  in the uniaxial case). 

An estimate shows that in the region of visible light 
the longitudinal scattering is of the same order a s  the 
biaxial scattering. To observe longitudinal scattering 
in the case of polarization in the equatorial plane, the 
measurements must therefore be made in the infrared 
region. It must be emphasized that if the polarization 
is along the director then the longitudinal fluctuations 
can be observed also in the optical band. In contrast to  
the longitudinal scattering, the cross section (42) for 
scattering by biaxial fluctuations is independent of the 
scattering angle in the optical region. The angular de- 
pendences become discernible only in the far ultraviolet 
region and in the soft x-ray region ~ 5 3 ~  1@ cm. The 
effect manifests itself then in an additional frequency 
dependence of the scattering cross  section (on top of the 
q4 dependence). 
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6. CONCLUSION 

Our main results a re  the following: There exists a 
region of wavelengths (AS 3 x 10" cm) that a re  long enough 
compared with interatomic distances, in which biaxial 
fluctuations a re  as  strong a s  uniaxial ones. To this 
wavelength region electromagnetic waves a r e  scattered 
by both uniaxial and biaxial fluctuations. Therefore the 
known formulas, which take into account only uniaxial 
fluctuations, no longer hold (seec1*''). We have obtained 
the scattering cross section in the general case for ar- 
bitrary polarizations of the incident and scattered light 
and for arbitrary wavelengths (see the Appendix). How- 
ever, even in the wavelength region where the biaxial 
fluctuations a r e  negligibly small there exist geometric 
conditions under which transverse fluctuations do not 
lead to scattering of light (see Sec. 3). Under these 
conditions the entire scattering is determined by the 
biaxial and longitudinal fluctuations. These processes 
a re  in competition only when both polarization vectors 
(of the incident and scattered light) lie in the equatorial 
plane. In the optical band, the cross sections of these 
processes a re  of the same order of magnitude and 
amount to - lo4 of the characteristic scattering cross 
section. Longitudinal scattering predominates in the 
infrared, and biaxial in the f a r  ultraviolet. On the 
other hand if  the polarization vectors are  parallel to the 
director, then there i s  no biaxial scattering at all. 

A general analysis of the conditions for thermodynam- 
ic equilibrium of NLC has revealed a cause-and-effect 
connection between two heretofore known facts: uniaxial- 
ity of all the known NLC and "weakness" of the first-or- 
der phase transition to the isotropic phase. 

One of us (V: P. ) thanks Professor S. Chandrasekhar 
for a discussion of the experimental situation. 

APPENDIX 

We present here the formulas needed to calculate the 
correlation functions and the scattering cross section. 
Using formulas (36), we get 

where ( I q,  la) a re  given by (40) and (39), and the angles 
j3 and y by formulas (37). 

To calculate mean values of the type (~sL  6 ~ 2 )  we 
use formulas (11) and (A. 1): 

The scattering cross section contains the correlators 
( 6 ~ ~  6&$), which a re  calculated with the aid of formu- 
las (41), (ll), (A. I), and (A. 2). We obtain 
(6~a~6~~a')=MI(GScs~6Sia~')+~~[Ta~. ea+T~a. al+Taa, ol+Te~, a d ]  

+MNlRG, a, r+Ra~, 1, e+Rle, s. =+Ria, a, 0 1 ,  (A. 3) 
where- 

i )~xpress ion  (15) is in fact the expansion of the elastic energy 
accurate to s2. If s is not small i t  is necessary to take into 
account also higher invariants made up of the components of 
n and 8S,B/&t, (there are  no invariants of degree higher than 
s4 at  all, because n2= 1). For the questions of interest to us 
in the present paper (scattering in the equatorial plane), how- 
ever this is of no importance. 
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