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All the types of particle-like solitons possible in the A and B phases of 'He are considered with allowance 
for the spin-orbit interaction. These solitons do not have singularities anywhere in the field of the order 
parameter, and are characterized by a topological invariant and a finite dimension and energy. 
Asymptotic solutions of the Ginzburg-Landau equation at large distances from the soliton and at the 
soliton center are found. It is shown that there exists in the A phase a type of soliton possessing a 
momentum that stabilizes the soliton size. Like ring vortices, solitons of this type &ect the transfer of 
momentum from the superfluid component of the liquid to the normal component. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION body is stationary. 

The solitons in superfluid 3 ~ e  that have thus far been 
investigated a r e  either moving domain walls, i. e., plane 
solitons (see, for example, Maki and Kumar's 
or  coreless vortices, i. e., linear solitons (see Refs. 
2-5). The possibility of the existence of particle-like 
solitons was pointed out in Ref. 6 by the present authors. 
These states a r e  characterized by an integral topologi- 
cal invariant and a finite size, energy, and momentum. 
A well-known example of such states in superfluid He I1 
is the ring vortex. However, in contrast to ring vor- 
tices, the particle-like solitons considered here do not 
possess singularities anywhere in the order-parameter 
field. The purpose of the present paper is to study in 
detail the structure of these states in both phases of 
superfluid 'He with allowance for the spin-orbit inter- 
action. 

From the topological point of view there can exist in 
superfluid 'He only two types of particle-like solitons, 
to each of which corresponds i t s  own integral topological 
invariant. For solitons of the first  type this number is 
the degree of the mapping of a three-dimensional sphere 
into a three-dimensional sphere (S - S3). Solitons of 
this type a r e  f i rs t  considered, using as an example the 
B-phase (see Sec. 2), where i t  is easy to find an analytic 
solution for them. The energy of these solitons a r e  pro- 
portional to their dimensions, and therefore they a re  
unstable against a decrease in their size. Solitons of 
the first type in the A phase a r e  studied in Sec. 3. It is 
shown that the superfluid-velocity field at large dis- 
tances from the soliton obeys a dipole-type decay law, 
which indicates the possession of momentum by the 
soliton. The magnitude of the momentum of the soliton 
turns out to be proportional to the square of its dimen- 
sion. Owing to the law of conservation of momentum, 
the soliton size gets stabilized. Such solitons also 
possess angular momentum directed along the momen- 
tum, and therefore they will be acted upon by the Magnus 
force a s  the superfluid stream flows around them. The 
appearance of a similar Magnus force acting on a solid 
immersed in the A phase is also considered in this sec- 
tion. Its appearance is connected with the fact that the 
stream of liquid around a body immersed in the liquid 
possesses nonzero angular momentum even when the 

To solitons of the second type (see Sec. 4) corresponds 
the so-called Hopf invariant, which arises in the mapping 
of a three-dimensional sphere onto a two-dimensional 
sphere (S3 - S2). Like solitons of the first  type in the 
B phase, solitons of the second kind a re  unstable against 
a decrease of their dimensions, and can appear only in 
dynamical processes. 

2. SOLITONS OF THE FIRST KIND. THE B PHASE 

Let us consider solitons in the B phase with dimen- 
sions R <RD, where R, is the characteristic spin-orbit 
(dipole-dipole) interaction range (see the review article 
by ~ e ~ ~ e t t " ] ) .  In this case the order parameter Aik is 
given by an arbitrary rotation matrix Rik: 

Au=A (T) e'mRu. (2.1) 

The components R,,  a r e  functions of three parameters. 
These are, for example, the direction, w,  of the rota- 
tion axis and the angle, 0, of rotation. We choose as 
these parameters the components of the unit four-dimen- 
sional vector 

s o  that 

(Here a! = 1,2,3,4; the Latin indices run through the val- 
ues 1,2,3.) 

Thus, the vector nu@) which defines the mapping of 
the coordinate space of the vector r onto the three- 
dimensional sphere nun, = 1, is specified a t  each point 
of the vessel with the 'He-B. At large distances from 
the soliton the order-parameter field is unperturbed: 
Rik(w) =R!,. Let us, for definiteness, choose R;, =lit,. 
This implies that to all infinitely remote points of the 
coordinate space corresponds the vector n: = (O,0, 0,l) .  
A three-dimensional space whose points at infinity a re  
all equivalent is, from the standpoint of i t s  topological 
structure, a three-dimensional sphere S3  in a four- 
dimensional space, in the same way as a plane with 
identical points at infinity is equivalent to a two-dimen- 
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sional sphere SP. Consequently, we have a mapping of 
the three-dimensional sphere corresponding to the co- 
ordinate space onto the three-dimensional sphere nana 
=l. Each such continuous mapping is characterized by 
the integral invariant 

which is called the degree of the S 3  - S3 mapping, where 
ed7, and err, a re  completely antisymmetric tensors. 
The integral in (2.4) is equal to the a rea  of the unit 
sphere nuna = 1 multiplied by the number of times the 
vector n, traces this sphere as the vector r runs through 
the entire coordinate space. 

Let us now find for R,, an expression corresponding 
to  the degree of mapping N = 1. For this purpose we 
must solve the Ginzburg-Landau equations obtained by 
minimizing the gradient-energy functional: 

On account of the spherical symmetry, let us seek the 
solution to the corresponding equation in the form 

n,= (r sin x (r), cos x (r) ) 
=(sin ~ ( r )  sin e cos cp, sin ~ ( r )  sin 0 sin 9, sin x (r) cos 8, cos x (r) ) . 

(2.6) 
Here r, 8, a re  spherical coordinates. Notice that 
the angles x, 8, and p,  where 0 x -< r, 0 G 8 -< n, and 
0 Q p 2n, specify the position of the vector n, on the 
sphere n,n, =l. Thus, if ~ ( r )  in (2.6) varies from zero 
to  n as r varies from infinity to zero, then the vector 
nu runs over the entire sphere n,n, = 1 once as r runs 
through the entire space. This can also easily be veri- 
fied by substituting (2.6) into (2.4) and obtaining N = 1. 

As a result of the minimization of the functional (2.5) 
we obtain for the function ~ ( r )  the equation 

2 1 
X" + -xf - -(3-2 cos 2x) sin 2x=O 

r +  
(2.7) 

with the boundary conditions ~ ( 0 )  = r and x(=) = 0. 

Equation (2.7) is a self-similar equation, i. e. , i ts  
solution depends on r/R, where R is an arbitrary param- 
eter determining the dimension of the soliton. This so- 
lution has the following asymptotic forms: 

where clS2 a r e  numbers of the order of unity. 

An investigation of the phase trajectories of Eq. (2.7) 
shows that this equation does not possess a solution 
with a continuous derivative and the asymptotic forms 
(2.8)." It is, however, easy to  construct a continuous 
solution whose derivative is discontinuous a t  r -R.  This 
discontinuity can actually be neglected, since we must 
take into consideration a t  distances - 5 from the discon- 
tinuity surface the terms of fourth order in the gradients 
in the Hamiltonian (2.5), which allows us to  construct a 
solution with a continuous derivative in the entire region 
o < r < = .  

Because of the rapid convergence of the energy inte- 
gfal 

the characteristic dimension of the integration domain 
is of the order of R, and, consequently, 

~ - p ' ~ ( t i / m )  a.  (2.9) 

Since the energy is proportional to the soliton dimen- 
sion, such solitons a r e  unstable, since they can contin- 
uously reduce their radius, conserving the invariant 
(2.4) in the process. As soon as R becomes - e, the 
coherence length, the order parameter ceases to be 
described by the rotation matrix R,,, and the topologi- 
cal  invariant (2.4) ceases to have meaning. Therefore, 
a soliton a t  these distances can vanish, although the 
possibility of its being stable a t  distances R - 5 is not 
to be excluded. This question, as well as the question 
of the possibility of the stabilization of solitons with 
dimensions R >> .$, e. g., by a spin current, remains 
open. 

Let us write out the expression for the spin current 
j , ,  (a current of spin S1 in the direction x,) at  large 
distances from the soliton: 

3. SOLITONS OF THE FIRST KIND. THE A PHASE 

The order parameter of the A phase has the form 

where V is a unit vector characterizing the spin motion, 
while A', Aft, and I= Af x Aft a re  unit vectors character- 
izing the orbital motion. We shall consider the solitons 
in orbital motion. With that end in view, let us write 
the orbital part  of the order parameter in the form 

A A 

yhere  R,, is a three-dimensional rotation matrix; X, y, 
z are  the basis vectors of the Cartesian coordinate sys- 
tem. Thus, there exists at each point of the coordinate 
space, as in the B phase, a rotation matrix that can be 
parametrized with the aid of the formula (2.3) in terms 
of the four-dimensional unit vector n,. Consequently, 
as in the B phase, there exist particle-like solitons 
characterized by the invariant (2.4). 

Using the expression for the superfluid velocity 

from which follows the Mermin-Ho relationc2': 

we can rewrite the invariant (2.4) in another form 

N= (A). j dsr v' rot v*. 
2nh 
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Let us construct the corresponding solution for N =  1. 
In contrast to  the B phase, the solution for the vector 
n, will not be spherically symmetric, since there is a 
prefeyed direction of the vector 1 for r - *, namely, 
I(-) =e. Therefore, generally speaking, the solution 
to the Ginzburg-Landau equation should be sought in the 
form 

However, the nonlinear equations for 8 ( 8 )  and ~ ( r ,  8) 
cannot be solved analytically. Therefore, we shall con- 
sider the asymptotic behavior of the solution for r- * 
and r-0. 

Since sinx- 0 for r - * and r - 0, the expression (3.6) 
can be rewritten in these limiting cases in the form 

Retaining in the Hamiltonian (2.5) only the terms qua- 
dratic in the gradients n, we obtain for R <RD (V =const) 

Varying this functional, we obtain the equation 

~ n + ^ z ( e ~ n )  -2 rot rot 11-21; X V] (^z rot n) =0. (3.9) 
[4  x A1 

The solution has the form 

i. e., the asymptotic behavior of the solution i s  exactly 
the same as in the B phase. 

The superfluid velocity vd for r - 0  and r-* is deter- 
mined from the formula 

The current density for v" =0, j i  =plkv: + C,,(curl l), has 
the following form: 

The same velocity ( 9 )  and current a) field distribu- 
tions arise in the motion of a solid in an ideal liquid. 
This motion is characterized by a momentum P and a 
soliton-drift velocity U: 

These expressions resemble the corresponding expres- 
sions for quantized vortex rings in a superfluid liquid, 
except for the absence of the factor ln(R/[) in the expres- 
sion for U, since solitons do not possess singular cores. 

A s  in the B phase, the soliton energy 

Solitons in the A phase a re  stable owing to the coupling 

of the dimension R to the momentum, which, in the ab- 
sence of a normal component, is conserved during the 
motion. 

Notice in this connection that, in solving the present 
problem, it would have been more rigorous to have var- 
ied the functional E - P-U, i. e., the functional E for a 
given momentum P. Such a treatment alters the asymp- 
totic behavior of n(r), but not the dipole character of 
vd and j. In this case there appears a characteristic 
soliton dimension R - ii/mu, as a result of which the 
scaling invariance of the Ginzburg-Landau equation is 
destroyed. Consequently, the solution to this equation 
with a continuous derivative can exist in the entire space, 
and, in contrast to the B phase, i t  is not necessary to 
take terms of higher order in the gradients into account. 

Such solitons can ar ise  in the presence of a flow of 
the superfluid component relative to the normal com- 
ponent, effecting, just as  vortex rings do in He n, the 
transfer of momentum from the superfluid component 
to the normal component. 

The influence of the soliton states on the superfluid 
properties of ' ~ e  has been discussed by Anderson and 
~oulouse."' Although these authors considered vortices 
without singularities, i. e. , linear solitons, the argu- 
ments they adduce in their paper are  applicable to the 
case of particle-like solitons, especially as the above- 
considered soliton with N =  1 is a vortex without a sin- 
gularity bent into a ring. 

Thus far we have considered solitons with R <RD in 
the A phase. It can be shown that the asymptotic forms 
of the solutions for solitons with dimension R >RD differ 
from those obtained for R <RD only by a scale transfor- 
mation along the z axis. To wit, for R>RD it is neces- 
sary to set  V II 1 in the order parameter (3.1) (see Ref. 
7). In the process the coefficients of the free-energy 
expansion (3.8) change and new terms appear, with the 
result that Eq. (3.9) will have a more complex form. 
Nevertheless, the vd and j fields at large distances re- 
tain their dipole character, with the only difference that 
the vector r in the formulas (3.11) and (3.12) should be 
replaced by r' =pz + q p ,  where the constants p and q de- 
pend on the coefficients in the energy expansion. 

The asymptotic expression (3.11) does not allow a 
judgment to be made about the magnitude of the angular 
momentum, L, of the particle-like soliton: 

To estimate L, let us  consider the following term of the 
expansion of d in powers of n for r - 00: 

A R 
V. +- m Vn,  = -eran,Vn& m 

It can be seen from (3.15) that the angular momentum 
has the order of magnitude 
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FIG. 1. ~ual i ta t ive spatial distribution of the 1 field near a 
solid (a sphere). The dashed lines represent the fictitious 1 
field inside the sphere, while the wavy line represents the vor- 
tex line. 

This should lead to the appearance of the Magnus force 
when a superfluid current perpendicular to I(-) flows 
around the soliton. And in this respect a particle-like 
soliton is similar to anormal solid with dimension R > 5 
immersed in ' ~ e - 4 .  Even if the body is at rest relative 
to the liquid, there arise near it 1 and vS fields possess- 
ing a nonzero angular momentum L-pSiiRS/m. This is 
connected with the fact that we should have fulfilled on 
the surface of the solid the boundary condition 1 I I  v, 
where v is a vector normal to the surface (see Ref. 8). 
This boundary condition can be satisfied with the aid of 
a single singular point (asimple hedgehog) in the l-vec- 
tor field inside the solid. Since the 1 field at infinity is  
uniform, this hedgehog should be compensated by an 
anti-hedgehog on the surface of the body: an "island" of 
zero dimension, in Mermin's terminologyCQ1 (see Fig. 1). 
In Ref. 10 the present authors showed that a hedgehog 
and an anti-hedgehog in the field of the vector 1 are con- 
nected by a vortex with two circulation quanta. This 
vortex is located inside the solid. Therefore, around it 
exists a nonzero circulation of the velocity vS. Conse- 
quently, if a superfluid current jd flows around a solid 
in the A phase, then the solid will experience a Magnus 
f o x e  

P WAR?. 
m (3.17) 

4. SOLITONS OF THE SECOND KIND 

It remains for us to consider the spin solitons with 
dimensions R <RD in the field of the vector V in the A 
phase and the solitons with dimensions R >RD in the B 
phase. In both cases the order parameter is  determined 
by a unit three-dimensional vector: V in the A phase 
and w in the B phase, respectively. The angle, 9, of 
rotation about the w axis for R >RD is fixed by the di- 
pole-dipole interaction, and is  equal to 104". 

We are required to construct a mapping of a coordi- 

nate space with identical points at infinity, i. e., of a 
three-dimensional sphere SS, onto the space of varia- 
tion of the vector V (or w), i. e., into a two-dimensional 
sphere S< Let us construct this mapping in the follow- 
ing manner, Let the field of the four-dimensional unit 
vector nu@) define an s ' - s ' mapping of degree N. Let 
us define the rotation matrix ~ ~ , { n , )  according to the 
formula (2.2), and let this matrix act on a constant vec- 
tor, e. g., 2. The res~lting~vector will give the SS- Se 
mapping: Vi(r) =R, {n,(r))z,, which is characterizable 
by the index N, called the Hopf invariant. 

A similar mapping, called the Hopf stratification in 
topology, arose in the case of solitons of the first kind 
in the 1-vector field (see (3.2)). Precisely because of 
this, the invariant (2.4) could be rewritten in the form 
(3.5), which depends only on l, a fact which can easily 

'be verified with the aid of the relation(3.4) (see also 
Faddeeds le~ture'"~). 

The asymptotic forms of the solutions for the vectors 
nu in a soliton corresponding to the Hopf invariant N = 1 
retain the form of (3.11) up to a scale transformation 
along the z axis, and, therefore, the spin current falls 
off at large distances from the soliton in the dipole 
fashion. Like solitons of the first kind in the B phase, 
solitons of the second kind are  unstable, since the field 
of the spin variables V (and w) possesses no momentum. 
The possibility of the production of similar states by a 
spin current requires a separate investigation. 

In conclusion, we consider it our pleasant duty to 
thank S. P. Novikov for valuable consultations, as well 
as N. D. Mermin for sending us his preprint. 

 his circumstance, which is a consequence of the scaling in- 
variance of Eq. (2.7), was pointed out to us by A. M. Polya- 
kov, E. B. ~ o ~ o m o l ' n $ ,  and V. A. Fateev. 
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