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Photoelectric emf mechanisms governed only by the symmetry of the crystal--by the presence of a polar 
&are proposed. They are based on the asymmetry of the electronic process-their non-invariance to 
spatial reflections. 

PACS numbers: 72.40. + w 

INTRODUCTION 

The photoelectric-emf mechanisms connected with 
the inhomogeneity of crystals and with the non-uniformity 
of their illumination are well known?ll There are, 
however, experimental data indicating that emf is pro- 
duced in homogeneous ferroelectrics that a re  uniformly 
illumir~ated.~*" The existence of photo-induced currents 
is due in this case to the crystal symmetry-the pres- 
ence of a polar axis in the crystalLe1; this effect does not 
exist in the para-phase. The currents observed in short- 
circuited samples are small (jph~10-8-10-8 ~ / c m '  at J - 1 w/cm2), but when isolated crystals are  illuminated 
charge transfer gives rise to blocking fields Eo-10'- 
lo5 V/cm. 

Consider the expansion of the const2t electric current 
in power of the field of the light wave E(o) and the con- 
stant field E: 

Here uik is the intrinsic conductivity of the crystal, yikz, 
is the photoconductivity, and Bik, describes the effect 
considered by us, namely a current in the absence of a 
constant field. If the crystal has a polar axis, then we 
can construct the tensor Bikl: 

and the unit vector e specifies the polar direction of the 
crystal. The quantities a(@), B(o), and y(w) should be 
determined by the microscopic approach. Expression 
(1) for Pi,, is not the most general one, since it does not 
take into account the singularities of the crystal symme- 
try. Photocurrent is  possible if the crystal symmetry 
allows the existence of the tensor Bikz. 

We propose an elementary theory of the effect. This 
theory isbasedonthe asymmetry of the elementary elec- 
tronic processes-their noninvariance to spatial reflec- 
tions. It i s  assumed that the dielectric has in its forbidden 
band an impurity level to depth A, from which the photo- 
excited electrons stem. The electrons in the conduction 
band will be described by the kinetic equation for the 
distribution function fk:  

where c(fk) and Z;(fk) a re  respectively the electron exci- 
tation and recombination rates, while Iimp(fk) and I ih(  fk) 
are  the integrals of the collisions with the impurities 
and the phonons. 

The idea of the effect is the following: Assume that the 
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right-hand side of (2) contains an asymmetrical term 
I (fd having the property 

The stationary solution of the kinetic equation cannot be 
purely symmetrical in this case, but must contain an 
asymmetrical part 

which leads, in accordance with the general formula 

to the appearnce of a current. We emphasize that we 
are dealing here with a nonequilibrium situation: the 
asymmetric collision term I F  and the current jph al- 
ways vanish on the equilibrium electron distribution 
functions. We consider the origin and structure of the 
asymmetric probabilities of the scattering (Sec. 1) as 
well as of the probabilities of the ionization and recom- 
bination (Sec. 2). 

Equation (2) contains four characteristic times: the 
time y" of the electron recombination on the impurity, 
the time r;AD between the collisions between the impuri- 
ties, the time q1 of relaxation to the Boltzmann distri- 
bution function, and the time q1 of momentum isotrop- 
ization. We assume that 

ri >> rt , rimp >> Y . (5) 

The isotropization and thermalization will be assumed 
to be connected with the phonons, I $  = I :  +I:". We also 
fix the explicit form of I? 

where the bar denotes averaging over the constant-en- 
ergy surface. 

Using (5) and (6), we readily obtain the stationary 
solutions of (2) 

  ere f i is the Boltzmann distribution function normal- 
ized to the total electron concentration in the conduction 
band," 

The use of (4) and (7) leads to simple estimates of the 
effect if  the concrete model of I F  is specified. 

1. ASYMMETRY OF SCATTERING 

We consider elastic scattering of electrons by ran- 
domly disposed impurities. This process corresponds 
to the usual collision term in the kinetic equation 

where Ww is the probability of electron scattering from 

a state with momentum into a state k. If  to^. is the 
transition probability for one center, then Ww = C w ,  
where C is the impurity concentration. 

The only general symmetry relation for We follows 
from the invariance of the equations of motion to time 
reversalc" (the reciprocity theorem) 

Besides (9), it is frequently assumed that the relation 
Ww = Wpk (the detailed balancing principle) is satisfied. 
It is well known, however (see e. g. ,CC51) that this prop- 
erty holds only for symmetric potentials U(r) = U(-r). 
The absence of detailed balancing is of fundamental im- 
portance to us. It must be noted that we assume the 
randomly disposed centers to have identical orientations. 
This is  precisely of the presence of the polar axis mani- 
fests itself in the crystal. If, for example, the non- 
centrality of the impurity is due to its dipole moment, 
then all dipoles must have the same orientation. 

Using (9), we represent Ww in the form 

where 

The collision term is then written in the form 

As seen from (10) and (111, 

does indeed have the property (3). 

We consider now the question of the vanishing of I F  
on the equilibrium distribution function. The sufficient 
condition for this is, obviously, 

It is shown in the Appendix that this condition is always 
satisfied for elastic scattering. Thus, I F  = O  on any 
function of the energy. On the other hand, i f  external 
sources provide an increment 6f8 that is not a function 
of ck, then this increment must have an asymmetric 
part, i. e., a current is produced. 

Let us consider a concrete model. Let the scattering 
center have a short-range symmetric potential with a 
scattering length a and an asymmetric dipole potential2' 

where E,, is the permittivity. Assuming both potentials 
to be small, we use perturbation theory. To determine 
U"* we must calculate the scattering amplitude up to 
second order in the potential (seec4]). The contribution 
to W $  comes from the product of the amplitude in first 
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order of perturbation theory by the pole contribution to 
the amplitude in second order. In. the free electron ap- 
proximation &I, = d P / 2  m and 

blia'c kk' w,",. a-- (d,k- k'). 
eomk Ik-k'l' 

It is easy to verify that W s  satisfies relation (13). 
To calculate the symmetric part Wih. it is necessary to 
take into account in explicit form the screening of the 
dipole potential at large distances. In addition, it is 
necessary to take into account the scattering by the 
symmetric traps from which the electrons are photoex- 
cited. We assume that the total ( I F ) '  is included in 
(6). 

We specify also the ionization and recombination mod- 
el. Let the electrons be excited from symmetric cen- 
ters  having only S states. Then the number of electrons 
excited with momentum k per unit time and unit volume 
can be expressed in the form 

Here x is the absorption coefficient, e is the polariza- 
tion vector, and ko is defined by the conservation law: 
Ew = A  + sko. The anisotropy of the excitation is thus due 
in our case to the polarization of the light. The recom- 
bination term, which contains the emitted photons aver- 
aged over the polarizations and momenta, makes there- 
fore no contribution to f :. Let us finally determine the 
current. A s  seen from (7), f : appears in the second- 
order perturbation-theory solution of the kinetic equa- 
tion: 

Substituting this in (4) we obtain (see also (1)): 

We point out that in our model the direction of the cur- 
rent depends essentially on the polarization of the light. 
Thus, the currents have opposite signs in the cases e l c  
and e Il c. The average of jph over the polarization and 
direction of the light is zero. 

We note the anisotropy of the excitation (as well as  of 
the recombination) can be due not only to the polariza- 
tion of the light, but also to the polar axis. In fact, if 
the localized electrons are in a P state with quantization 
axis along the polar axis, then the probabilities of the 
ionization and recombination of the electrons remain 
anisotropic also after the averaging over the polariza- 
tions and directions of the light. The anisotropy of the 
recombination leads to an additional contribution to the 
current. It can be shown that this contribution manifests 
itself in the appearance of a characteristic factor of the 
type (1 - k; /k:) in Eq. (18) (kT = (rnT)'l2/E is'the aver- 
age electron momentum in thermal equilibrium). 

Despite the idealized character of our model, expres- 

sion (18) can be regarded as an estimate of the current 
based on the scattering mechanism. Putting = 1 em-', 
d=O.lea, a=104cm, r,=10'~sec", koa=O.l, xEw=5 
x erg, C = 10" em-', and co = 10, we obtain 

Let us estimate also the blocking field Eo, determined 
from the vanishing of the total current 

where up, is the photoconductivity. Assuming uD,,[&2-' 
cm"] = I O - ~ ~ J [ W / C ~ ~ ]  (these values correspond to the ex- 
perimental conditions ofC"), we get 

E0=lo2 V/cm , 
which is independent of the intensity of the light. 

2. ASYMMETRY OF EXCITATION AND 
RECOMBINATION 

In our analysis of the asymmetry of I: and I: we con- 
fine ourselves to pure radiative processes and retain 
terms of lowest order in the light intensity 

Here n,(Q) is  the number of photons with polarization a 
and momentum q, w',.'(k, q) are the probabilities of ion- 
ization and recombination on the impurity level, C is the 
number of electrons on the impurities, and Co is the total 
number of impurities. 

For impurity-band transition we can use the dipole 
approximation, and the quantities w',"(k, q) do not depend 
explicitly on the photon momentumc63: 

Here D is the dipole-moment operator, e, is the polar- 
ization vector, go is the wave function of the electron on 
the impurity, and & are  the wave functions of the free 
electrons and contain diverging and converging waves. 

The probabilities w',"(k) a re  connected by the relation 

which follows from the invariance to time reversal. Re- 
lations (20) and (21) show that in the absence of a sym- 
metry center the quantities I:'' contain asymmetric parts 

We call  attention to the following circumstance: it 
follows from (19) and (21) that at equilibrium (I:")= 
do not vanish and make contributions of like sign to the 
complete collision integral. The reason is  that the 
kinetic equation contains additional terms of the same 
order as the contribution from the ionization and recom- 
bination processes. It is shown in the Appendix that in 
the presence of absorbing centers, i. e., recombination 
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processes, the asymmetric part of the scattering prob- 
ability satisfies in lieu of (13) the relation 

This formula is valid i f f ,  is a function of the energy. 
It is easy to verify that ( I :  - I :  +I:-)' vanishes at 
equilibrium (in our case, on w e  Boltzmann functions for 
the electrons and photons). 

Taking (7) and (23) into account we write down the 
asymmetric correction to the distribution function in the 
form 

where f :  is the B o l t z m a ~  distribution function normal- 
ized by the condition If :dk= Co - C. In contrast to (17), 
a current appears already in the f irst-order approxima- 
tion in y/rt. 

We assume now that the symmetric part of the poten- 
tial, which produces the localized state, i s  short-range 
kro<< 1, where ro is  the effective radius of the potential. 
We again assume a dipole asymmetric part U". We 
note further that if wave functions $; of the continuous 
spectrum are  taken to be functions # that take only the 
symmetric potential into account, then the relation q?? 
=($z)* leads to 12*=I!k*. It i s  therefore necessary to 
retain in & the correction due to the asymmetric poten- 
tial u"."~'] Assuming this potential to be small 
enough," we getc41 

We recognize now that to calculate the matrix element 
(ki lDI0)  we need know &(r) only at rsro <<k". In this 
region we can regard $2 as  independent of d: 

The opposite limiting case is realized in the calcula- 
tion of (s ,  d&I u " I  S, k*), namely, since U" i s  long- 
range, the main contribution in the integration is made 
by the region yo << Y 5 k", so that @(r) can be regarded 
as independent of the symmetric potential. In the free- 
electron approximation we have 

ie (d, k -  k') 
<~,k'*IU"'ls,k&>=- 

2n' Ik-k'12 ' 

Finally, calculating b e ,  we obtain 

We have retained only the pole contribution in (25), since 
the contribution from the principal value has in our ap- 
proximation the same symmetry as $:. 

The subsequent calculations depend on the quantum 
numbers of the impurity levels. If the electrons on the 
impurities a re  in P states with quantization axis along 
the crystal axis, then 

With the aid of (24) and (28) we obtain an expression for 
the current 

Here H a (C e)8; this relation corresponds to vanishing 
of the coefficients a and y in (1). 

The reversal of the sign of j,, at small ko has a sim- 
ple meaning. The electron has a momentum ko as it en- 
te rs  the conduction band and the average thermal mo- 
mentum kT on departure. Therefore ionization o r  re-  
combination prevails, depending on the value of kT/ ko. 
It is appropriate to note that the reversal of the sign of 
the current as a function of the frequency, polarization, 
or  radiation direction (see (18) and (29)) is not a proper- 
ty peculiar to the considered impurity models and scat- 
tering mechanisms. This property stems only from the 
fact that in the model assumed by us for the ionization 
and recombination (19) the current is linear in the light 
intensity and vanishes on the equilibrium distribution 
function of the photons.5) 

To conclude this section, we present estimates for 
the current j,, and for the blocking field Eo. For the 
previously assumed crystal parameters we have 

j,, [~/cm'] 10-'J [w/cm2] , 

i. e., in reasonable agreement with experiment.c2*s1 

CONCLUSION 

1. Calculation of the effect in a real crystal must of 
course take into account the actual singularities of the 
impurity centers, the band structure, the presence of 
many excitation and recombination channels, etc. This 
problem i s  outside the scope of this paper and should 
apparently be solved for actual types of crystals. It 
can, however, be expected that the mechanisms pro- 
posed by us for the effect are  realized also in more 
complicated situations. 

2. We note finally that the effect considered can exist 
also in impurity-free crystals, since the asymmetry 
of the unit-cell potential of a pyroelectric leads to asym. 
metry of the electron-phonon in te rac t i~n .~ '~  

The authors thank V. S. L'vov and M. V. intin for a 
useful discutsion, and A. P. Levanyuk and Ya. A. 
Smorodinskii for valuable remarks. 

APPENDIX 

We introduce the quantity Zk, which has the meaning 
of the probability of the departure of the electron from 
the state k. The probability Zk consists of the total 
scattering probability and the probability of capture 
(recombination) by the scattering center. By virtue of 
the optical theoremM1 

where fm is the forward-scattering amplitude. Accord- 
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ing to the reciprocity theorem, however, fu = f-b-r, so 
that Zk = 2-k and consequently 

jro?k6(er - ek*)dkr + wtP=O.  (A. 2) 

If the scattering potential has no bound states, 11; =0, 
then (A. 2) leads to  (13). But if the center has an energy 
level, then radiative capture of an electron by the level 
is possible withaprobability 4. In this case (A. 2) leads 
to relation (23). 

For the model considered in the text (Sec. 2), the 
additional contribution to the collision integral is due to 
the quantum-electrodynamic process of virtual emission 
of a photon by the electron and the transition of the elec- 
tron to the impurity level, the subsequent absorption of 
the photon, and the return of the electron to  the band. 

 he latter is determined from the condition. 

U t i  - I t r )  dk = 0 

 he macroscopic field produced by polarized impurities has 

no bearing on our problem. It  is determined by the boundary 
conditions and can be se t  equal to zero. 

')we note that the symmetric potential (unlike U M )  cannot be 
regarded as small, since it has a bound state. 

')we assume that the amplitude of scattering by a symmetric 
potential is of the order of ro. 

 he reversal of the sign of the current a s  a function of the 
frequency and of the polarization of the light were observed 
in experiments. c33 
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Magnetic breakdown and thermoelectric power in niobium 
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We measured the transverse magnetoresistance and thermoelectric power of a niobium sample with 
orientation [OD11 in fields up to 150 kOe. A large thermoelectric-power signal and its oscillations were 
observed at H 11 [110]. Coherent magnetic breakdown in the region of the conical point contacts located 
on the J?P symmetry lines, is invoked to explain the results. 

PACS numbers: 72.15.Gd, 72.15.Jf 

Experimental investigations of the influence of mag- 
netic breakdown on the thermoelectric power of a num- 
ber of simple metals yielded results that were so highly 
promising,L"41 that it was proposed inLz1 to use the 
thermoelectric power to study metals whose Fermi-met- 
a1 topology impedes the onset of magnetic-breakdown re- 
sistance oscillations. This is precisely the situation in 
niobium, where the magnetic breakdown leads to a tran- 
sition from open to closed s,cS*61 and accord- 

resistance oscillations. 
ing toc7] this transition 

with a resistance ratio boo /prea E 3000. The mounting 
of the sample i s  shown in Fig. 1. Copper current leads 
were spark-welded through small nickel bushings. The 
potential leads of an alloy 70% Pb +30% Sn, were spot- 
welded. The heater, with resistance -20 61 was bifilarly 
wound on a form and fastened with BF-2 adhesive, after 
which it  was slipped over the "hot" end of the sample. 
To monitor the temperature gradient, a differential Cu- 
(Au +O.O7% Fe) thermocoupleca1 was glued to the sample. 

n V J +  
We report here results of an investigation of the ther- 2 

moelectric power of niobium in strong magnetic fields. t ~ o ~  C 7 

A 

EXPERIMENT 
FIG. 1. Mounting of the sample for the measurement of the 

The thermoelectric power and the magnetoresistance thermoelectric power and the magnetoresistance: 1-heater, 
were measured on a niobium sample of orientation [oo~]  2-differential thermocouple, 3-potential leads. 
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