
sager coefficient should in our case be taken into ac- 
count a t  temperatures 

Thus, the estimate obtained for the reduced tempera- 
tures on the basis of the isomorphism theory of critical 
phenomena agrees with the characteristic temperatures 
shown in Fig. 5. 
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A theory of the optical properties of imperfect (mosaic) cholesteric liquid crystals (CLC) is developed. The 
optical characteristics are determined on the basis of the transport equations for the light-polarization 
tensor. The use of these equations is made possible by the statistical character of the imperfections of the 
mosaic CLC. The case of light propagation along the optical axis is considered in detail. It is shown that 
the optics of imperfect CLC is subject to qualitative singularities in comparison with the case of ideal 
CLC. These are, in particular, the polarization of the light, the broadening of the frequency regions of 
the selective reflection, the independence of the specific rotatory power on the sample thickness, and the 
selective attenuation of light circularly polarized in either direction. It is noted that the equations obtained 
in the paper for the polarization tensor can be useful for a description of the scattering of radiation of 
different types from imperfect crystals. 

PACS numbers: 78.20.Ek 

INTRODUCTION 

Many experimental and theoretical studies have been 
made of the optics of cholesteric liquid crystals (CLC) 
(see, e. g. ,"-"). It has been well established that the 
unusual character of the optical properties of CLC is 
due to diffraction of light by their periodic structure. 
There is, however, a wide gap between the theoretical 
and experimental papers. Whereas in experiment one 
deals usually with crystals that a re  non-ideal to a 
greater or  lesser degree, the theoretical papers consid- 
e r  almost exclusively the optics of an ideal planar cho- 
lesteric structure. It appears that the only theoretical 
relation used for the interpretation of measurements 
made on non-ideal CLC is the improved Bragg formu- 
la,cs~41 which connects the period of the cholesteric helix 

with the wave length of the diffraction-reflected light 
and with the angles of incidence and reflection relative 
to the CLC surface. 

Yet there a r e  many problems in the optics of imper- 
fect cholesteric crystals, of importance both from the 
experimental and the fundamental points of view, which 
have not been dealt with theoretically. Foremost among 
them a re  the dependence of the light reflection and trans- 
mission coefficients on the degree of perfection of the 
cholesteric samples, the influence of the imperfections 
on the polarization characteristics of the light and on the 
rotation of the plane of polarization, and others. Natu- 
rally, in these cases the phenomena a re  likewise deter- 
mined by the diffraction of the light in the CLC, but to 
answer the foregoing questions it is necessary in most 
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cases to go outside the framework of the kinematic 
approach mentioned above, which leads to the modern- 
ized Bragg forrn~la..~~*~' 

The purpose of the present paper is to fill in part  the 
indicated gap between theory and experiment and to 
consider the optical properties of a mosaic non-ideal 
CLC, i. e., one consisting of a large number of crystal- 
lites, small regions with perfect structure, whose ori- 
entation and arrangement can differ slightly from the 
corresponding values in an ideal CLC. 

The theoretical treatment of the optical properties of 
CLC with imperfections of the above type is facilitated 
by the fact that in CLC with these imperfections there 
is effectively no coherence in the scattering of the light 
by the various crystallites. This simplifies the allow- 
ance for multiple scattering of light and makes i t  possi- 
ble, by generalizing the known Zahariazan equations for 
x-ray ~ c a t t e r i n ~ , " ~  to obtain results  outside the frame- 
work of the kinematic approximation. It turns out then 
that the observed optical properties of imperfect CLC 
differ substantially from the properties of ideal planar 
structures. These differences lie not only in the fact 
that the relations known for ideal structures a r e  not 
suitable for a quantitative description of imperfect CLC, 
but also in the fact that a number of qualitatively new 
effects appear in the optics of imperfect structures. 
For example, the depolarization of the light in the sam- 
ple, a different dependence of the angle of rotation of 
the light-polarization plane on the thickness of the sam- 
ple, qualitative singularities in circular dichroism, etc. 

In Secs. 1-3 we present a brief derivation of the 
equations that describe the optical properties of mosaic 
CLC, and Secs. 4 and 5 deal with the use of these equa- 
tions for the description of the optical properties of a 
CLC in which light propagates along the optical axis. 

1. FUNDAMENTAL EQUATIONS 

We consider the scattering and passage of light 
through a mosaic CLC sample in the form of a plane- 
parallel plate (see Fig. 1). We assume that the light 
frequency and the wave incidence angle 0 a r e  such that 
the orientations of the individual crystallites making up 
the mosaic sample correspond to Bragg scattering of 
light by them, o r  a r e  close to the Bragg condition. We 
assume also that the dimensions of the individual crys- 
tallites a r e  small enough to make the attenuation and re -  

FIG. 1. Schematic representation of mosaic CLC. 

flection of the wave by diffraction scattering by an in- 
dividual crystallite is small. This, of course, does not 
mean that the attenuation and reflection of the wave by 
the entire sample will also b e  small. Moreover, we a r e  
interested primarily in a situation wherein the corre- 
sponding quantities a r e  not small  for the entire sample, 
meaning under our assumption that the sample consists 
of a very large number of crystallites. 

Just as in the case of ideal CLC, we use the two-wave 
approximation, i. e., we represent the wave field in the 
crystal as  a superposition of two waves: 

E (r) =E'(z) e'*"+Er(z) eik", (1 

where k 0  is the wave vector of the incident wave and kT 
=kO + 7 is the wave vector of the diffracted wave (here T 
is the CLC reciprocal-lattice vector), and the wave 
amplitudes E0 and E? a r e  functions of the penetration 
depth z (z is the coordinate normal to the surface). It 
is important in the following analysis that the field at a 
certain point of the sample or outside the sample is a 
superposition of the fields of the primary wave and of 
the waves that a r e  due to scattering (including multiple 
scattering) by individual crystallites and have random 
phases. The absence of correlation between the phases 
of the scattered waves is due to the random character of 
the deviations of the orientations and positions of the in- 
dividual crystallites in the mosaic crystal from an ideal 
structure. This means that the scattering by the individ- 
ual crystallites is effectively incoherent, and to  solve 
our problem we can change over from equations for the 
fields to equations for quantities that a r e  quadratic in 
the fields of the incident and diffracted waves. This ap- 
proach was developed for the description of the diffrac- 
tion of x rays by mosaic crystals by ~ahariazen,"] who 
obtained a system of two differential equations that con- 
nect the changes of the intensities of the direct and dif- 
fracted waves a t  a certain point with the values of the in- 
tensities at the same point of the sample. 

In the case of passage of light through mosaic CLC, 
the system of corresponding equations does not reduce 
to the equations for the intensities, owing to the complex 
polarization characteristics of light scattering in CLC, 
but includes a l l  possible combinations that a r e  quadratic 
in the amplitudes of the fields (I), i. e., components of 
the polarization tensors J:, = Eq EF, where p = 0, 7; i, k 
=1,2: 

A A 

Explicit expressions for the fourth-rank tensors A, B, 
and e in (2) can be  obtained either within the framework 
of a phenomenological approach, in which case they con- 
tain certain constants, o r  on the basis of a concrete 
model of the mosaic crystal. We shall discuss this 
question later on, and for the time being consider the 
physical meaning of the system (2). 

The meaning of Eqs. (2) is quit? lucid. The first  
equation describes the change of ~ O ~ w i t h  changing coor- 
dinate, consisting of the change of JO because of the 
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Gffraction scattering and is described by the operator 
B', and the change due to scattering from the T direction 
to the zero dirzction and described the operator cm. 
The operator A0 in this equation describes the polariza- 
tion-tensor change due to absorption and birefringence 
of the light. 

The operators 2' and eW are  connected with Bragg 
~cat ter ing~and vanish in its absence. The form of the 
operator A' known from the theory of radiative transfer 
does not depend on the presence o r  absence of Bragg 
scattering. 

The second equation deszribes analogously the change 
of the polarization tensor J '. 

It should be noted that physically the quantities J q ,  
in the system (2) are  not the exact values of quantities 
quadratic in the amplitudes, but a re  values of the cor- 
responding quantities averaged over crystal regions that 
a re  small but larger than the dimensizns of a? individual 
crystallite. We point out that if A, B, C, and J a r e  re-  
garded as  scalars, then the system (2) reduces to the 
equations of ~ahariazen.~']  

In view of the difficulty of finding the explicit form of 
the coefficients in (2) (they depend on the structure and 
on the dimensions of the crystallites, on their shapes, 
on the distribution of their orientations in the sample, 
etc. ) i t  is expedient to regard them a s  phenomenological 
parameters of the theory. It is then possible, using 
general consideration, to establish certain relations be- 
tween the coefficients, so as to decrease the number of 
the parameters of the theory. 

2. COEFFICIENTS OF THE FUNDAMENTAL SYSTEM 

Using the form of the dielectric tensor of the CLC2 
we can determine the tensor form of the operators A, B, 
and e, i. e., write down, apart from the coefficients, the 
corresponding tensors in Eq. (2). 

The dielectric tensor of the CLC is given byc1921 

€3- e6 cos rz €6 sin rz 0 ' 
€6 sin TZ i-c6 ma rz 0 i . + i . e - " z + ~ . e i ~ z )  (3) 

0 0 El 

where F = (cl +c2)/2, 6 = (cl -EZ)/(&~ +EZ), E l ,  ~2 and E, 

=c2 a re  the principal values of the tensor is the CLC 
reciprocal-lattice vector, and p is the pitch of the cho- 
lesteric helix. The Fourier components ElO, ElT, and LT 
of the tensor r̂ are  given by the expressions 

We use for 2 a general expression known from trans- 
port theoryCB1 and valid if the anisotropy of the dielectric 
tensor i s  small: 

Here $6 is the transverse (relative to the wave vector) 
part of the zeroth Fourier component of the dielectric 
tensor, and H =  (E)~/~CO/C is the average wave vector of 
the light in the CLC. 

To find the form of the operator C^rO we make use of 
the fact that the change Ar of the T-th wave as a result 
of the Bragg scattering of the wave E0 can be expressed 
with good accuracy in terms of the amplitude for scatter- 
ing by a single crystallite in the kinematic (Born) ap- 
proximation.4101 We then obtain 

where the integration is over the volume of the crystal- 
lite, ey a r e  the unit vectors of the 0 and r waves; EO 

and a re  the amplitudes of the 0 and T waves. The 
small parameter that determines the applicability of 
expression (6) and restricts the characteristic crystal- 
lite dimension h is the dimensionless quantity 6xh << 1 
(see, e. g. ,Cgl). The amplitude of the diffracted wave 
is much smaller here than that of the incident wave. 

In the approximation considered, the scattering ampli- 
tude is represented in (6) as a product of two factors. 
The tensor quantity F:: is determined by the CLC struc- 
ture and is the analog of the structure amplitude in the 
x-ray scattering. The factor fl  determines the depen- 
dence of the amplitude on the dimensions of the crystal- 
lite, i ts  shape, orientation, and others. It is essential 
for our purposes that fl  is appreciable only if the Bragg 
condition is satisfied (i. e., f l  i s  a function of the fre- 
quency). 

The change of the polarization tensor of the T wave 
a s  a result of the arrival from the zero direction is ob- 
tained in the following manner: 

Therefore, by defining f r  in a way that it contains the 
factors that a r e  immaterial here, we get 

where 1x1~ is a quantity obtained from 1 fl l 2  by aver- 
aging over the crystallites. Analogously we have c:,, 
= H ~ ~ T I ~ P E F ~ .  Thus, the tensor properties of the 
operators cm and C0 are  determined entirely by the 
propezties of the structure amplitude F,,. The opera- 
tors B are  determined similarly in terms of the struc- 
ture amplitude. 

To find B0 i t  is necessary to determine the increment 
to the amplitude of forward scattering by a single crys- 
tallite from the Bragg scattering in the second Born ap- 
proximation. It can be assumed that i t  takes the form 

where f2  is a factor analogous to f, and reflects the de- 
pendence of the increment on the volume, shape, and 
orientation of the crystallite. Thus, after passing 
through a single crystallite the wave amplitude can be 
represented in the form E: = (6*, + f2 FEF::) E:. Hence 

i. e., 
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For @ we obtain in similar manner 

A 

The functions fl and fa in the operators C and in 
(2) are  not indexendent. It follows from the energy 
conservation law that B:#,, =q:,,, whence, using the re-  
lation TZ =%, we get 2 ~ e & =  lf7;I8. It follows there- 
fore that the function f2 is expressed in terms of Iz12, 
since the real and imaginary parts of fa a r e  connected 
by the dispersion relations.c10' 

We have thus determined all the coefficients in Eq. (2) 
accurate to IKle. This quantity, which is a parameter 
of the theory, can be calculated for simplified models in 
explicit form. 

3. MODEL-DEPENDENT CALCULATION OF THE 
COEFFICIENTS 

To get an idea of the form of fi and f2 and their de- 
pendence on the parameters of the mosaic crystal, we 
obtain their expressions in explicit form for a simple 
model. We assume that the crystallites a re  thin plane- 
parallel plates and differ little in their orientations (see 
Fig. 1). For a single crystallite we obtain from Max- 
well's equations and from (1) and (3) the equations for 
EO and C (see, e. g. ,C1ll): 

dE" 6% A - =-i- 6% 
~ ~ E c i -  e-,E', 

d z  4sinO 4 sin 0 
dE' 6 x  6% n e , ~ ~ - i -  E,E'+ ixaE',  
dz  4sinO 4 sin 0 

where the parameter a = ( r  - 2x sinO)/x characterizes 
the deviation from the Bragg condition (in frequency and 
in the incidence angle). Assume that only a wave EO 

with amplitude EO(z). The amplitudes of the waves EO(z 
+h) and r(z) that emerge of the crystallite a r e  deter- 
mined from (12): 

By determiling jo(z +h) and P(z) from (13) and recog- 
nizing that JT(z +h) =0, we obtain the changes of J O  and 
> over the thickness of the crystallite: 

~ l ^ " l h z = - x  u2(or) i-,i,>+f; (a)&,+;-,+I,  (14) 

-AJ . IAZ=X ~ f ,  ( a )  I 2Z,foe^,',  

where 

62 1 - cos ( a n h )  
Ifl(a)l"=gsin'B a"h 3 

1 6' a x h  - sin ( a x h )  (15) 
R e j 2 = - 2 - l j , 1 2 ,  Imfz=-- 

16 sinzf3 a'xh 

We have thus determined the functions I fi l 2  and f2 in a 
simple model. The functions 1 f l  1' and Imfe have the 
meaning of the reflecting and rotatory powers of a CLC 
layer of thickness h. Their dependence on w is shown 

FIG. 2. a) Frequency dependences of the quantities I fi 1 
(dashed) and m2 (solid); b) frequency dependences of Im f2 
(dashed) and ImY2 (solid). 

dashed in Figs. 2a and 2b, where wB = ~ r / 2 ~ " ~ s i n O .  TO 
take into account the presence of the crystallites of 
varying thickness and orientation, i t  i s  necessary to 
average 1z 1' and f2  with allowance for the real distri- 
butions of the crystallite disorientation angles and of 
their thicknesses. The averaging smoothes out the 
functions 1 f1 l2  and Imf2, so  that lKl8 and ImA take ap- 
proximately the forms shown by the solid lines in Figs. 
2a and 2b. 

4. CASE OF NORMAL INCIDENCE 

In the case of normal incidence of light on a CLC it is 
convenient to introduce the circular-polarization unit 
vectors e* and e' (a wave with polarization e+ is diffract- 
ed by a perfect CLC, but a wave with polarization e' is 
not). In terms of these unit vectors we have 

(we do not write here the $T components that will not be 
needed later on). The system (2) breaks up into several 
independent systems for the polarization-tensor compo- 
nents. For J!, and Jil we have 

where ~ r ,  = ~ ~ I K I ' ,  and the subscript 1 pertains to the 
polarization unit vector e* (the subscript 2 pertains to 
e'), i. e., the system (16) describes waves with e* polar- 
ization that undergo diffractive scattering. In the sys- 
tem (16) and the following we take into account the non- 
diffractive attenuation of the light in the mosaic CLC 
(e. g., via scattering by the crystallite boundaries) by 
introducing the linear absorption coefficient p. 

The propagation of waves with circular polarization e' 
is described by the following equations: 

The off-diagonal elements of the polarization tensors 
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satisfy also the non-coupled equations 

To find the polarization tensors of the transmitted 
wave and the wave reflected from the crystal, we must 
add boundary conditions to Eqs. (16)-(18). Namely, on 
thg entrance sy face  of the crystal (at z =0) we put QO(0) 
=Jest, where Jextis the polarization tensor of the wave 
incident on the crystal, and at the exit surface (at z =I) 
we put, since there is no diffracted wave, JT(l) = 0. 

We shall not write out the calculations, but present 
directly the solutions of (16)-(18) with allowance for the 
boundary conditions. 

For the reflected wave we have 

We obtained a natural result: the only reflected com- 
ponent of the entire incident beam is the one with polar- 
ization e*, and the reflected light preserves this polar- 
ization. The reflection coefficient for this polarization 
is simply the coefficient of Jfft  in (19). If the absorp- 
tion is small (i. e., X1 1 << I), then 

We see therefore that the reflection coefficient is appre- 
ciable if p, 1 > 1. The plot of the reflection from a thick 
imperfect crystal can be greatly broadened in compari- 
son with the frequency-dependent width of the function 
pa =4xlz12,  which is determined by the dimensions of 
the crystallites and their angular disorientation. 

For the transmitted wave we have 

It is seen from (21a) and (21b) that, owing to diffrac- 
tive reflection, the intensity of the transmitted wave 
with polarization e* decreases more rapidly with increas- 
ing thickness than the intensity of the wave with e- polar- 
ization, which undergoes only the usual damping. 

Another qualitative distinguishing feature is that the 
transmitted light is, generally speaking, depolarized. 
As can be seen from (21), the degree of depolarization 

P + P ~  Pm,.= (ch All + - .h All) "'exp [ 
I1 

On the other hand, light with circular polarization e* or  
e- does not become depolarized. 

Let us consider by way of example the case of linearly 
polarized incident light for which the polarization tensor 
is given by 

where Iext is the intensity of the incident light (we re-  
call that we use the circular-polarization unit vectors 
as the basis). 

As already noted, the reflected light is circularly po- 
larized, while the light transmitted through the sample 
is in the general case partially (elliptically) polarized. 
The ellipse rotation angle cp at the exit is given by 

R e  J,," sin(4x Im f,1) 
t g  2cp = ---7 = 

I I 'cos (4% Irn j21) ' 

i. e., cp = 2x1 1m3. It i s  seen that rp i s  the sum of the 
angles of rotation by the individual crystallites and i s  
proportional, in contrast to ideal CLC,'~*"' to the crys- 
tal thickness. Thus, 2 x 1mA i s  the rotatory power of 
an imperfect CLC. 

If the absorption coefficient p is small (so that X1 I 
<< I), then simple expressions a re  obtained also for the 
remaining polarization characteristics. For the degree 
of polarization P we have 

P = ( ~ d ~ P + 4 ( i + p d ~ ) ~  exp ( -pd l ) )* / (2+pd l ) ,  

for the ratio p of the polarization-ellipse axes we have 

for the intensity It' of the transmitted light we have 

The thickness dependence of these quantities is clear 
(see Fig. 3): At small thicknesses we have P = 1 and p 
=0, since the incident light is linearly polarized and the 
influence of the crystal is weak. With increasing I, the 
degrees of the polarizations first decrease (because of 
the multiple incoherent scattering) and the transmitted 

of the transmitted light is minimal for a perfectly de- 
fined ~olarization of the incident light (this ~olarization 

a I/,,, 5 10 '5  /'dl 
-- - - - 

depends on the thickness of the sample and i s  deter- FIG. 3. Dependence of the transmission coefficient I = I~ /T '~ ,  
mined by the condition ~ : f  =J&). In this case the emerg- of the degree of polarization P, and of the ratio of the polariza- 
ing light i s  partially linearly polarized and its degree tion-ellipse axes p on the sample thickness for linearly inci- 
of -polarization is dent light. 
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beam becomes partially polarized, but with further in- 
crease of the thickness the degree of polarization again 
tends to unity, since only d polarization passes through 
a very thick crystal. We recall that polarized light 
passing through an ideal crystal experiences no depolar- 
ization whatever. 

5. AlTENUATlON OF LIGHT WITH - 
NONDIFFRACTIVE-POLARIZATION 

It is seen from the foregoing analysis of the case of 
normal incidence that the e+ and 6 circular polarizations 
propagate in the CLC independently, and only the 8 po- 
larization is reflected. In imperfect CLC, however, 
there is present a nondiffractive mechanism for the 
conversion of e+ polarization into d (and vice versa), 
and leads also to a selective attenuation of the light 
with the d polarization. This conversion is produced, 
for example, by optical inhomogeneities of the mosaic 
crystal. The operator f (5) introduced above does not 
take these processes into account and must be modified. 

In the case of normal incidence this means that the 
nonvanishing components of the operator A are, besides 
All,,, A2222, A,,A and A,,,,, also A,,, and A,,,,. Soh- 
ing Eq. (2) with A in this form, we obtain in the case of 
incident e' polarization 

.d Jl,"=JII exp (-)id), 

(we assume for simplicity that Allez =A,,,, = 5 and that 
these terms are  small in comparison with all others). 

In the selective-reflection region we have 5 << pd and 
A2 = p  + 5; outside this region ~ r , e O  and A, = p. Thus, as 
follows from (28), the attenuation of the wave with e' 
polarization should increase as a function of the frequent) 
in the region of the diffraction reflection. Another qual- 
itative manifestation of the optical inhomogeneity of the 
CLC is  the reflected-beam depolarization, but its value 
is small and is of the order of the smaller of the ratios 
S/C I  Or { / ~ l d .  

The parameter 5 in (28) can be found from measure- 
ments of the optical characteristics of the CLC outside 
the selective reflection region. We can use for this 
purpose the fact that the components A,,, and Aall de- 
scribe the depolarization of the direct beam outside the 
Bragg region. For example, the degree of polarization 
of light passing through the sample (if the incident light 
is circularly polarized) is given by the expression 

We note that the results of this section agree ~ i t h ~ ' ~ * " ~  
where selective attenuation of the light with nondiffrac- 
tive polarization has been observed. 

CONCLUSION 

We have considered above the optics of CLC using an 
ideally mosaic crystal as the model. Another case in- 
vestigated in detail is that of a perfect cholesteric struc- 
ture.C4412-1a3 Let us analyze the difference between the 
results given by the two models and the degree of their 

agreement with the realized experimental situations. 
The most substantial differences in the theoretical de- 
ductions a re  observed in the frequency widths of the se- 
lective-reflection regions, and also in the polarization 
characteristics. 

In mosaic CLC, the broadening of the frequency do- 
main of the selective reflection increases with thickness. 
The selective region of a thick crystal i s  larger than 
that of a thin crystal having the same degree of perfec- 
tion, owing to the multiple-scattering processes (20) and 
(21). In ideal CLC the tendency is reversed. 

In a mosaic CLC the specific rotation of the plane of 
polarization is smaller than in an ideal one, and in con- 
trast to the latter it does not depend on the sample thick- 
ness (see (24)). The frequency range of the dispersion 
of the rotatory power is determined in this case by the 
crystallite dimensions and, unlike the reflection region 
it does not change with the crystal thickness. 

A qualitative new phenomenon not observed in perfect 
CLC is the depolarization of light in a mosaic crystal. 
It must be noted that in a mosaic CLC, besides the usual 
beam depolarization due to the inhomogeneities, a de- 
polarization is caused by diffractive scattering [E~s .  
(22) and (25)]. 

It i s  k n o ~ n ~ ' * ~ '  that in the case of propagation along the 
optical axis of an ideal CLC, light of only one circular 
polarization is selectively reflected and attenuated. In 
mosaic CLC, the light with the opposite circular polar- 
ization i s  also subject to selective attenuation '(28). 

As to the question of the model best suitable for the 
description of the experimental data, the answer de- 
pends on the actual organization of the experiment. In 
general, the experimental results correspond to situa- 
tions intermediate between the discussed limiting cases. 
A comparison of the experimental data with the results 
of the discussed models can therefore be used to obtain 
quantitative estimates of the degree of perfection of the 
CLC, for example from the frequency width of the region 
of the selective reflection, or from the depolarization of 
the light. 

A comparison of the present results with measurement 
data shows that the singularities noted by us in the optics 
of mosaic CLC agree with the experimental results. 
Thus, it i s  seen that the experimentally ob- 
served frequency width of the selective reflection is 
larger than the dispersion region of the rotatory power; 
the measured rotatory power turns out to be smaller 
than that of an ideal CLC. In the same papers, a fre- 
quency-dependent (in the selective-reflection region) 
attenuation of light with either polarization was ob- 
served. 

We point out in conclusion that the reported method 
of describing the diffraction of light in mosaic CLC can 
be directly used in the theory of diffraction of other 
types of radiation, such as that of neutrons or  of a s s -  
bauer radiation in mosaic magnetically ordered c r y s w .  

The authors thank R. Ch. Bokun for useful discussions. 
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Photoelectric emf mechanisms governed only by the symmetry of the crystal--by the presence of a polar 
&are proposed. They are based on the asymmetry of the electronic process-their non-invariance to 
spatial reflections. 

PACS numbers: 72.40. + w 

INTRODUCTION 

The photoelectric-emf mechanisms connected with 
the inhomogeneity of crystals and with the non-uniformity 
of their illumination are well known?ll There are, 
however, experimental data indicating that emf is pro- 
duced in homogeneous ferroelectrics that a re  uniformly 
illumir~ated.~*" The existence of photo-induced currents 
is due in this case to the crystal symmetry-the pres- 
ence of a polar axis in the crystalLe1; this effect does not 
exist in the para-phase. The currents observed in short- 
circuited samples are small (jph~10-8-10-8 ~ / c m '  at J - 1 w/cm2), but when isolated crystals are  illuminated 
charge transfer gives rise to blocking fields Eo-10'- 
lo5 V/cm. 

Consider the expansion of the const2t electric current 
in power of the field of the light wave E(o) and the con- 
stant field E: 

Here uik is the intrinsic conductivity of the crystal, yikz, 
is the photoconductivity, and Bik, describes the effect 
considered by us, namely a current in the absence of a 
constant field. If the crystal has a polar axis, then we 
can construct the tensor Bikl: 

and the unit vector e specifies the polar direction of the 
crystal. The quantities a(@), B(o), and y(w) should be 
determined by the microscopic approach. Expression 
(1) for Pi,, is not the most general one, since it does not 
take into account the singularities of the crystal symme- 
try. Photocurrent is  possible if the crystal symmetry 
allows the existence of the tensor Bikz. 

We propose an elementary theory of the effect. This 
theory isbasedonthe asymmetry of the elementary elec- 
tronic processes-their noninvariance to spatial reflec- 
tions. It i s  assumed that the dielectric has in its forbidden 
band an impurity level to depth A, from which the photo- 
excited electrons stem. The electrons in the conduction 
band will be described by the kinetic equation for the 
distribution function fk:  

where c(fk) and Z;(fk) a re  respectively the electron exci- 
tation and recombination rates, while Iimp(fk) and I ih(  fk) 
are  the integrals of the collisions with the impurities 
and the phonons. 

The idea of the effect is the following: Assume that the 
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