
Differentiating (41) with respect to time, we obtain (13), 
thus demonstrating the equivalence of the two approaches. 

In conclusion, we derive a general formula for the 
LQY. We note for this purpose that the general defini- 
tion of the LQY is none other than the Laplace trans- 
form of the function m(t )  =e'f t t ) ,  where p = ril. There- 
fore, using (38), we obtain for the LQY the general ex- 
pression 

In the case of a donor-acceptor dipole-dipole interac- 
tion we have m = 6 and the formulas (42), (39) and (17) 
yield for the LQY the relation 

while Y (T ' )  is given by 

where erf b )  = 1 - a h ) ,  and is the e r ro r  integral.'"] 

We note that wattstl6] solved the equations ofC2] by 
numerical methods. 
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Diffusion near the critical point under conditions of large 
concentration gradients 
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Zh. Eksp. Teor. Fiz. 73, 671680 (August 1977) 

Binary diffusion in a capillary is computed by a perturbation theory method for the case when the mutual- 
diffusion coefficient and the solution density depend on the concentration. The calculation is in agreement 
with experiments performed on d'iwion in a COIAr solution near the critical point for vaporization of 
CO,. It is shown that, at low Ar concentrations, the obtained experimental dependence of the mutual- 
diffusion coefficient on the reduced temperature T can be described with satisfactory accuracy for values 
of T up to 10-'-10-~ by a theory in which the Onsager coefficient (mobility) is regular. 

PACS numbers: 55.10.+ y 

Systematic experimental investigations on diffusion 
near the critical point, which have established a strong 
slowing down of the concentration relaxation processes, 
were begun in the fifties by ~r ichevski?  and his co- 
workers."] An explanation of this slowing down was 
given by Leontovich within the framework of the self- 
consistent field theory for the case when the particle 
mobility is regular at the critical point.c21 

The application of laser techniques to the measure- 
ment of Rayleigh line widths at the end of the sixties 
made it possiblet31 (see also Swinney and Cummin's re-  
view articlet4]) to come close to  the critical point without 

significantly perturbing the system and to discover a new 
competing diffusion mechanism. An interpretation of 
these results has been given in a number of papersb71 on 
the basis of the theory of interacting modes and the 
scaling-law hypothesis. The main result of this inter- 
pretation, in s o  far  as the problem of interest to us here 
is concerned, is that, in a region sufficiently close to 
the critical point, the mutual-diffusion coefficient DI2 
can be represented thus: 

where La and L' are  the singular and regular parts of 
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the Onsager coefficient, C is the concentration, and C( 

is the chemical potential. The first term in (1) is, ac- 
cording to the coupled-mode theory, equal to 

where 71 is the viscosity, E is the correlation length, and 
, k is the Boltzmann constant. According to the fluctua- 

tion theory of second-order phase transitions, the de- 
pendence on temperature of the correlation length and 
the susceptibility i s  as follows"': 

computation of which an expression obtained f o ~  a rare- 
fied gas is used, p [g/cms] is the density, ate [A] is the 
effective diameter for the scattering cross section, 
62$''* is the collision integral, and MI and Me are  the 
molecular weights of the solvent and the admixture. The 
error  in the estimate (9) does not exceed 10% in our 
case. 

Below we describe experiments on the diffusion of 
argon in a binary solution near the critical point of va- 
porization of the C Q  solvent. Let us consider the 
equalization of the concentration in the capillary (the 
one-dimensional case). One end of the capillary is 
sealed, while a constant admixture concentration, C,, 
is maintained at the other end. Let the pressure and here R =kNo, where No is the Avogadro number, 5, is a 
temperature of the gas be kept constant, and let there parameter whose value i s  of the order of the interatomic 
be no gradient. Under these con- distance, a i s  some constant, and T i s  the reduced tem- 
ditions the diffusion equations have the formc2': 

perature. According to the scaling theory of second- 
order phase transitions, the corresponding critical in- X/Bt+vVC=p-% div(pDI2 grad C )  , (10) 
dices have the values v = 0.65 and y = 1. 25.'"' In the ap/at=-div pv, (11) 
self-consistent field theory these critical indices are  
equal to v=O.5 and y=l. D.-YT ( 1  - , . 

AV2+aiAT+a,C ' (12) 

The second term of Eq. (1) describes diffusion in a 
region some distance away from the critical point. Here here v is the mean mass velocity in the gas motion, t is 
we use the self-consistent field theory. This theory, the time, al, a2, and a, a r e  coefficients which can be 
which i s  based on the expansibility into series of the determined from the equation of state obtained in Ref. 9 
thermodynamic quantities of the system in terms of the for the CQ-Ar solution: 
parameters of the system, has certain advantages con- 
nected with its simplicity, and is sufficiently exact for Ap=AC+AiAT+BCAV+BlATAV+ClAV3+DrC2 

+FAT2+ECAT+GATAV2+GFAVZ, 
the description of certain critical phenomena. Accord- 
ing to this theory, near the critical point of the solvent where 
we can obtainLe1 

A-224, A,-1.65, B=-3.97, B,=-0.0176, Ci=-0.000048, 
D,,=L r ( a d a c ) p ,  ., (5 ~ , = 5 8 2 ,  F-0.0076, ~ = t . 6 7 ,  G=O.OOM~,  

G,=0.082, pc=74.0408 bar, V, = 94.0 17 1 cm3 /mole 

(6 
Tc=31.01280 C ,  ai=B1/3Ci=0.122- loa, a2=B/3Ci-0.27. lo5, 

as=-A2/3RTCi-0.14. 10'. 

where AV and AT a re  the deviations of the specific vol- The numerical values of the coefficients in (13) have 
ume and the temperature from the critical values for been obtained for the case when the is ex- 
the pure solvent, pressed in bars, the specific volume in cm3/mole, the 

~,=2(azp/~V~T)cl(~ap/~VS)c, a,-2(azp/aVaC)c/(asp/avr)c (7) temperature in degrees Kelvin, and the concentration in 
a,=-2 (ap/aC),'/RT ( a ' ~ / a V ~ ) ~ .  mole fractions. 

Here the values of the derivatives a re  taken at the criti- we solved the system of equations (10)-(12) by a per- 
cal point of the solvent. turbation-theory method with the use of iterations, the 

F~~ the coefficient L+ near the critical point the fol- concentration distribution along the length of the capil- 

lowing estimates will do: lary at a distance x from the sealed end at the moment 
of time t having in the first approximation in the pertur - 

~ r = b C ( i - C ) / N ~ = C 1 6 ~ ~ r N o  ( 8 )  bation the form 

where here 

b is the mobility of the molecules of the solute relative 2 +- 1 aDi2 
to a coordinate system moving with the mean velocity of x n - ( t ) = { [ , ( a ~ ) p ,  T + ~ ; ; ( ~ ) p , i ]  

the molecules of the solvent, r is the radius of the mole- 
cules of the solute, DL [cm2/sec] is the mutual-diffu- 2n+l 

sion coefficient for a dense gaseous mixture, for the [ (2n+l)'- (2m+2k+2)'] [ (2n+l)'- (2m-2k)*] 
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2 aD, -- - 2n+l 
D,, ( aC ) 1 (2n+ 1)'- (2m+2k+2)'] [(2n+1)" (2m-2k)l))'1 

Denoting by C(t) the mean concentration in the capillary 
up to the time t, we obtain by 'integrating (14) over the 
length of the capillary the expression 

where 

It is immediately evident from these expressions that the 
perturbation series expansion is in the two parameters: 

Near the critical point for vaporization of the solvent, 
these parameters can be large, and can vary consider- 
ably in the course of the diffusion. Indeed, from (13) it 
follows that 

At the critical point for the pure liquid this expression 
has different limits, including infinitely large limits, 
depending on the approach To take account of 
the considerable variation of these parameters in the 
course of the diffusion, we assumed them to be functions 
of Co(t) = U0[1 - A(t)], and computed them from the for - 
mulas (12) and (13) for each moment of time. This case 
corresponds to that approximation in which p and Dl, are  
expanded in power series, but the iterations are per- 
formed not only for the concentration, but also for the 
coefficients of this expansion. Such an iterative proce- 
dure converges significantly more rapidly, and the dis- 
carded terms are equal in order of magnitude to 

which does not exceed 6% in the most unfavorable of the 
considered cases. 

The dependence, computed with the use of the equa- 
tion of state, of the mean concentration on time can be 
compared with the experimentally observed diffusion. 
The construction of the diffusion cell used for the ob- 
servation of such a dependence is shown in Fig. 1. The 
capillary is of length 1 =22 mm and diameter 1 mm. The 
concentration of the gaseous solutions was determined 
with an MI-1305 mass spectrometer. To maintain a con. 
stant pressure in the course of the diffusion and a con- 
stant concentration at the open end of the capillary, the 
ratio of the volume of the capillary to that of the inter- 

FIG. 1. Measuring cell: 1) high-pressure bomb, 2 )  capil- 
lary, 3) internal valve, 4) external valve, 5) silver end pieces, 
6 )  connecting pipe socket for connecting the cell with the inlet 
and filling systems, 7) steel ball for intermixing the gas mix- 
ture, 8) interior volume of bomb, 9) external volume, 10) tef- 
lon packing gland. 

nal cavity of the diffusion bomb was chosen to be large 
(about 2000). The constancy of the temperature was 
ensured by a reliable thermostatic control, a good ther- 
mal conductivity of the capillary walls, and a sufficiently 
small diameter of the capillary. The error made in the 
determination of the concentration was not worse than 
0.002% Ar.  The procedure and errors  a re  described 
in greater detail in Ref. 11. 

The experiment was performed in the following se- 
quence. The internal cavity of the bomb 8 (Fig. 1) was 
filled with a gaseous Ar-CQ mixture of known concen- 
tration C, and density p,. Then the evacuated capillary 
2 was filled with pure CQ, or C Q  diluted to a concen- 
tration of c:,, at a temperature well above the critical 
temperature for CO,, so a s  to preclude the stratification 
of the gas. The gas density in the capillary was chosen 
such as to secure a small pressure excess in the capil- 
lary over the gas pressure in the cavity of the bomb. 
This precluded the suction of the mixture into the capil- 
lary from the bomb cavity at the moment of opening of 
the value 3 at the very beginning of the diffusion process. 
The gas-filled bomb was placed in a thermostat in the 
vertical position, so that the valve 3 was directed up- 
wards to prevent the outflow from the capillary of the 
denser gas. After the attainment of thermal equilibrium 
the valve 3 was opened. This moment was recorded as 
the beginning of the diffusion process. After some time 
(diffusion time t), the valve 3 was opened and the bomb 
was connected to the inlet system of the mass spectrom- 
eter for the determination of the A r  concentration, 
C,,(t), in the capillary. 

For the purpose of increasing the accuracy, and to 
eliminate the extraneous calibrations of the mass spec- 
trometer, the A r  content, Co, in the bomb cavity was 
redetermined immediately after the determination of 
C,,(t) (see Ref. 11). For this purpose, gas was first 
drawn from the cavity 8 into the capillary with the valve 
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t', sec/an2 

FIG. 2.  Dependence of lnA(C) on t8: a) for T =  35" C, pb 
=0 .45  g/cmSs c L = o ,  and Co= 2.06% A r ;  b) for T = 3 1 . 3 "  C, 
pb=0.36 g/cm3, c&=o, c 0 = 4 . 5 5 % A r .  Thecurves 1 a r e  
plots of the solution to the nonlinear Eq. (10);  2) solution of 
the linear Fick equation (Eq. (10) vVC =O); 3) solution of the 
linear Fick equation with the diffusion coefficient (12) in the 
case when AV= const and C = const and a r e  equal to the values 
which they assume at the end of the diffusion process; 4 )  solu- 
tion of the Linear Fick equation with the diffusion coefficient ( 9 )  
and p equal to the initial deasity of the gas mixture in the cap- 
illary; 5 )  solution of the Linear Fick equation with the diffusion 
coefficient (9) for p equal to the gas density, pb, in the bomb; 
the points a r e  experimental points. 

4 closed, and then fed into the inlet system of the mass 
spectrometer for analysis. Such a procedure enabled 
us to determine at the same time the densities of the 
mixtures being analyzed from the pressures produced 
by the test samples in the inlet system, since the gas 
density in the internal cavity of the bomb was known 
beforehand from the accurately measured volume of this 
cavity and the difference between the weights of the filled 
and empty bomb. 

In Fig. 2 we show the dependences of the measured 
mean concentration in the capillary on the time in the 
coordinates 

The curves 1 were constructed from Eq. (16) with allow- 
ance for the dependence of the parameters Ap and m12 
on C,,(t). To give an idea about the magnitude of the 
contribution to the diffusion process from the flow of the 
gas as a whole, a flow which arises during the mixing 
of the gases, we present in Fig. 2 the curves 2. They 
were constructed in the same way as the curves 1, but 
under the condition that V-VC = O  (see Eq. (10)). 

We show in the same figure for comparison the solu- 
tions to Eq. (10) for the case when v VC = O  and the 
density and diffusion coefficient a re  assumed to be con- 
stants. The curves 3 represent the case when D, i s  
determined by Eq. (12) for the case when AV and C are  
constants and are  equal to those values which they as- 
sume at the very end of the diffusion process. Finally, 
the curves 4 and 5 describe the dependences that should 
be obtained in the case when D, i s  computed from Eq. 
(9). In this case the curves 4 were constructed under 
the assumption that the density waa equal to the initial 
gas density, p k ,  in the capillary, while the curves 5 
are  for the case when the density corresponds not to the 
initial, but to the final mean p,,(t) value that it assumes 

PIG. 3 .  Dependence of the logarithm of the ratio of the sum of 
the linear terms to that of the nonlinear terms of the solution 
(17) :  1 )  for  T=35" C ,  pb= 0 . 4 5  g/cm3, c&,= 0 ,  C o = 2 .  06% Ar; 
2 )  for T = 31.3" C ,  p,= 0.366 g/cmS, c:, = 0, CO= 4.55% Ar. 

as  a result of actual diffusion. 

It can be seen from these same figures that, at points 
sufficiently f a r  from the critical point for the pure sol- 
vent, COz, i. e., for T - T, % 4 K and C s 2.06% Ar (see 
Fig. 2a), the computational methods corresponding to 
the curves 1, 2, and 4 give approximately the same 
picture for the diffusion process. However, for depar- 
tures from the critical point equal, for example, to T 
- TcxO. 3 K, C=4.55%, and Ip-pcrI<0.3 g/cmg (see 
Fig. 2b), the solution can in no way be considered to be 
an idea1,solution and, to obtain the correct picture of the 
process, it i s  necessary to allow for the gas streams 
arising from the mixing of the components and for the 
dependence of the diffusion coefficient on concentration. 

Figure 3 shows the dependence ln(1 + A/H) as  a func- 
tion of the time, where A/H i s  the ratio of the linear 
terms of the solution of the diffusion equation to the non- 
linear terms. Since at large times this function varies 
insignificantly, the asymptotic value of D, can be found 
from the limiting slope of the experimental lnA(C) =f(tl) 
curve for t ' - m, the error  being largely determined by 
the accuracy of the concentration measurement. 

In Fig. 4 we show the dependence of the ratio of the 
experimentally measured diffusion coefficient to the val- 
ue computed from Eq. (9) on the reduced temperature 
T =  (T - T,)/T,, where T, i s  the critical temperature of 
the solution in degrees Kelvin. 

Since in the capillary method, in contrast, for exam- 
ple, to the gradientless method of measuring Rayleigh 
line widths, the concentration and the density vary and 

FIG. 4 .  Dependence of the experimentally measured diffusion 
coefficients on the reduced temperature r = ( T  - T , ) / T ,  and the 
approximating functions: the curve 1 was computed from Eq. 
(19) ,  2) from (20)  for C = 4 . 3 4 %  Ar, 3 )  from (21) ,  4 )  from (22) 
for v = 0 . 6 5 ;  +) experimental points corresponding to the DL 
and 7 values computed with p & ,  and C& values; o) experimental 
points computed with p,(t) and C,(t) values. 
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TABLE I. 

do possess gradients in the course of the measurements, 
we give some parameters for the characterization of the 
experiment in Table I. Thus, the diffusion-coefficient 
values given in Fig. 4 a r e  some mean values for Ar- 
CO, solutions with concentrations of 2.1-4.4% Ar and 
densities of 0.4-0.65 g/cm3. In view of the fact that in 
the course of diffusion at a constant temperature the 
critical temperature of the solution varies owing to the 
variation of the concentration, the Dl, values pertain 
also to some mean reduced temperature. A s  was found 
earlier,cg1 for C0,-Ar solutions the decrease of T, with 
increasing concentration is linear, and constitutes ap- 
proximately 0.8" per 1% Ar. 

The obtained temperature dependence of Dl, (the small  
circles in Figs. 4 and 5) can be approximated by a func- 
tion of the type 

where v = 0.7 and A. = 8 (see Fig. 4, curve I), the v and 
A, values having been chosen from the condition that the 
mean square e r ro r  functional have i ts  minimum value. 
However, this dependence can also be approximated 
within the limits of the spread by the function following 
from the self-consistent field theory in the case of a 
regular mobility: 

; 1 2;) 1 ("1 1 (A) I ro.io 9 / ~ , . i o x  $2 0 ='k t 

Temper- 

ature of 
rnent, C 

where V =  V,  =91 cm3/mol and T, =299.287 K is the criti- 
cal temperature of the solution: see  the curve 2 in Fig. 
4. This curve was drawn for a solution of concentration 
4.34% Ar and with the al and a, values given in Eq. (13)- 

1 c 1 t ,  s J C  1 
40 
37 
35 
33 
31.5 
29.5 
28;3 
27.8 

If we assume that the Eqs. (4), (5), and (9) a r e  appli- 
cable, then the function approximating the experimental 
dependence will be representable in the form 

0.51 
0.48 
0.56 
0.49 
0.62 
0.65 
0.45 
0.47 

4.850 
4.850 
4.850 
4.850 
4.850 
4.850 
4.850 
4.850 

er.  In Fig. 5 the dependences (19)-(22) a r e  shown on a 
logarithmic scale. It can be seen from this figure that 
a dependence of the type (22) becomes of the same order 
of magnitude a s  the dependence (20) only in the region 
r" lom4 and exceeds i t  only when r <  10'~. 

0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 

0,786 
0.815 
0.557 
0.533 
0.345 
0.169 
0.116 
0.035 

It is interesting to note that the dependence (20) goes 
over into the linear, rapidly-decreasing dependence Dl,/ 
D!,- r at temperatures r = a 3  C/al T,, i. e., this transi- 
tion depends on the concentration, and occurs earlier at 
higher, than at lower, concentrations. In the coupled- 
mode theory Eq. (2) does not depend on the concentra- 
tion. Having this in view, let us now compare the mag- 
nitudes of the f i rs t  and second terms of Eq. (1) as we 
approach the critical point of the solution with respect 
to temperature. It i s  clear that the temperature at 
which the first  term becomes greater than the more rap- 
idly decreasing second term also depends on the concen- 
tration. Thus, at sufficiently high concentrations the 
region, 10'~ < T< lo-', of singular behavior of the Onsager 
coefficient characterizing the diffusion near the critical 
point for vaporization of the solution turns out to be ex- 
perimentally accessible. 

0.41 
0.43 
0.42 
0.42 
0.47 
0.44 
0.42 
0.43 

2.135 
2 .5 i l  
2.071 
3.318 
2.199 
3.496 
4.083 
4.194 

Let us now estimate the temperature region where 
the second term of Eq. (1) assumes the asymptotic form 
rY, using the isomorphism theory of critical phenom- 
ena''] : 

3.50 
2.62 
1.83 
1.50 
0.711 
0.395 
0.149 
0.050 

0.978 
0,903 
0.743 
0.636 
0.455 
0.249 
0.124 
0.039 

4,579 
4.418 
4.342 
4.471 
3.822 
4.343 
4.547 
4.549 

8653 
6270 
8990 
7313 
7419 
16264 
21082 
53990 

where A z 5 . 6  i s  the coefficient attached to the singular 
part  of the specific heat'121 

4.14 
3.13 
2.44 
1.81 
1.14 
0.615 
0.269 
0.159 

4.85 
4.74 
4.33 
3.25 
1.83 
0.953 
0.688 
0.213 

The first  term of Eq. (2) with a singularity in the On- 

(see Fig. 4, curve 3, which was drawn with the fitting 
coefficient a' =aRT/C =6.9X 10". 

Let us now estimate the temperature dependence of the 
diffusion coefficient under the assumption that the cou- 
pled-mode theory i s  applicable. In this case, taking 
(2), (3), (8), and (9) into account, we obtain 

For ro(il = 1 and v =O. 65 this dependence is represented 
by the curve 4 in Fig. 4. Actually, yo&'< 1, and the 
deviation from the experimental data will be  even great- 

0 - 

FIG. 5. Same as in Fig. 4, 
but on a logarithmic scale. 
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sager coefficient should in our case be taken into ac- 
count a t  temperatures 

Thus, the estimate obtained for the reduced tempera- 
tures on the basis of the isomorphism theory of critical 
phenomena agrees with the characteristic temperatures 
shown in Fig. 5. 
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A theory of the optical properties of imperfect (mosaic) cholesteric liquid crystals (CLC) is developed. The 
optical characteristics are determined on the basis of the transport equations for the light-polarization 
tensor. The use of these equations is made possible by the statistical character of the imperfections of the 
mosaic CLC. The case of light propagation along the optical axis is considered in detail. It is shown that 
the optics of imperfect CLC is subject to qualitative singularities in comparison with the case of ideal 
CLC. These are, in particular, the polarization of the light, the broadening of the frequency regions of 
the selective reflection, the independence of the specific rotatory power on the sample thickness, and the 
selective attenuation of light circularly polarized in either direction. It is noted that the equations obtained 
in the paper for the polarization tensor can be useful for a description of the scattering of radiation of 
different types from imperfect crystals. 

PACS numbers: 78.20.Ek 

INTRODUCTION 

Many experimental and theoretical studies have been 
made of the optics of cholesteric liquid crystals (CLC) 
(see, e. g. ,"-"). It has been well established that the 
unusual character of the optical properties of CLC is 
due to diffraction of light by their periodic structure. 
There is, however, a wide gap between the theoretical 
and experimental papers. Whereas in experiment one 
deals usually with crystals that a re  non-ideal to a 
greater or  lesser degree, the theoretical papers consid- 
e r  almost exclusively the optics of an ideal planar cho- 
lesteric structure. It appears that the only theoretical 
relation used for the interpretation of measurements 
made on non-ideal CLC is the improved Bragg formu- 
la,cs~41 which connects the period of the cholesteric helix 

with the wave length of the diffraction-reflected light 
and with the angles of incidence and reflection relative 
to the CLC surface. 

Yet there a r e  many problems in the optics of imper- 
fect cholesteric crystals, of importance both from the 
experimental and the fundamental points of view, which 
have not been dealt with theoretically. Foremost among 
them a re  the dependence of the light reflection and trans- 
mission coefficients on the degree of perfection of the 
cholesteric samples, the influence of the imperfections 
on the polarization characteristics of the light and on the 
rotation of the plane of polarization, and others. Natu- 
rally, in these cases the phenomena a re  likewise deter- 
mined by the diffraction of the light in the CLC, but to 
answer the foregoing questions it is necessary in most 
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