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A theory is developed of luminescence quenching in the presence of migration of the excitations over the 
donors. The kinetics of the luminescence damping is determined in the entire time scale. An expression is 
obtained for the rate of luminescence quenching for an arbitrary multipole interaction of the donors with 
the acceptors. It is shown that the Vavilov-Frank phenomenological theory is obtained from the theory 
developed in this paper, and the microscopic meaning of the parameters of the latter is explained. The 
microscopic meaning of the parameter A introduced earlier to explain the experimental data of Voron'ko 
et al. (Sov. Phys. JETP 44, 251, 1976) is explained. 

PACS numbers: 78.60. - b 

The study of the migration of electronic excitation over 
impurities of the same kind is of interest both when it 
comes to ascertaining the physical nature of the interac- 
tions that lead to transfer of the energy of excitations, 
and for determining more accurately the generating 
characteristics of laser materials. 

It was shown theoretically and experimentally in a 
preceding paperc11 that the data on excitation migration 
can be extracted directly from the time dependence of 
the luminescence. This deduction was based on a con- 
cept introduced in that reference, namely the hopping 
mechanism of luminescence quenching. The present 
paper is devoted to a development of the theory of the 
hopping mechanism of luminescence quenching, on the 
basis of a previously suggested In this mod- 
el, we consider a regular lattice of donors with an aver- 
age distance L = (3/4nnD)1'3 between them, where nD is 
the donor density in the sample. Although the actual ar- 
rangement of the donors in the sample is irregular, the 
principal role for excitation migration over the donors 
is  played by the most probable configurations of the do- 
nors, and it is these which form a lattice with distance 
L between donors. In fact, analysis of a fluctuation in 
which two donors have turned out to be close to each 
other shows that the rapid smearing of the excitation 
over this pair gives grounds for regarding this pair as 
an excited dimer. On the other hand, further migration 
of the excitation from such a dimer to the remaining en- 
vironment takes place within a time equal to the time of 
transfer of the excitation over the average distance L. 
The analysis of triple fluctuations and those of higher 
order is analogous. It is these considerations which 
justify this model. 

The approach developed in the present paper, based 
on expansion in the parameter nAR;< I, where n~ is the 
acceptor density and R, is  the radius of the effective 
black sphere inside of which the excitations are certainly 
annihilated. A s  shown in.the Appendix, the smallness 
of this parameter corresponds to the possibility of the 
condition A rO< 1 of Bushtern's paper.ce1 Smallness of 
the parameter nAR; has made it possible to obtain an 
exact solution for the kinetics of luminescence quenching 
over the entire time scale. A s  to the temporal kinetics, 

which was considered by ~ a k u n , ~ ~ ~  it is valid only at t/ro 
<< 1, where r0 is the time required to move the excitation 
over a distance L, and cannot be extrapolated to the 
times t >> ro which are of greatest interest in experiment. 
In the subsequent analysis of the results of the present 
paper are advanced arguments that confirm this state- 
ment. 

Within the framework of the aforementioned model, 
expressions are obtained for the quenching rate for 
an arbitrary muitipole interaction of donors with accep- 
tors; these expressions agree with my earlier re- 
s u l t ~ . ~ ' ~  An expression is  obtained for the luminescence 
quantum yield in various limiting situations. It i s  shown 
that the Vavilov-Frank phenomenological theodS1 is  
obtained in natural fashion from the present theory. 
Criteria are obtained for the applicability of the Vavilov- 
Frank theory, and an interpretation of the microscopic 
meaning of the parameters of the latter is  presented. 
An exact analysis of the kinetic yields an expression for 
the parameter A, which was empirically introduced by 
Voron'ko e t  ~ 1 . ~ ~ ~  to account for the experimental data, 
and a microscopic interpretation of this parameter is 
given. A comparison with Burshte~n's approachQ1 is  
given in the Appendix. 

The problem of the effect of donor and acceptor mo- 
tion on the time dependence of luminescence damping 
was considered in a number of There is a 
certain similarity between the problems solved in these 
papers and our problem. There are, however, also 
substantial differences. The point is that excitation mi- 
gration over donors that a re  contained in a solid matrix 
are not always described by a diffusion equation, so that 
it is necessary to solve the complete kinetic equation 
for the migration of the excitations over the donors. 

We consider the quenching of the excitation by accep- 
tors in the presence of excitation migration over the 
donors. Let the probability of hopping from a donor to 
an acceptor per unit time be W(lr I), where Ir 1 is  the 
distance between the donor on which the excitation is 
located and the acceptor. The main parameter that de- 
termines the physical picture of the quenching is R ,  and 
determines the dimension of that region of space around 
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the acceptor, within which the annihilation of the exci- 
tation is certain to take place. Accordingly, the param- 
eter K, can be estimated from the condition W(Rw)ro-1, 
where ro is the time of sojourn of the excitation within a 
sphere of radius R,. Depending on the ratio of R, to the 
average distance L = (3/4~D)1'9 between the donors, 
where n ~ ,  is the donor density in the sample, the excita- 
tion can pass through the region of radius R, via many 
hops-the quasidiffusion limit. This limiting case cor- 
responds to the condition L <<R, or as a result of a sin- 
gle hop-to the hopping mechanism of 
This mechanism is realized under the condition L >> R,. 

We confine ourselves in this paper to the hopping 
mechanism. In this case we can make some estimates 
even from simple physical considerations. If the prob- 
ability of hopping from a donor to a donor is K(Y) = CDD/ 
rs, and the corresponding probability for donor-accep- 
tor hopping is  W(Y) = CDJym, then the time of sojourn of 
the excitation inside a sphere of radius R, is of the or- 
der of 7,-K(L)", ~ ~ - c d , n ~ ' ~ .  From this and from the 
condition W(R,)ro- 1 we obtain an estimate for R,: 

From the condition of the realization of the hopping 
mechanism we obtain a lower bound on the donors at s 
>m: 

and an inequality that serves as  the upper bound of the 
donor density, at s < m : 

When the multipolarities are  equal, s =m, the condition 
for the realization of the hopping mechanism is inde- 
pendent of the donor density: 

It should be noted that at s = m  =6 the hopping mecha- 
nism has already been observed in neodymium com- 
pounds.cl*lO1 The case of higher multipolarities is pos- 
sibly also realized in rare-earth compounds.E1l'lsl 

In analogy withc101, we can obtain for the probability 
m(t) that the excitation will not decay by the instant of 
time t the relation 

m ( t )  =exp{-t/.r,-E ( t ) } ,  

(5) 

where the function f(r, t) satisfies the equation 

Formulas (5) and (6) are  similar to the corresponding 
formulas ofCg1. The difference lies in the more general 
equations satisfied by the function f (r, t). From the re- 
lation (5), differentiating ~ ( t )  with respect to time and 
using (6), we obtain 

This relation is  exceedingly useful, since the essential 
region in the integral (7), owing to the rapid decrease 
of W(r) at large Y, i s  of the order of R,, thus showing 
that to obtain the instantaneous rate of luminescence 
quenching W(t) it is necessary to know the exact behavior 
of the function f (r, t) only in a region on the order of R, 
around the acceptor. 

We call attention to the fact that the third term in the 
right-hand side of (6) has the meaning of the flux to the 
point r from outside of R,, i. e., from distances on the 
order of L >> R,, where the perturbing effect of absorp- 
tion by an acceptor does not manifest itself, since the 
flux is  independent of time. A s  a result, Eq. (6) re- 
duces to 

under the condition f (r, 0) = 1, where 

and f '(r) i s  the stationary solution of Eq. (6). The solu- 
tion of (8) is 

We write down the equation for f '(r) in a form more 
useful for future use 

The function fb(r) has a characteristic dimension R,, 
and at r >> R, we have f '(r) = 1. Since the summation in 
(9) is over distances on the order of L and larger, and 
since L >> R,, we get accurate to terms of the order of 
nDRL<<l 

Substituting (12) in (ll), using (10) and (7), and carry- 
ing the corresponding integrations, we obtain for the 
instantaneous luminescence quenching rate 

subject to the initial condition f (r,, 0) = 1. Here r0 is  the 
(I 

most probable donor-donor hopping rate, 72 is the Q ( t ) = n A  J d r { l - e x p [ - r ~ ( r )  I ) .  (14) 

proper rate of damping of the donor luminescence with- 
out the presence of acceptors. The summation is  over Formulas (13) and (14) settle the question of the kinetics 
the coordinates of the donors. of luminescence quenching. 
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At t>> r0 it is easy to obtain an asymptotic formula for 
the quenching rate: 

Formula (15) was first obtained int1' for the donor-ac- 
ceptor dipole interaction. This formu* has a simple 
physical interpretation. The quantity Q(7) has the mean- 
ing of the instantaneous rate of the f i r s t e r  decay. At  
large times, when mixing of the e~citations takes place, 
the quenching proceeds at a rate Q(7) within the time 
of sojurn 7 of the excitation in a sphere of radius R,. 
Since the sojourn times a re  subject to a scatter with a 
Poisson distribution,. the resultant quenching rate is ob- 
tained by averaging Q(7) over this time scatter. 

For multipole interaction, expressions (13) and (14) 
yield 

(16) 
where 

is the incomplete gamma-function,c14' Q(t) satisfies the 
relation 

and a is  given by the formula 

where n~ is the density of the acceptors in the sample 
and r(x) is the Euler gamma functi~n.~"' If the donor- 
acceptor interaction i s  dipole-dipole, then putting m =6 
in (16) we readily obtain 

Here 

is  the probability integral.'"' 

From (16) and (5) we readily obtain the asymptotic 
behavior of the kinetics of the luminescence damping at 
times much longer than the time r0 of a single hop: 

where 

and A satisfies the following relation: 

At t << r0 expressions (16), (I?), and (5) yield for the 
damping kinetics the relation 

The second term in the exponential describes the well 
known f i r s t e r  law of luminescence quenching. The 
third term describes the correction to the Fijrster law 
for the presence of excitation migration over the donors. 

As already mentioned in the interaction, the damping 
kinetics obtained by ~ a k u n ~ ~ '  must be interpreted in the 
same spirit. Thus, the formal expansion in the donor 
density n~ used incs' is in effect an expansion in the 
small parameter nD(cDD t)'Ia = (t/r0)'IS. Therefore the 
second term in Sakun's formula is none other than a 
small correction to the FGrster law of luminescence 
damping, necessitated by the presence of excitation mi- 
gration over the donors. It should be noted that this 
correction, as  obtained in the present paper, has a 
somewhat different time dependence than the analogous 
correction in Sakun's paper.cs' The apparent cause of 
this difference i s  that Sakun considered a random dis- 
tribution of the donors. It is precisely the unsubstan- 
tiated extrapolation of this correction to times t >> r0 
which led to Sakun's statementcs1 that the kinetics of the 
quenching process is  not exponential at large times t 
>> r0 if the multipolarity of the interaction is higher than 
dipole-dipole. A s  shown earlier,c41 at times t >> ro the 
quenching process always becomes exponential. The 
asymptotic quenching rate gS, however, as seen from 
the results inc4', is  not analytic in the donor density n ~ ,  
and therefore this result cannot be obtained by expan- 
sion in powers of n ~ ,  as proposed by ~ a k u n . ~ ~ '  The same 
conclusion is reached also by an analysis of the diagrams 
not accounted for oncs1, whi@ are  divergent. We note 
that the result obtained for W, inc4' was repeated in a 
later study .'15' 

Although in the case of dipole-dipole interaction the 
already mentioned correction obtained by ~ a k u n ~ ~ '  for 
the Farster law depends on t lineariy and on CDA, CDD, 
n ~ ,  and n~ in the same mgner  as W,, this correction 
cannot be identified with WS by virtue of the already men- 
tioned restriction t << rO. The numerical coefficients in 
this correction and of wS are, as expected, different. 
Therefore the agreement between the dependences of 
this correction and on the parameters must be re- 
garded as  fortuitous and connected with the dimension- 
ality relation. It should be noted that the luminescence- 
damping character described by (20) was observed in 
experiment.c81 

Formula (22) reveals the microscopic meaning of the 
parameter 4 In fact, it is easily seen that 

where R ,  is the radius of the effective black sphere in- 
side which the quenching is certain to take place. R: 
satisfies the relation 
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Therefore the factor em* in (20) has the meaning of the 
number of acceptors that do not fall in the instantaneous 
quenching volume, which was first introduced phenom- 
enologically in quenching theory by Vavilov. 

Formula (21) also has a simple physical meaning, 
which manifests itself most clearly when a somewhat 
different form is used for (21): 

Formula (26) has the meaning of the number excitations 
that move at a frequency l/ro and land in a unit time in 
the volume of the effective black sphere. 

Since the experiment is frequently performed with 
stationary illumination of the sample and the measured 
quantity is the luminescence quantum yield (LQY), it is 
of interest to obtain the LQY within the framework of 
the hopping mechanism of quenching. The correct ex- 
pression for the LQY q is 

1 " t 
q =- exp ~ ( t )  dt. 

D 1 
The behavior of the LQY as defined by formula (27) and 
by (16) and (17) is different in the three limiting situa- 
tions a), b), and c), which differ from one another by 
the different relations between the parameters nARL 
and TD/TO. 

Situation a) corresponds to two cases: 

In case I), expanding &(t) under the integral sign in (27) 
in powers of l/rO, and also in powers of Q(rD), we ob- 
tain for the LQY the expression 

In case 2), just as in I), expanding ~ ( t )  in powers of 1/70, 
we obtain for the LQY the formula 

where q, is the LQY in the case when there is no migra- 
tion, and is given by 

The situation b) corresponds to the following two condi- 
tions: 

In this situation, the proper damping time of the lumi- 
nescence is much longer than the time T,, of a single hop. 
Therefore, taking the second condition into account, the 
LQY is determined by the asymptotic kinetics (20) at t 
>> r,: 

Expression (33) for the LQY i s  the known formula of 
the Vavilov-Frank phenomenological theory,c51 where, 
however, formulas (21) and (22) explain the microscyic 
meaning of the phenomenological parameters A and W, 
and yield the connection between these parameters and 
the most probable time r0 of one hop, and also with the 
parameter CDA that characterizes the force of the inter- 
action of the donor with the acceptor. 

The remaining situation c) is  realized under two con- 
ditions: 

We note that in situation c) the relation between rD and 
r0 can be arbitrary. In this situation, expanding the ex- 
ponential under the integral sign in (27) in powers of 
E (t), we obtain 

Formulas (29), (30), (33), and (35) settle the question 
of the LQY. We note in conclusion that these formulas 
show that the LQY depends substantially on the donor- 
donor hopping time ro. By measuring the LQY we can 
therefore obtain 70, and accordingly the parameter CDD 
that characterize the donor-donor interaction force. 

APPENDIX 

A s  an Appendix we compare the approach of"] with 
the present approach and obtain a general expression 
for the LQY at arbitrary ratios of the parameters. InCz1 

the value of m (t) satisfies the integral relation 

where N(t) describes the quasistatic decay without al- 
lowance for migration, and is  equal to 

Taking the Laplace transform of (36), we get 

We take the logarithm of (36) and expand the quantity 
E (t) = - ln m (t) in powers of the density nA. Confining 
ourselves to the first-order approximation, we get 

Changing the order of the integration and evaluating the 
integrals, we obtain for E (t) the relation 
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Differentiating (41) with respect to time, we obtain (13), 
thus demonstrating the equivalence of the two approaches. 

In conclusion, we derive a general formula for the 
LQY. We note for this purpose that the general defini- 
tion of the LQY is none other than the Laplace trans- 
form of the function m(t )  =e'f t t ) ,  where p = ril. There- 
fore, using (38), we obtain for the LQY the general ex- 
pression 

In the case of a donor-acceptor dipole-dipole interac- 
tion we have m = 6 and the formulas (42), (39) and (17) 
yield for the LQY the relation 

while Y (T ' )  is given by 

where erf b )  = 1 - a h ) ,  and is the e r ro r  integral.'"] 

We note that wattstl6] solved the equations ofC2] by 
numerical methods. 
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Binary diffusion in a capillary is computed by a perturbation theory method for the case when the mutual- 
diffusion coefficient and the solution density depend on the concentration. The calculation is in agreement 
with experiments performed on d'iwion in a COIAr solution near the critical point for vaporization of 
CO,. It is shown that, at low Ar concentrations, the obtained experimental dependence of the mutual- 
diffusion coefficient on the reduced temperature T can be described with satisfactory accuracy for values 
of T up to 10-'-10-~ by a theory in which the Onsager coefficient (mobility) is regular. 

PACS numbers: 55.10.+ y 

Systematic experimental investigations on diffusion 
near the critical point, which have established a strong 
slowing down of the concentration relaxation processes, 
were begun in the fifties by ~r ichevski?  and his co- 
workers."] An explanation of this slowing down was 
given by Leontovich within the framework of the self- 
consistent field theory for the case when the particle 
mobility is regular at the critical point.c21 

The application of laser techniques to the measure- 
ment of Rayleigh line widths at the end of the sixties 
made it possiblet31 (see also Swinney and Cummin's re-  
view articlet4]) to come close to  the critical point without 

significantly perturbing the system and to discover a new 
competing diffusion mechanism. An interpretation of 
these results has been given in a number of papersb71 on 
the basis of the theory of interacting modes and the 
scaling-law hypothesis. The main result of this inter- 
pretation, in s o  far  as the problem of interest to us here 
is concerned, is that, in a region sufficiently close to 
the critical point, the mutual-diffusion coefficient DI2 
can be represented thus: 

where La and L' are  the singular and regular parts of 
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