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An exact expression is found for the density of energy states in a one-dimensional semiconductor having a 
narrow forbidden band in the presence of impurities. An equation of the Dirac type with a random 
Gaussian potential is chosen as a mathematical model for the description of such a system. It is shown 
that at low energies the density of states has the asymptotic form p(E)- E a where the exponent a is a 
function of the impurity concentration. This dependence is used to explain the behavior of the 
paramagnetic susceptibility x(T)  at low temperatures in organic crystals of the NMP-TCNQ type. 

PACS numbers: 71.20. +c, 71.55. -i, 75.30.Cr 

INTRODUCTION 

The problem of the description of the energy spectrum 
in quantum one-dimensional (and quasi-one-dimensional) 
systems containing impurities is a timely problem. 
First  of all because of the fact that even a small viola- 
tion of strict  periodicity in the one-dimensional case 
leads to an abrupt change in the nature of the system's 
spectrum, leads to localization of all eigenstates,c1*21 
leads to the vanishing of the system's static conductiv- 
ity,LS961 and s o  forth. In this article we have investi- 
gated the energy spectrum of a system in the situation 
when the gap between two bands in a one-dimensional 
semiconductor is comparable in magnitude with a ran- 
dom field having a correlation function of the white-noise 
type. If the chemical potential of the system unperturbed 
by the random field is located in the middle of the for- 

1. FORMULATION OF THE PROBLEM AND 
DERIVATION OF THE FUNDAMENTAL EQUATIONS 

It is well known that a semiconductor with a narrow 
forbidden band can be described by an equation of the 
Dirac typec8] 

where and Q2 represent the amplitudes of particles 1 
and 2 moving to the right and to the left, A(x) is the po- 
tential for the interaction between particles l and 2. 
The functions and &(x) satisfy the periodic boundary 
condition: 

bidden band (this case occurs for example when the ap- $, (0) =$, ( L ) ,  $, (0) = $ * ( L ) .  
pearance of the gap is associated with the Peierls tran- 

(2 

sition in a one-dimensional lattice), the density of ener- In our case A(x) will be a random function of the form 
gy states in the forbidden band determines such thermo- 

A (2) = A o f  5 ( X ) ,  
dynamic characteristics at low temperatures as the 

(3 1 
thermal conductivity, the magnetic susceptibility, etc. where A. is a constant and [(x) is a random field with 
This connection is traced in detail in Ref. 7. correlation function (( . . .) denotes the operation of sta- 
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tistical averaging) 

It is necessary to solve Eq. (1) over the interval (0, L) 
with the periodic boundary conditions (2). Instead of 
solving the system (1) for two complex functions z,bl and 
&, let us reduce (1) to a system of equations for two 
real  functions. For this purpose we note that for any 
solution (I),, of Eq. (I), a solution (I) t, I)  fl exists with 
the same energy E. Let us form the sum and difference 
of these solutions: 

It is obvious that the eigenfunctions (5) correspond to 
the same energy E. Let us introduce the new functions 

By substituting (6) into Eq. (5) and then into Eq. (1) we 
obtain the following system of equations for the functions 
f1 andfe: 

The boundary conditions (8) lead to the spectrum 

Let us introduce the function z k ) :  

From Eq. (9) we find that for [(x) = 0  

1 - ( ) " ' t g [ ( ~ ~ - A ~ ~ ) x ] ,  E s A .  
z ( x )  = (12) 1 - ( ) ' h t h  ( A - ) ~ x ,  E i A o .  

From Eqs. (8)-(10) and (12) it follows that the oscilla- 
tion theorem is valid in the case [(x) =0: the number of 
the system levels in the energy interval (0, E) is equal 
to the number of poles of the function z(x) in the segment 
(0, L). It is found that the theorem remains valid if the 
field [(x) satisfies conditions (4) and as the system length 
L - -. The proof i s  given in the Appendix. 

Thus, to calculate the number of levels for the oper- 
ator (7) i t  is sufficient to count the number of poles of 
the function z(x). From Eqs. (7), (a), and (11) i t  fol- 
lows that z (x) satisfies the equation 

-%= - ( E + A )  j,, 
dx 

Exactly the same system of equations is obtained for cp, 
and cp,. 

Since the equations for (f,, fz) and (ql, p2) coincide, 
this implies that the spectra of the operators (1) and (7) 
a re  identical. For this reason it  is sufficient to inves- 
tigate the solution of the system (7). It follows from 
Eqs. (7) that every solution ( fl, f,) with energy E has a 
corresponding solution ( f2, f,) with energy - E, that is, 
the density of levels p(E) is a symmetric function with 
respect to the point E =O. This property allows us to 
confine our attention to positive energies E>O in the de- 
termination of p(E). Before proceeding to  the derivation 
of the fundamental equations, we note that the density of 
levels per unit length p(E) does not depend on the bound- 
ary conditions a s  the system's length L - *. Taking 
this property into consideration, we replace the periodic 
boundary conditions (2) by the following boundary condi- 
tions at the originu : 

One can easily verify that the operator (7) with condition 
(8) is Hermitian. Thus, the problem of determining the 
density of levels p(E) of the system (1) reduces to find- 
ing the density of the spectrum of Eqs. (7)with the bound- 
ary conditions (8). 

First  let us consider the case when the field [ ( x )  =O.  
In this case the solution of the system (7) corresponding 
to positive energy (as mentioned above, i t  is sufficient 
to consider only E>O) has the form 

The choice of the initial condition z (0) = - m and not z(0) 
= +- is dictated by the requirement for agreement with 
the case ((x) =O. 

The function z (x) is a functional of the field [(x) and 
is therefore a random function. Its value a t  the point x 
is arandom quantity whose density distribution is deter- 
mined by the relationship 

The probability density P(z, x) satisfies the equation 

The derivation of Eq. (15) utilizes the technique dis- 
cussed in Refs. 9 and 10. This technique is based on the 
causality of Eq. (13), the correlation properties (4) of 
the field [ ( x ) ,  and on the assumption concerning i ts  
Gaussian nature. The conditions enumerated here a re  
assumed to be satisfied everywhere below. 

Let us express the average number IIL(E) of poles of 
the function z (x )  in terms of the density P(z, x )  and its  
derivatives. IIL(E) is given by 

In Eq. (16) we have substituted dz/dx in place of Idz/dx 1. 
The reason is that the derivative (dz/dx) I,, is always 
positive as X - (see the Appendix). Substituting (13) 
into (16) we find 
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L 

n L ( E )  = lim {[ ( E - A D ) +  (E+Ao)h21 d x ( a ( z ( x ) - - h ) )  
A+- 

0 

Taking (4) and the Gaussian nature of the process t(x) 
into consideration, formula (17) can be rewritten in the 
following form: 

L 

n L ( E ) =  lirn { [E-Ao+(E+A8)12] ~ P ( A ,  x ) d x  
1- .. 

0 

The Gaussian nature of the field [(x) was utilized in the 
transition from Eq. (17) to Eq. (la), this property being 
the one which permitted the application of relationship 
(10) 

The causality of Eq. (13) was also taken into consider- 
ation: 

-- Dz(z)  - O  for x < y .  
D E ( Y )  

Taking the functional derivative of both sides of Eq. 
(13), we find 

-= Dz (%) z2 ( x )  -1. 
D t  ( z )  

Substituting #is expression into formula (18) we obtain 

L 

II.(E) = lirn ( [ E - A o + ( E + A Q )  A'] I P d .  x ) d x  
A- - 

0 

In order to transform formula (19) into a more con- 
venient form, we note that a s  X-- the solution P(z, x) 
of Eq. (15) goes over into the function P(z) which is the 
solution of a stationary equation of the following form: 

with the boundary condition 

and the normalization condition 

The choice of the boundary condition in the form (21) is 
explained in the Appendix. Taking Eq. (20) into consid- 
eration, from (19) we obtain the following expression 
for the number of poles per unit length N(E) =II,(E) L" 
as L - m :  

d 
N ( E ) =  lirn { ( E + A . ) Z ~ P ~ . ) - D ( Z ~ - I ) - [  ( z 2 - 1 ) p ( z )  I } .  (23) 

,+- az  

Thus, in order to obtain the distribution function for the 
system's levels i t  is necessary to solve Eq. (20) with 
boundary conditions (21) and (22) and then evaluate the 
limit (23). 

2. THE SOLUTION OF THE FUNDAMENTAL 
EQUATIONS AND THE CALCULATION OF THE 
DlSTRlBUTlON FUNCTION N(E) 

By integrating Eq. (20) once we obtain 

where 

The constant C(E) in Eq. (24) is chosen such that condi- 
tion (21) is satisfied. The solution of Eq. (24) satisfying 
conditions (21) and (22) has the form 

where the function f (z) is given by 

(B(x) is the usual 8-function). 

The function F ( y ,  z )  i s  determined by the expression 

and the constant Co in Eq. (28) is given by 

The quantity C(E) in Eq. (24) is connected with the con- 
stant Co by the following relationship: 

It is not difficult to verify that relationships (29) and (30) 
guarantee the fulfillment of conditions (21) and (22). 
Substituting (25) into (23) and taking (24) into considera- 
tion, we obtain the following relationship for the num- 
ber of levels N(E): 

r ( ~ )  = - c ( E ) .  (31) 

The integral appearing in the denominator of formula 
(30) still has to be evaluated. By a change of variables 
of the form 
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this integral reduces to  one found in the tables, and sub- 
sequently the following expression is obtained for the 
function NIE): 

40 
N  ( E )  = r (I,' ( E / 2 D )  + Nvz ( E l m )  1 ' 

where v = A0/2D, and Jv(x) and Nu&) a r e  Bessel and Neu- 
mann functions. 

In concluding this section we note that the described 
method can be used to evaluate the distribution function 
N(E) for a system of the more general form 

where f (x )  and q(x) a r e  Gaussian random functions which 
a r e  mutually independent. The correlation functions of 
the fields f(x) and q(x) a r e  given by formula (4). In this 
case the function N(E) has the form 

+- - 
. V ( E ) = D ( f - Q 1 ( O .  -)) / { j ~ ( z ) d z j ~ ( y ) @ ( z , y ) d y  

-- 
+ ' 

+m2co. -) j n ( z ) d x j  R ( Y ) Q ( z . Y ) ~ Y ) .  (34) 
- s - = 

where R(x) = (x4 + 2 y 2  +I)"'~, 

Here y =Dl /D2, D = Dl +D2, and Dl and D2 denote the co- 
efficients in the correlation functions of the field f(x) and 
ok). 

In the case when f(x) =0, formula (34) simplifies con- 
siderably and the expression 

is obtained for N(E) where 

3. INVESTIGATION OF THE DEPENDENCE OF THE 
FUNCTIONS N(E) AND p(E) ON E AND ON THE 
PARAMETER v = A,/ 20 

For E/2D<< v expression (32) for N(E) has the follow- 
ing asymptotic behavior: 

where r(v) is the Euler r-function. It is evident from 
Eq. (35) that when E - 0 the density of levels p(E) - 0 

for v>Q.ande(E)-mfor v<h .  One canshowthat a 
spectrum containing a pseudogap exists for h > D ,  but 
for Ao<D the pseudogap is covered up. The authors of 
Ref. 11 arrived at an analogous result by using Bril- 
louin-Wigner perturbation theory to  second order in a 
similar problem, 

For v =0, that is, A, =0, N(E) and p@) take in the re-  
gion of low energies the asymptotic forms 

Formulas (37) agree with the results obtained by Dyson 
in a special model.LU1 It is a curious circumstance that 
for v = (A, =D) the influence of the gap is exactly can- 
celled by the presence of the irregularities, and N(E) 
and p(E) a r e  given by 

Let us trace the manner in which the transition occurs 
in the unperturbed case when v-  m (D- 0). For v>> 1 
the cylindrical functions in formula (32) admit of an 
asymptotic representation in terms of Bessel functions 
with index ~t i,clS1 as a result of which the expression 

where w = (E'/A$ - 1)'12, is obtained for N(E). 

In the case when E < A, the Bessel functions in Eq. (39) 
a r e  replaced by Bessel functions of imaginary argument. 
As D- 0 the parameter v- and i t  follows from formu- 
la (39) that 

These expressions for N(E) and p(E) correspond exactly 
to the system's spectrum when the field [(x) = 0  (see 
formula (10)). It is evident from (39) that at sufficiently 
high energies satisfying the condition 

the functions N(E) and p(E) a re  described by expression 
(40). In the narrow region 

the function N(E) has an inflection and p(E) has a maxi- 
mum given by 

For E < A,, just as follows from Eq. (39), p(E) is ex- 
ponentially damped with decreasing energy and only for 
E << A,, where the asymptotic form (39) is not valid, 
does the attenuation assume the power-law character 
(36). Thus we see'that the presence of impurities 
smooths out the singularity in the function p(E) for E 
=Ao, converting i t  into a sharp maximum for E-A,. 
Let us note one more property of the distribution func- 
tion N(E). For a small valuelof the perturbing field v 
>> 1 (Ao >> D) the function N(E) near the edge of the band, 
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where F(a ,  & y ,  x )  is a hypergeometric function. 

FIG. 1. Typical profiles of p(E)  
as a function of the parameter v 

\ 
\ for D2 = 0. 

I -_ 
2 ., _- . ' 

v<f/z--- 

that is, for E-A, should have an asymptotic form cor- 
responding to  the usual SchrZidinger equation. 

In actual fact, at energies satisfying condition (42) 
formula (39) can be represented in the form 

N ( E )  = 
(40 )  "A:" 

xg {Ai2(-2e) +Big (-28) } ' 

where 

(AiOc) and B i b )  a re  Airy functions.L141) If the value 
(4 D ) ' ~ ' ~ A ; ~ ~ ~  is to be the unit of length, expression (44) 
identically coincides with the result obtained by Halper- 
in.L153 Typical profiles of the function p(E) a r e  shown in 

Fig. 1 for different values of the parameter v. 

Now let us investigate the case when the system is de- 
scribed by Eq. (33) and t(x) =0. In this case N(E) is 
given by formula (35). Analysis of this formula shows 
that for E>A,,>> D the functions N(E) and p(E) a r e  de- 
scribed by formulas (40), that is, they correspond to the 
unperturbed problem. The essential difference from the 
case analyzed above appears as E -  0. It follows from 
Eq. (35) that as E -  0 the level density p(E) remains fi- 
nite for arbitrary values of the parameter v = Ao/2D: 

where I,&) is the Bessel function of imaginary argument. 
Furthermore, ~ ' ( 0 )  = O  for arbitrary v, i. e., the func- 
tion p(E) has no discontinuities at zero in contradiction 
to the previous case when p(E) had a discontinuity at 
zero for all v < l  (see Eq. (36)). In the situation when 
v = 0 (4 = 0) the influence of the gap is completely can- 
celled by the effect of the random field q(x) and p(E) is 
determined by formula (38) (in the case analyzed above, 
cancellation occurred for v = i). Profiles of P(E) cor- 
responding to ((x) =0 and q(x) #O a re  shown in Fig. 2. 

Finally, let us present certain results which a r e  valid 
in the general case when both fields, ( ( x )  and I]&), a r e  
different from zero (see Eq. (33)). It is found that un- 
der these conditions the level density p(E) remains fi- 
nite as E -  0 independently of the magnitude of the gap 
4. The corresponding expression for p(E) is very 
cumbersome and we shall not write it down. However, 
this expression simplifies considerably for A. =O. In 
this case ~ ( 0 )  is given by 

For Dl=O Eq. (46) goes over into Eq. (38). For D, - 0 we obtain the following asymptotic expression for 
p(0) from Eq. (46): 

It is clear from this formula that the quantity p(0) - 
as D, - 0, just as must also happen in the situation A. 
= O  and q(x) =O. 

4. DISCUSSION 

The results obtained above enable us to explain the 
experiments concerning the measurement of the para- 
magnetic susceptibility x(T) a t  low temperatures for 
quasi-one-dimensional organic crystals of the NMP- 
TCNQ type. The experimental results cited in Ref. 7 
indicate that at low temperatures x(T) behaves like T'O 
with 0 < a < 1. In order to  explain such behavior of X( T), 
the authors of the cited article made the assumption that 
the density of states p(E) has a power-law singularity of 
the form IE -E,I'" a t  the Fermi surface with O< a < 1 .  
The power-law behavior of x(T) a t  low temperatures 
quickly follows from this assumption and from the fact 
that x(T) has the form 

as T- 0. The described situation obviously holds in the 
case when total charge transfer occurs because in this 
connection the singularity in the level density arising 
from the impurities lies in the middle of the forbidden 
band and coincides with the Fermi level, which in the 
presence of impurities also occupies a position in the 
middle of the forbidden band:' Since in the model con- 
sidered above the impurities lead to  a power -law singu- 
larity in the level density ~ ( E ) " E ~ " - ~ ,  the temperature 
dependence of the paramagnetic susceptibility will have 
the same form: X( T) - T~"". 

However, a s  is shown in Ref. 16 and is experimentally 
established in Ref. 17, an incomplete transfer of charge 
from donor to acceptor takes place in the organic crys- 
tals NMP-TCNQ and TTF-TCNQ In this case the posi- 
tion of the Fermi level and the singularity in p(E) do not 
coincide and the indicated mechanism for the appearance 
of the singularity in the paramagnetic susceptibility x(T) 
a s  T-0 does not exist.L71 It is nevertheless possible 
that even in the presence of incomplete transfer of 

pM 

FIG. 2. Typical profiles of p(E)  
as a function of the parameter v 
for Di = 0. 
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charge, the impurities will be responsible for the ap- 
pearance of a singularity in x(T) at low temperatures. 
In actual fact let us describe the situation when there is 
a potential V,, C O S ( ~ ~ X )  where k p  i s  the Fermi momen- 
tum (such a potential may appear), for example, in con- 
nection with the Peierls transition). In this case an 
intermixing of the electron's wave functions takes place 
at the Fermi surface and an energy spectrum arises 
containing a gap which has the following form near the 
edges of the band: 

The spectrum (49) identically coincides with the spec- 
trum of Eq. (1) in the absence of impurities ([ (x) =0) 
and therefore we have in essence the same situation as 
in the case of total charge transfer, that is, the Fermi 
level coincides with the position of the singularity in the 
density of states. 

Thus we arrive at the conclusion that in the presence 
of incomplete charge transfer in the case of a Peierls 
transition, the presence of impurities in a one-dimen- 
sional organic crystal of the NMP-TCNQ type may lead 
to a power-law singularity T'O in the temperature de- 
pendence of the paramagnetic susceptibility. It should 
also be noted that everything said above about the sin- 
gularity in x(T) is valid only for the case when impuri- 
ties of a second type are not present ( ~ ( x )  =0) since for 
q(X) #O the functions N(E) and p(E) are finite as E - 0 a s  
is  evident from Eqs. (34) and (35). Another consequence 
is the fact that for sufficiently regular crystals the be- 
havior of x(T) is not exponential as T - 0 but instead 
obeys a power law x(T)"TU. 

The results obtained for p(E) possibly provide a model 
for understanding the experimental results concerning 
the paramagnetic susceptibility.L" 

In conclusion the authors express their gratitude to 
V. A. Onishchuk for a helpful discussion of the results. 

APPENDIX 

A s  is well knownLe' a Gaussian random process [(x) 
with the correlation properties (4) is the limit for a 
random process of the following form: 

where j3 is the average number of points xi per unit 
length, 6, are mutually independent random variables 
assuming the values * 1 with probability $. The points 
xi on the half-line (0,m) have a Poisson distribution. 

Let us consider the solution z(x) of Eq. (13) with the 
potential b(x). In this case the function z(x) is a piece- 
wise continuous function, and moreover in intervals of 
the form (xi, xi+l) it corresponds to the solution of the 
unperturbed problem (D = 0) and is  described by formula 
(12) in which the initial phase of the cotangents must be 
properly chosen. From what has been said it immediate- 
ly follows that dz/dx> 0 at points where z (x) = * m. This 

property was used in formula (16) of the main text. We 
further note that for almost any realization of the ran- 
dom function t,,(~), i. e., with probability unity, the polef 
of the function z (x) will lie inside intervals of the form 
(xi, This means that the magnitude of the discon- 
tinuities of the function z(x, E) at the points xi will be a 
continuous function of the parameter E and therefore 
z (x, E) will be continuous with respect to the totality of 
variables (X, E) inside any arbitrary interval (xi, 
Hence i t  follows from the implicit-function theorem that 
the position of the poles z (x, E) =- is a continuous func- 
tion of the energy E because dz/dx is positive at the 
points corresponding to poles. The cited discussion 
gives a rigorous proof of the continuous dependence of 
the position of the poles of z(x, E) on the energy E only 
for that case when the pole lies inside the interval (Xi, 
x,,,). A s  for the poles which are encountered at the ends 
of the intervals (x =x,), the continuous dependence on the 
energy E holds for them only upon transition to the limit 
j3- m since in this case the discontinuities of the function 
z(x) at the points xi tend to zero like 1/@''. Everything 
that has been said leads to the conclusion that the posi- 
tion of the n-th pole of the function z(x, E) is a continu- 
ous, everywhere differentiable function of the energy 
xn(E) of the same type as the trajectory of Brownian mo- 
tion. 

The following two properties of the poles of the func- 
tion z (x, E) are essential for the proof of the oscillation 
theorem: 

xn(E) is a continuous function of the energy,. (A2) 

It is  easy to see that (A3) leads to the boundary condi- 
tion (2l)." It follows from (A2) that upon a variation of 
the energy E the poles of the function z(x, E )  move con- 
tinuously without any jumps along the x axis and each 
time when any pole crosses the point x = L, the corre- 
sponding energy E belongs to the spectrum of the opera- 
tor (7). In the case of the ordinary Schriidinger equa- 
tion, with increasing values of E the poles of z (x, E) al- 
ways move to the left; hence follows the oscillation the- 
orem. In our case t h i s  is not so. However, the poles 
with sufficiently high numbers n do move to the left upon 
an increase of the energy E. 

Let us prove this. Let us introduce random quantities 
T,,(E) corresponding to the distances between neighbor- 
ing poles 

It follows from Eqs. (4), (13), and (A3) that the Tn(E) 
are mutually independent, identically distributed random 
quantities. According to a well-known theorem of prob- 
ability theory, the following relationship is valid for 
such quantities: 

The quantity L(w is  the distance from the N-th pole to 
the point x = 0. 
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It follows from Eq. (A5) that for sufficiently large N 
>N(E) the direction of motion of the N-th pole upon a 
variation of the energy is determined by the form of the 
function T(E). Let u s  show that T(E) is a monotonically 
decreasing function of the energy E. In actual fact, by 
inverting the function L O  from Eq. (A5) we obtain 

L 
N (L)  = - {1+O (L-'")}. 

T ( E )  

We note that in Eq. (A7) the quantities N(L) and o(L-"') 
are  random and depend on the specific realization of the 
field Sb) whereas both the length L and the average dis- 
tance T(E) between the poles are not random quantities. 
Averaging both sides of Eq. (A7) and taking the limit 
L - w we obtain 

< N ( L ) )  
T-I (E) = lim - . 

I .  L 

The right-hand side of Eq. (A8) is none other than the 
monotonically increasing function N(E) found above (see 
Eqs. (16), (23), and (32)) and consequently the inequality 

is valid. 

It follows from Eqs. (A5) and (A9) that poles with suf - 
ficiently large values of N move to the left upon an in- 
crease of the energy E. This implies that in the energy 
interval (E, E + AE) there will be just as many levels of 
the system as there are poles of the function z (x, E) 
crossing the point x = L upon a change of the energy 
from E to E + A E. 

Thus we arrive at the oscillation theorem in the fol- 
lowing form: the number of the system's levels in the 
energy interval (0, E) encountered per unit length of the 
system is equal, to within a constant which doesn't de- 
pend on the energy, to the density of poles of the function 
z(x, E) when the length of the system L - 00. The constant 
mentioned in the formulation of the theorem is deter- 
mined from the condition 

=N"(E)-a, as E-0 and the length of the system L re- 
mains finite, the oscillation theorem is inapplicable in 
the energy range 0 <Es  L" because at these energies a 
sufficiently large number of poles of the function z(x, E) 
cannot be packed in the interval (0, L). 

 he choice of boundary conditions in this form will be made 
clear later (see Eqs. (13) and (15)). 

''We have taken into consideration the fact that in the absence 
of impurities the lower band is completely occupied and the 
conduction band is empty. 

3 ) ~ o r e  rigorously this is a consequence of the relationship. 
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