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We wnsider the relaxation of a supparamagnet in an external magnetic field from a strong- 
nonequilibrium inverted sCte into the equilibrium state at various temperatures. The equations 
corresponding to the Fokker-Planck equation are uncoupled both by analytic approximation and by direct 
computer integration of rather long chains of equations. The existence is established of a critical 
temperature T,zO.3 MHV/k, at which the character of the relaxation of the transverse components of 
the magnetic moment of the superparamagnet changes. At T <  T, the ferromagnetic type of relaxation 
predominates: during the first stage of the relaxation process the transverse-relaxation parameter is 
negative and the transverse components increase. At T >  T, the paramagnetic relaxation predominates 
phase randomization due to thermal fluctuations makes the transverse-relaxation parameter negative and 
the transverse components attenuate from the very start of the relaxation process. 

PACS numbers: 75.20. -g, 75.30.K~ 

1. INTRODUCTION. PARAMAGNETIC AND 
FERROMAGNETIC TYPES OF RELAXATION 

We consider an arbitrary spin system at equilibrium, 
situated in an external magnetic field directed along the 
z axis: H, =H. At an instant of time t = O  we reverse 
66 instantaneously" (i. e., within a time much shorter 
than all the characteristic times of the system) the di- 
rection of the magnetic field: H, = -H. At this instant 
the spin system turns out to be in an inverted strong- 
nonequilibrium state and relaxes subsequently to a new 
equilibrium state corresponding to the magnetic field 
H, = - H. This situation i s  of interest because for a 
certain time, so long as the spin-level population re- 
mains inverted, the system has maser properties at the 
frequency of the corresponding magnetic resonance 
(EPR, FMR, etc.). 

It is clear that, depending on the concrete properties 
of the spin system, the process of relaxation from a 
strong-nonequilibrium inverted state to an equilibrium 
state can vary greatly in character. Let us examine, 
for example, the evolution of such a process in a classi- 
cal paramagnetic or  a classical ferromagnetic system. 
For a paramagnet situated in an external magnetic field 
H,, the general solution of the Bloch equation takes the 
form 

where r, and r,, a re  respectively the transverse and 
longitudinal relaxation parameters r, = c1 and q, = c1 
are the corresponding relaxation times; M* = M, kiM,.; 
Mt and @ are  the initial values of the magnetization 
components, and is the value of the component M, 
at t-w. 

Expressions (1.1) describe the behavior of the para- 
magnet both in the normal state (H, =H) and in the in- 
verted state (H = - H,). In the normal state, exact equi- 
librium of the system corresponds to value Mf, = O  and 
M: =M: = M. We, however, shall assume that at t =0  
the equilibrium is not exact and there are  certain devia- 
tions from it, albeit small: the M i  are  not equal to zero, 

and M:# M. The investigation should be carried out in 
the presence of such deviations, since it  is practically 
impossible to produce an ideal inverted state; for ex- 
ample, inexact antiparallelism of the reversed and initial 
magnetic fields is equivalent to specifying certain ini- 
tial values of the transverse magnetization components, 
etc. 

It is seen from (1.1) that the character of the relaxa- 
tion of the transverse components is the same in the nor- 
mal state (if the reversal of the magnetic field was pio- 
duced at the instant t =0) as  in the inverted state: both 
precess1) and decrease to zero with a relaxation time 
7,. The longitudinal magnetization component in the 
normal state decreases or  increases (depending on the 
sign of the deviation AM: = M: - M from the equilibrium 
state) and tend to M: 

M,=,W+AM,O exp ( - r l l t ) .  (1.2) 

In the inverted state we have M: = - M and 

M,=-M+ (M+.w,o) e r p  ( -r , , t ) ,  (1.3) 

i.e., M, changes from M:=M at t = 0  to -Mat t - - .  

For a ferromagnet at low temperatures, described by 
the Landau-Lifshitz equation, the process of homoge- 
neous relaxation proceeds with conservation of the modu- 
lus of the magnetic moment M, and the general solution 
takes the simplest form in a spherical coordinate sys- 
tem : 

here t; is a dimensionless relaxation parameter, and Bo 
and 4po are  the initial azimuthal and polar angles. It is 
seen that in the normal state (H, =H) the value of 8 re- 
laxes from Bo to zero, while in the inverted state (H, 
= - H) it changes from Bo to 8 = r. In circular projections 
we have for the normalized magnetization vector m =M/ 
M 
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For comparison with the paramagnet, let us examine 
(1.5) during the initial stage of the relaxation process, 
when the deviations from the "old" equilibrium position 
(i. e., from M, =M) are  small enough: 

(AM:=- M : M ~ ~ M ) .  In the normal state, in order for 
these expressions to be correct it suffices to stipulate 
smallness of the initial deviations from the equilibrium 
position, since at H, =H the deviations of the system 
from the equilibrium position will only decrease. In the 
inverted state (H, = - H) the deviation of the system from 
the old equilibrium state will grow in the course of time. 
In this case the requirement that the initial deviations 
be small is not sufficient and another restriction is im- 
posed on the time interval At during which the devia- 
tions of Mi from the old equilibrium state can still be 
regarded as small. Taking all these restrictions into 
account, we can compare expressions (1.6) with expres- 
sions (1.1)-(1.3) for the paramagnet. 

It is seen that for the ferromagnet the transverse re- 
laxation time r,, the longitudinal relaxation time T,,, and 
the relaxation parameters rL and f;, corresponding to 
them are given by 

In the normal state these quantities a r e  positive and the 
transverse components of the ferromagnet decrease to 
zero, as  do the transverse components of the paramag- 
net. The longitudinal component of the ferromagnet, 
tending to an equilibrium value M, can only increase, 
for in contrast to  the paramagnet the initial deviation 
AM: can only be negative; this is due to the conserva- 
tion of the modulus of the magnetic moment. The last 
circumstance determines also the ratio of the trans- 
verse and longitudinal relaxation times: 7 , / ~ , ,  =2  
whereas for a paramagnet we have Tr<< r,, . 

Much stronger qualitative difference between a ferro- 
magnet and a paramagnet occur in the case of relaxation 
from a strong-nonequilibrium inverted state. In the in- 
verted state and r,, and the times r, and r,, corre- 
sponding to them reverse sign. We recall that a nega- 
tive damping parameter i s  a positive growth parameter 
and a negative relaxation time is a positive self-excita- 
tion time: Indeed, the transverse component of a ferro- 
magnet still increase as they precess, in contrast to the 
transverse component of a ferromagnet. The longitudi- 
nal component of both paramagnets and ferromagnets in 
the inverted state decrease, but the character of this 
process is different: whereas for a ferromagnet (1.6) 
the rate of decrease of M, is proportional to the initial 
deviation from the position of the old equilibrium and 
vanishes i f  there is no such deviation at the instant t =0, 
for the paramagnet (1.3) the rate of decrease of M, is 
practically independent of the deviation from the old 
equilibrium position. The ferromagnet type of relaxa- 
tion in the inverted state, corresponding in the first 
stage to negative relaxation times, is shown in Fig. la, 
while the paramagnetic type of relaxation is shown in 
Fig. l c  (the situation corresponding to Fig. l b  will be 
discussed in the next section. 

a b c 

FIG. 1. Initial period of the relaxation of a spin system from 
an inverted state: a-ferromagnetic type of relaxation, b- 
relaxation of superparamagnet at the critical temperature T 
= T,, c-paramagnetic type of relaxation. 

It should be noted that we a re  considering here uni- 
form motion of the magnetic moment, of a ferromagnet, 
and do not consider the possibility of decay of the homo- 
geneous precession into spin waves. For bulky ferro- 
magnets the probability of such a decay in the inverted 
state is very large,''] and this is one of the obstacles to 
the development of a ferromagnetic maser. For suf- 
ficiently small ferromagnetic particles, however, which 
will be investigated in the following sections, the as- 
sumption of uniform motion i s  acceptable. 

The purpose of the present work i s  to investigate the 
behavior, in the inverted state, of a superparamagnet 
i. e., of a system of small ferromagnetic particles that 
do not interact with one another, at a nonzero absolute 
temperature. 

In the next section we consider the initial stage of the 
relaxation of such a system in an approximation equiva- 
lent to the approximation (1.6) for a ferromagnet. The 
main results of this section were published in abbrevi- 
ated form earlier.c31 In Sec. 3 the relaxation of a super- 
paramagnet from a strong-nonequilibriurn inverted state 
to a state of new equilibrium is investigated in the entire 
time interval. 

2. INITIAL STAGE OF MAGNETIZATION RELAXATION 

The Fokker-Planck equation for a superparamagnet 
whose energy density U does not contain spatially in- 
homogeneous terms, was written out by 13rownls1: 

iM dW 
--=-- I a {sin~[(lz+-&E) W + E ~ =  
y at sin0 30 00 sin0 drp 

kT 1 dW 

Here W= W(0, rp, t) i s  the probability density of finding 
the magnetic moment in the solid angle d62 =sin0d0dp, 
V is the volume of the ferromagnetic particle, M is the 
magnetization per unit volume, y = y,,/(l+ t2), yo is the 
gyromagnetic ratio, is the dimensionless relaxation 
parameter of the Landau-Lifshitz equation, T is the 
temperature, and k is the Boltzmann's constant. 

It is easy to show that the infinite chain of equations 
for the moments, which corresponds to Eq. (2. I), is of 
the form 

1 d (m~mv"mz8)  - r - i  
= s(H,'m,'mC+'m, ) - n ( ~ = ~ r n . ' m ~ - ' m ~ + ' ~  

7 at 
+ l(~,'rn:-'rn,"m:+' )-s(~,'m:+'m,"m:-' )+n(H,'m:+' m:-' m,') 

- 1(~,'&-' c' m,')+~[l<H,'d;' m,"m,")-(l+n+s)(~,'m?' mpm,') 

+n(~,'m='m:-'m,')- ( Z f n f s )  ~~,'m,'m~+'m,')+s(~1.m1jlm~~~m~'~') 
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where HB =- BU/BM is the effective magnetic field; m 
= M / M ;  I ,  n, and s run through all  the integer values 
from zero to infinity. 

We consider the f i rs t  three equations of this chain for 
the case of an isotropic spherical superparamagnet, 
when He = H: 

where HT =2kT/MV is the effective thermal field. 

In this section we calculate the mean values contained 
in (2.3) by approximating roughly the nonequilibrium 
distribution function W(t) by a function that deviates little 
from equilibrium, When momentum-inverted systems 
a re  considered there a re  always two equilibrium states, 
"old" and "new." Assume that prior to the instant t = O  
the old equilibrium state Wo was produced in a constant 
field Hz =H. The field is reversed instantaneously at 
the instant t = 0: H, = - H. The resultant strong-non- 
equilibrium inverted state is described exactly at the 
first  instant by the old equilibrium function Wo, since 
the distribution function is not altered by an instanta- 
neous change of the system parameters. Relaxation be- 
gins to a new equilibrium state W,, which is reached a t  
t -Do. All the approximations based on small changes of 
the distribution function a r e  valid here in two cases: 

1) During the initial time interval At, so  long a s  the 
deviations of the nonequilibrium distribution function 
W(t) from the old equilibrium function Wo remain small 
(in the sense of smallness of the deviations of the statis- 
tical moments). 

2) In the asymptotic limit at t >> r ( r  is the relaxation 
time), when the deviation of W(t) from the new equilibri- 
um function W, become small. 

The validity of these approximation is based on the 
smallness of the difference Wo- W(t) or W- - W(t); i t  is 
immaterial here whether Wo is the equilibrium value or  
not, so long a s  i t  is known exactly. 

We consider here only the first  of these two cases, 
but write out all the expressions in such a way that they 
apply both to the inverted state (when the magnetic field 
is reversed at t = O  from Hz =H to Hz = - H) and to the 
normal state (when nothing happens at t =O and the value 
H, =H existing at t <O is preserved also a t  t >O). The 
latter variant, accurate to the direction of (M), simu- 
late also the asymptotic relaxation behavior correspond- 
ing to case 2. 

For a superparamagnet, the old equilibrium state pre- 
vailing prior to the instant t = O  is described in a constant 
field H, =H by the Gibbs distribution function 

where a =HMV/kT. Thus, in the equilibrium state the 
average values of the transverse components of the mag- 
netization a re  equal to zero, and (m,)o is determined by 
the Langevin function 

(Here and below the subscript 0 denotes averaging over 
the distribution function Wo. ) 

If we consider only small deviations of the system 
from the equilibrium state, then the nonequilibrium 
distribution function (see, e. g. ,C4') can be represented 
in the form 

where a,  a r e  certain functions of the time. It is more 
convenient for us to rewrite the distribution function 
(2.6) in different form. To this end we calculate with 
i ts  aid the expectation values of the deviation from the 
equilibrium state: 

Determining from this the a ,  and substituting them in 
(2.6) we get 

(2.8) 
This representation is formally more convenient for 

i t  enables us to obtain from (2.3) uncoupled equations 
not for the functions a,, but for the expectation values 
( m i )  of the magnetization projections. In fact, substi- 
tuting (2.8) in (3.2) and calculating the resultant equi- 
librium averages over the distribution function (2.4) 

we obtain in final form equations that describe the weak 
deviation of the average magnetic-moment projections 
of a superparamagnet from the equilibrium state: 

(m,)+yII,(m,)+(m,)/~,=yL(qH.+H~), 
(m,)-y~,(rn,)f(rn,)lz,=~~(~~,-~.), (2.10) 
(m,>+((m,)-L)/T,,=-EyLHT(l-H,/H). 

The transverse relaxation time 71, the longitudinal 
relaxation time r,, , and the corresponding relaxation 
parameters rI and I?,, a r e  determined by the expressions 

where 

If the deviation from the equilibrium state is not con- 
nected with the change of the z projection of the magnetic 
field, then H, = H  and the term in the right-hand side of 
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the third equation of the system (2.10) vanishes; in this 
form, this system describes, for example, the magnetic 
resonance of an isotropic superparamagnet in the nor- 
mal (non-inverted) 

We consider the system (2.10) in the absence of a 
transverse magnetic field: H,=H, =O; then the general 
solution for any constant H, is 

where Am: =(m:) - L. 
The main feature of these expressions is that the re- 

laxation parameters (2.11) contained in them consist of 
two parts. The first, "ferromagnetic" part  is propor- 
tional to the magnetic field and reverses sign in the in- 
verted state, in analogy with the relaxation parameters 
of the ferromagnet (1.7). The second, "paramagnetic" 
part is proportional to the temperature and does not 
change when H changes, just as the relaxation parame- 
t e r s  (1.1) of a paramagnet. 

Let us examine in greater detail the relaxation param- 
e ters  rl of the transverse components of the magnetiza- 
tion. In the normal state we have 

where wo = yH is the precision frequency. The tempera- 
ture  dependence of r, is shown in Fi . 2 (curve q,) and 
has been discussed in detail earlier. f6.61 

In the inverted state, the parameter of the transverse 
relaxation is determined by the expression 

Its temperature dependence is also shown in Fig. 2 
(curve q: ). At low temperatures rl is negative and 
the initial deviation of the transverse components does 
not attenuate, and increases instead-in analogy with 
(1.6). At high temperatures r ; > 0  and the transverse 
components attenuate-in analogy with (1.1). The func- 
tions re and r: tend to a common asymptotic limit 
25wo/u as T-w. 

Particular interest attaches to the critical tempera- 
ture T, at which rk reverses sign, and the relaxation 
time T;  becomes infinite: 

FIG. 2. Temperature dependence 
I / of the normalized relaxation pa- [//,?? , 

rameter of the transverse com- 
ponents of the magnetization in the 
normal (q2 = r2/5wo) and inverted 

9 
Q8 r,o (4 = r$/Z wo) states. 

FIG. 3. Temperature dependence 
of the normalized relaxation pa- 

/ 
rameters of the longitudinal mag- 
netization component in the nor- 
ma1 (qi = ri/5wo) and inverted (4 
= r{/lwo, 4' = I'i'/6w0) states. 

We consider now the behavior of the longitudinal mag- 
netization component m,. In the normal state (H, =H) 
the third term in the right-hand side of the correspond- 
ing expression (2.13) vanishes, and i t  takes a form 
analogous to (1.2) and (1.6): 

It should be noted (this pertains to both the normal and 
the inverted state) that the & m i  formed at  the initial 
state cannot be arbitrary. In fact, besides the natural 
requirement that it be small, Am: is subject to one 
more condition 

which is a consequence of the inequality Ci (mi)' Q 1, 
valid for any instant of time and a t  any temperature. 
It is seen that at high temperatures, when L is much 
lower than unity, both positive and negative ~ m :  can be 
formed; a s  T - 0, however, when L - 1, m: can only be 
negative. 

The longitudinal relaxation parameter r, is defined 
by 

Its temperature dependence is shown in Fig. 3 (curve ql). 
At T = O  the quantity rl = 2 r z  f i rs t  decreases with in- 
creasing temperature, and then increases and tends to 
the same asymptotic value a s  r,. 

In the inverted state, an important role is assumed 
in the relaxation of the m, component by the term con- 
nected with the thermal force. Since our analysis is 
valid in this case only for sufficiently short times, we 
expand the exponentials in series; then r,, cancels out 
in the term connected with the thermal force and we ob- 
tain the expression 

with two longitudinal relaxation times, T { and r y :  
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We see that (2.20) is valid for times satisfying the re- 
lations 

The first  term in (2.20) is similar to Eq. (1.3) for an 
inverted paramagnet (provided that r,, t << 1); the second 
term, a s  well as the time-dependent term in the com- 
ponent m, of an inverted ferromagnet (1.6), is propor- 
tional to ~ m : .  The temperature dependence of the pa- 
rameters (2.21) is shown in Fig. 3. The parameter r:, 
which is the "inverted" parameter rl, reverses sign a t  
a certain critical temperature T',=o. 38 MHV/k ;  with 
increasing temperature i t  tends to the same asymptotic 
limit as rl. The parameter ry  is equal to zero at T 
= O  and increases linearly with increasing T; i t  is this 
parameter which plays the principal role in the relaxa- 
tion of the component m, at  T #O. 

Thus, the analysis performed in this section allows 
us to draw the following conclusion concerning the char- 
acter of the initial relaxation period of an inverted sys- 
tem of noninteracting quasiclassical spins: At T = 0 the 
system is described by the Landau-Lifshitz equation and 
a ferromagnetic type of relaxation is realized (Fig. la): 
the transverse components increase, the longitudinal 
ones decreases, and the modulus of the magnetic mo- 
ment is conserved. At T f 0, owing to thermal fluctua- 
tions, dephasing of the transverse components takes 
place and the modulus of (m) is no longer conserved, 
but one of the attributes of the ferromagnetic type of 
relaxation-the increase of the transverse components 
in the initial period-is preserved up to  the critical 
temperature T,. At this temperature the initial devia- 
tion of the transverse components during the initial 
stage of the relaxation process remains unchanged (Fig. 
lb): the rate of rotation of the magnetic moment to  the 
new equilibrium position (ferromagnetic type of relaxa- 
tion) is balanced out by the rate of dephasing of the 
transverse components (paramagnetic type of relaxation) 
At T>T, the paramagnetic type of relaxation prevails 
(Fig. lc), and the system is described by the Bloch 
equation: the initial deviation of the transverse compo- 
nents is damped. 

The critical temperature T, a t  which a change inothe 
type of relaxation takes place for particles of 120 A di- 
ameter with a magnetization M = 10' G in an external 
field H = 200 Oe lies in the range of room temperatures; 
the critical temperature can be easily regulated by vary- 
ing H. 

3. APPROXIMATION OF THE MAGNETIZATION 
RELAXATION PROCESS IN THE ENTIRE TIME 
INTERVAL 

We consider the system (2.2) at H, = H,  = 0. The values 
I = n  = O  correspond to an infinite chain of equations, 
which contains only different moments of the projection 
m,: 

The values I = 1, n = O  and I =0, n =l correspond to two 
chains for (m,m:) and (m,m:), which take in terms of 
circular variables the form 

1 d<m*mza) 
-~i~,<m*rn,9+~~,[s<rn*rn~~~~>- (dl) (m*m:+' ) ]  

7 dt 

This system is simplified by making of change of vari- 
ables such as to exclude the precession motion 

where m(t) is the amplitude of the transverse magnetiza- 
tion components. As a result, (3.2) takes the form 

We consider f i rs t  the chain of equations (3.1). The 
first  equation of this chain is 

If we make the simple uncoupling (mi)  =(me)2, then this 
equation is easily integrated and we have 

where 

It follows therefore that in the normal state as t - -=  the 
quantity (m,) tends to the expression 

A plot of this function is shown in Fig. 4. Actually 
(me) should tend as t - m to  the Langevin function L, 
which is also shown in Fig. 4. From a comparison of 
these curves i t  is seen that although the approximating 
curve L qualitatively accounts for the course of the 
curve L, the quantitative deviations a re  nevertheless 
appreciable. We therefore construct a solution for (me)  
with account taken of the next equation of the chain (3. I), 
which is of the form 

FIG. 4. Temperature de- 
pendence of the Langevin 
function and of its approxi- 
mating functions Lo and Li.  
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Effecting in this equation the uncoupling ( m l )  ~ ( m , ) ( m 3 ,  
and differentiating (3.5) and combining i t  with (3.8), we 
obtain for me a nonlinear second-order differential 
equation 

We have obtained the exact solution of this equation 

where ff = [ I +  (3/2~)~]"~,  

In the normal equilibrium state, the value of ( m e )  
corresponding to (3.10) is 

A plot of this expression is also shown in Fig. 4. We 
see  that this curve hardly differs from the Langevin 
function. On the other hand, a t  T = O  Eq. (3.10) goes 
over into (1.5). Thus, in the two known limiting cases 
(at T = 0 for arbitrary time and as t - m for arbitrary 
temperature) expression (3.10) is a good approximation. 

We now examine the chain of equations (3.4). The 
first  equation of this chain is 

Putting in this equation (mmd - ( m ) ( m J ,  substituting 
(m;) from (3.101, integrating, and substituting the result 
in (3.3), we obtain ultimately 

(m*> = 
(%*)a sch ( a e x )  T ~ T  

exp = t ~ ~ - g - t  . (3.13) 
a+ ( (m,0)+ 3/20)  th ( a e x )  ( MV 

At T =0 this expression goes over into (1.5). 

For the case of small deviations from the old equilib- 
rium position we obtain from (3.10) and (3.13) expres- 

FIG. 5.  Dependence of (me)  on the time at different tempera- 
tures; the values of the normalized temperature k T / M H V  are 
indicated on each curve. The solid curves correspond to the 
analytic expression (3. lo), and the dashed ones were calcu- 
lated with a computer. . 

FIG. 6. Dependence of the relative amplitude of the trans- 
verse components (m*) on the time at different temperatures; 
the values of the normalized temperature kT/MHV are indi- 
cated on each curve. The solid curves correspond to the 
analytic expression (3.13), and the dashed ones were calcu- 
lated with a computer. 

sions close to the results of the preceding section. 
Thus, for the m* components we obtain the relaxation 
parameter in the form 

which approximates well the corresponding expression 
in (2.11). For m, in the inverted state we obtain ex- 
pression (2.20) with two relaxation parameters: 

which approximate expressions (2.21) quite well. 

To verify the correctness of the analytic expressions 
(3.10) and (3.13) in the entire range of times and tem- 
peratures, the chains of differential equations (3.1) and 
(3.4) were integrated numerically for the inverted state 
up to s =30. A comparison of the results of the numeri- 
cal calculation (Figs, 5 and 6, dashed curves) with the 
analytic expressions (3.10) and (3.13) (the solid curves 
in the same figures) shows that the latter a r e  a good 
approximation of the r e a l  situations. Figures 5 and 6 
show the behavior of the components of the magnetiza- 
tion in time for relaxation from the inverted state to a 
new equilibrium state at various temperatures. The 
value of the normalized temperature o" is marked on 
each curve. 

It is seen from Fig. 5 that with increasing tempera- 
ture the relaxation time of the ( m e )  magnetization com- 
ponent decreases. In addition, a change takes place in 
the character of the relaxation; at low temperatures 
(a" =O. 01) the value of ( m e )  decreases slowly at the 
first  instant, and this corresponds to the ferromagnetic 
type of relaxation (to rotation of the almost-conserved 
magnetic moment); at high temperatures (u" =O. 3), 
conversely, at the first  instant of time the ra te  of r e -  
laxation of ( m e )  is maximal, just a s  in a paramagnet. 

An even greater change in the temperature dependence 
of the relaxation is observed for the transverse compo- 
nents (Fig. 6). At low temperatures the transverse 
components first  increase sharply, and then decrease, 
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because the main process is ferromagnetic rotation of 
the magnetic moment. With increasing temperature, the 
maximum decreases and shifts to the left. At a temper- 
ature corresponding to the critical value (u,'=o. 3), the 
type of relaxation changes: the growth of the transverse 
components as a result of the rotation of the magnetic 
moment is offset in a certain time interval by their de- 
crease as a result of the phase randomization; the char- 
acter of the relaxation corresponds in this case to Fig. 
lb. At temperatures higher than T, the relaxation of 
the transverse components has a paramagnetic charac- 
ter-the decisive mechanism is not the phase random- 
ization. 

' ' ~a tu ra l l~ ,  the precession direction is reversed when the 

sign of H z  is reversed. 
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Optical and electro-optical properties of confocal cholesteric 
textures 
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Textures with a period greatly exceeding the equilibrium pitch Po of the helix were observed in a 
cholesteric liquid crystal layer with homotropic boundary conditions at thicknesses on the order of P,. It 
is shown that the known methods of measuring the pitch on a confocal texture can be used only at 
thicknesses that exceed the equilibrium pitch by an order of magnitude. The appearance of peaks on the 
voltage-contrast and transition characteristics of the transition from the cholesteric to the nematic liquid 
crystal is attributed to changes in the electric field of the diffraction-reflection intensities. 

PACS numbers: 78.20.Jq, 64.70.Ew, 61.30.Gd 

A cholesteric liquid crystal  (CLC) placed in a sand- 
wich cell between glasses prepared for planar orienta- 
tion, forms the well known Granjean texture. Such 
46 planar" boundary conditions do not disturb the helical 
structure of the CLC (they a r e  compatible with it), and 
their influence reduces to a change in the pitch of the 
helix, and only in thin cells (of thickness on the order of 
the pitch) does the helix become completely unbound.''] 
At the same time, confocal textures formed by a CLC 
in a cell with glasses prepared for homotropic orienta- 
tion of the molecules, a r e  quite complicated (since these 
boundary conditions are not compatible with the helical 
character of the CLC) and have not been investigated to 
any extent. The need for a more detailed investigation 
of these textures at arbitrary layer thicknesses arises,  
in particular, when attempts are made to explain the ob- 
served differencec2ss1 between the equilibrium helix pitch, 
determined microscopically and from the angle of dif- 
fraction of the laser  beam by the confocal ~ t r u c t u r e , ~ ~ * ~ '  
on the one hand, and the pitch measured by the wedge 
method, on the other.ce1 

The untwisting of the cholesteric helix in an electric 
field (the CLC -NLC transition, where NLC stands for 

nematic liquid crystal) in sandwich cells also goes 
through a stage of formation of confocal textures,''se1 
and in this case  this is satisfactory explanation of the 
complicated behavior of the voltage-contrast curves of 
the CLC -NLC transitionCQ1 o r  for the reasons for the 
appearance of peaks on the oscillograms of the relaxa- 
tion photoresponse of the untwisted helix.c14111 

The task of the present paper is to investigate in de- 
tail the optical properties of various types of confocal 
textures of CLC and their variations in an electric field, 
for the purpose of obtaining a correct  approach to a pro- 
cedure for measuring the pitch of a helix on a confocal 
structure and the investigation of the voltage-contrast 
curves of CLC - NLC effect. 

EXPERIMENTAL PROCEDURE 

The textures produced in a CLC layer under homo- 
tropic boundary conditions were investigated in wedge- 
shaped sandwich cells, which are convenient for obser- 
vation of the variation of the optical properties of the 
layer with increasing thickness. The wedge taper was 
set by means of Teflon liners of various thicknesses, 
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