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The density of states of electron excitations in fine superconducting particles is investigated on the basis of 
the thermodynamic fluctuation theory. In a narrow energy range near a =A,  the density is determined 
-tially by fluctuations of the order parameter. Nuclear spin relaxation is calculated over a broad 
temperature range by using the density of states thus found. 

PAC3 numbers: 74.30.Gn, 74.40. +k 

1. The coherence of paired electrons in states with 
opposing spins in the superconducting phase makes the 
transitions of electrons interdependent in scattering in 
different initial and final states. Depending on the scat- 
ter ing mechanism, the processes divide into two types 
whose transition probabilities differ strongly because of 
the coherence effect. The first type is the ordinary po- 
tential interaction that leads to the absorption of longi- 
tudinal ultrasonic waves. The second type includes the 
hyperfine interaction of conduction electrons withnuclear 
spins, which determines the rate of the nuclear relaxa- 
tion. 

The rate of the nuclear relaxation for superconductors 
with a uniform gap diverges logarithmically, owing to 
the singularity in the density of electron states at the 
energy c =Ao (Ao i s  the gap in the electron spectrum). 
In real metals, however, the gap is anisotropic. Ac- 
count of the anisotropy of the gap leads to a blurring of 
the singularity in the density of states near the threshold, 
so that the divergence is removed. Nevertheless, at  
temperatures close to T,, the rate of the nuclear relax- 
ation in superconducting states is greater than in the 
normal state near T,. At low temperatures Ao(0) >> T, 
the rate of the nuclear relaxation falls off because of the 
absence of elementary excitations. Such a behavior of 
the nuclear relaxation rate was first observed by Hebel 
and ~lichter."' 

When the superconductors become dirty, the anisotro- 
py of the gap is lessened. This leads to an increase in 
the nuclear relaxation rate in superconductors with in- 
crease in the amount of impurities introduced into them. 
The anisotropy effect i s  also suppressed in fine super- 
conducting particles, when d<< ((T), (d i s  the linear di- 
mension of the fine particles, ((T) is the coherence 
length). 

In the case of superconductors of very small dimen- 
sions, account of fluctuations of the order parameter i s  
decisive in the determination of the nuclear relaxation 
rate, the more so that the anisotropy of the gap de- 
creases with increase in the concentration of the ordi- 
nary impurit$es and with decrease in the dimensions of 
the sample. The present work is devoted to the study 
of the effect of fluctuation oscillations of the order pa- 
rameters on the density of electron states and on the 
relaxation ,of the nuclear spin in fine superconducting 
particles. We shall study cases of dirty superconduc- 

tors 2 <<d << ((T), where 2 is the free path length of the 
electrons. 

2. To investigate the role of fluctuations of.the order 
parameter in the change of the density of electron states, 
we proceed in the following manner. We introduce the 
fluctuation increment of the order parameter 

where A, is the equilibrium value of the gap and Al(t) 
<< A,. Using the time-dependent Gor'kov equation, in- 
tegrated over the energy 6 = vo(p - po) (v, 
and Po a re  the Fermi velocity and-momentum), with 
account of electron-phonon interaction, i t  i s  not diffi- 
cult to obtain a linear equation for the fluctuation cor- 
rection in the case of fine dirty superconducting parti- 
cles: 

here r0 is  the relaxation time, associated with inelastic 
electron-phonon interaction, equal in order of magnitude 
to (O i s  the Debye energy). 

In (2), we have added the random force y, in analogy 
with the method used by Langevin in the theory of Brown- 
ian motion. The method of random Langevin forces was 
used by Aronov and ~ a t i l ~ u s ~ ' ~  for the investigation of 
fluctuation oscillations in pure superconductors. To 
find the correlator of the random forces, we use the 
scheme of ~ n s a ~ e r . ' ~ ~  We investigate the change in the 
free energy of the sjrstem due to the fluctuations. The 
free energy as a functional of the order parameter and 
the Green's functions (integrated over the energy vari- 
able) takes in the absence of an external electromagnetic 
field the formc6' 

wiiere gD= (1 - f, f,')'I2, v=mpo/2r2 i s  the density of 
electron states on the Fermi surface, X,,, =the BCS 
constant, c, = rT(2 n +I), and T = l/vo is the time between 
collisions. In formula (3) we assume for simplicity 

324 Sov. Phys. JETP 46(2), Aug. 1977 0038-56461771, 4602-0324$02.40 O 1978 American Institute of Physics 324 



short-range scattering of the electrons by impurities. 

We limit ourselves to dirty superconductors; there- 
fore, if we set in (3) 

use the equations obtained for the Green's functions 
from the condition that (3) b e  a minimum, and integrate 
over the angles, we obtain 

where D=vo1/3 is the diffusion coefficient. 

In the following, it is necessary to find the second 
variation of the free energy. For this purpose, we must 
linearize the equation for the Green's functions in the 
small additions to the equilibrium values of the Green's 
functions and the order parameter, express the small 
additions to the Green's functions in terms of the small 
additions to the order parameter and, substituting them 
in the second variation of the free energy, obtain a func- 
tional that is quadratic in the small addition to the order 
parameter. Omitting all the intermediate calculations, 
we write out the expression for the second variation of 
the free energy in the case of fine superconducting parti- 
cles: 

$ is the volume of the sample. In obtaining this rela- 
tion, i t  is assumed that the order parameter i s  real. 
We have also used the relation 

with the standard cutoff of the summation in (7). 

Introducing the generalized coordinate x = 4 and the 
generalized force corresponding to it 

we obtain 

Using (2) and (8), we obtain 

The correlator of the random force introduced by us 
in Eq. (2) is determined by the coefficient y (see Ref. 5): 
(y2), =2 y. The Fourier transformation of the correla- 
tor of the fluctuation correction to the order parameter 
is determined in the following fashion: 

der parameter can be obtained by integration with re- 
spect to the frequency of the expression (10): ( 4 )  = 1/B. 
The limiting valbes of the correlator ( 4 )  have the fol- 
lowing form, a s  is readily seen from Eq. (8): 

Naturally, the condition of smallness of the fluctuations 
( A : ) ' ~ ~  << AO(T) must be satisfied in this case." 

3. In our approach, in the calculation of the correla- 
tor ( 4 )  it was always understood that the time for es- 
tablishment of partial equilibrium (at a given value of 
4 )  is much smaller than the time of establishment of 
the equilibrium value of the quantity A1 ( 4  =O). The 
time of establishment of the equilibrium value of 4, as 
is seen from Eq. (2), is determined by the interaction 
of the electrons with the phonon thermostat and is equal 
to x". This time i s  much larger than all the character- 
istic times of the superconductor. Therefore, to deter- 
mine the mean density of states from the fluctuations, 
we must average the local (in time) density of states 
over all possible values of 4. For the probabilities of 
the fluctuations of 4, we use the Gaussian distribution2) 

We note that we obtain this result directly if we as- 
sume that the probability of realization of the state A, 
+Al i s  proportional to e x d -  R,,,(A,)/T), where 
R,,,(Al) is the minimum work necessary for the transi- 
tion of the system from the state with an order parame- 
ter A, to A, +Al. This is determined in our case by the 
formula (6), which leads directly to (12). 

The averaging of the density of electron states over 
the Gaussian distribution in the case of inhomogeneous 
superconductors has been done by Larkin and Ovchinni- 
kov.''' The averaged density of electron states over the 
distribution (12) in all regions of the energy is 

, - ( : )"I' {-E), A ~ - E > ( A , ~ > ~ ~ ,  (V )-- - exp 
2 A - E  2 ( A i 2 )  

Here D-112(x) is a parabolic-cylinder function. The 
averaged density of states i s  finite in the entire energy 
region. The maximum of the density of states shifts 
towards higher energy and its maximum is  of the order 
of ( v , ) / v - ( ~ , / ( ~ ) ' ~ ~ ) ' ~ ~ .  The width of the interval of 
energy near threshold in which the density of states 
changes significantly in the averaging is of the order of 
(A:)'/~. 

4. We calculate the rate of nuclear relaxation of fine 
superconducting particles. For this we use the formula 
of Ref. 1: 

The correlator of the fluctuation correction of the or- 
In the experiment one measures the time TI, of estab- 
lishment of equilibrium of the nuclear spins with the 
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electron spins at zero magnetic field. If we introduce 
the time T, of nuclear relaxation in the normal state, 
we can then write 

where R, is the nuclear relaxation rate in the supercon- 
ductor, R, is the nuclear relaxation rate in the normal 
state at a temperature close to T,, and f (E) is the Fer- 
mi distribution. 

Omitting the calculation of the integral (14) with use 
of (13), we give the result for the nuclear relaxation 
rate in the region of high temperatures b ( T )  << T, : 

We note that this result is valid with accuracy to a nu- 
merical coefficient under the logarithm. 

Using the averaged density of states (13), we also 
calculate the ultrasonic absorption in fine superconduct- 
ing particles. We can obtain the formula for the ratio 
aJa, (aS and a,, are the coefficients of sound absorption 
in the superconducting and normal states) from Eq. (14) 
by replacing the factor 1 +AVza under the integral by 
1 -A:/E'. It is easy to see that, within the limits of 
accuracy of our estimates, the ratio a Ja, for fine su- 
perconducting particles will not differ from the well 
known expression 

for superconductors with constant gap %. 
The logarithm in Eq. (6) contains a large parameter 

that depends strongly on the size of the samples. The 
condition b(T)>> (q) ' l e  can be rewritten in the follow- 
ing fashion, as is easily seen from (ll) ,  at  temperatures 
close to the critical: 

which in turn imposes an additional limitation on the 
size of the samples 

This condition is not satisfied for fine particles in the 
immediate vicinity of T, because of the high intensity of 
the fluctuations. The expression (15) has a characteris- 
tic temperature dependence, which can be measured ex- 
perimentally, of the nuclear relaxation rate. 

It is seen from expressions (15) and (11) that the nu- 
clear relaxation rate of fine superconducting particles 
does not depend on the impurity concentration. Butter- 
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worth and ~ c ~ a u ~ h l i n ~ ' ~  carried out measurements of 
the quantity [R~(T)~,,,&/R,(T,) (R,(T)~, is the value of 
the nuclear relaxation rate at the maximum) as a func- 
tion of the quantity l/AO(0)r (r=l/vo is the time between 
collisions by ordinary impurities) on pure and dirty 
samples. Within the limits of experimental error, the 
ratio [R,(T)L,/R,(T,) did not depend on the concentra- 
tion of impurities. However, it must be noted that the 
condition of smallness of the samples was not rigorously 
observed. In the experiments mentioned, d -  to. 

Finally, we give the results for the nuclear relaxation 
rates at low temperatures Ao(0) >> T. A simple esti- 
mate shows that at the accuracy assumed by us we have 
at low temperatures, 

In obtaining this result, it is assumed that, in addition 
to Ao(0) >> T, the condition T>> ( 4 ) ' l 2  is also satisfied. 
Consideration of lower temperatures T <<(A:)'/~ is not 
possible, since the latter condition (see (11)) means that 
~i~~ = ( vdg)"'a >> T'I2, where .so is of the order of the 
distance between the energy levels of the fine metallic 
particles. When the distance between the levels be- 
comes greater than the temperature of the sample, it is 
necessary to take quantum size effects into account. 

In conclusion, I wish to express my gratitude to A. G. 
Aronov for interesting discussions. 

"At the same time, the fluctuations of A must exceed its scat- 
ter  due to i ts  anisotropy, the dependence on the size of the 
granules, on the local temperature, and so  on. 

2 ) ~ t  is understood here that the phase space of the fluctuations 
of the gap is  given by di'= const. dA,, i. e .  , i t  is assumed 
that allowance for the fluctuations of the phase of the order 
parameter is unimportant. 
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