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The bulk viscosity of a ferromagnetic suspension is calculated as a function of the magnetic field strength 
and the sound frequency. It is assumed that the orientational Brownian motion of the suspended particles 
is significant but that the inertial effects due to the flow around the particles are small. It is shown that 
field-strength dependence of the bulk viscosity appears only in the presence of stereoisomerism of the 
shape of the particles (the symmetry group must admit of a pseudovector). The viscosity increases as the 
square of the field strength in weak fields and reaches saturation in strong fields. The viscosity dispersion 
is due to orientational relaxation of the particles (characteristic relaxation times, - sec). The 
viscosity of a suspension of particles, each of which consists of two slightly deformed spheres joined 
together, is calculated as an example. 

PACS numbers: 82.70.Kj, 5 1.20. +d 

1. INTRODUCTION if a uniform (hydrostatic) compression of the liquid 

The hydrodynamic flow of a suspension of solid parti- 
cles in a liquid is accompanied by processes involving 
viscous friction owing to the flow of the liquid around the 
particles, and these processes lead to an increase in the 
effective viscosity. When the number density of the sus- 
pended particles is small the additional viscosity is pro- 
portional to the volume concentration rp of the particles, 
and the proportionality constant depends only on the 
shape of the particles. The viscosity of an incompres- 
sible liquid is described by a single coefficient, the 
shear viscosity q. As is well known, the correction to 
the shear viscosity for a suspension of spherical parti- 
cles was calculated by Einstein (cf. Ref. 1, 022) and is 
equal to 2. 5qoV (here and below a subscript zero will be 
used to designate quantities pertaining to the suspending 
liquid). In the general case of a compressible isotropic 
medium, the viscosity is characterized by still another 

causes the particles to rotate, and this is possible only 
for particles having symmetry of a definite type (the 
symmetry group of the particle must admit of a pseudo- 
vector). The rotational motion of the particles is ac- 
companied by thermal fluctuations with a characteristic 
relaxation time ro of the order of 10" sec, s o  bulk-vis- 
cosity dispersion due to this relaxation process should 
be observed a t  frequencies w of the order of l/sO. We 
emphasize that orientational relaxation would not affect 
the bulk viscosity a t  all in the absence of a field: with- 
out the field to hinder their motion, the particles would 
rotate freely in the liquid stream. Thus, when the 
shape of the particles is given, the problem reduces to 
the calculation of the bulk viscosity of the suspension a s  
a function of three variables: the frequency of the liq- 
uids's motions, the magnetic field strength, and the 
temperature. 

I 

.coefficient, the bulk viscosity C, which is also changed Actually, the viscosity dispersion of a suspension can 
by the presence of suspended particles in the liquid. manifest itself only in the propagation of sound. In a 
~ r e n n e r ' ~ '  has calculated the bulk viscosity of a suspen- sound wave, however, each particle not only suffers hy- 
sion of spherical particles: drostatic compression, but there is also a symmetric 

stream of liquid flowing around it  which also tends to 
Pbo+cp(So+' /~r lo) .  orient i t  (for example, rod-shaped particles will tend 

According to the theory of Mandel'shtam and Leonto- 
vich (see, e. g., Ref. 1, §78), the appearance of a sec- 
ond viscosity is always due to relaxation processes going 
on in the system. Here the viscous flow around the par- 
ticle plays the part  of the relaxation process. However, 
the viscosity dispersion associated with this process in 
a ferromagnetic suspension may be neglected because 
the inertial effects a r e  small (see Sec. 2 below). Nev- 
ertheless there is another relaxation mechanism in a 
ferromagnetic suspension that does lead to viscosity 
dispersion. 

If the particles of a suspension a re  magnetized, an 
external magnetic field H will tend to orient the parti- 
cles in the stream, and this gives r i se  to additional en- 
ergy dissipation due to the flow of liquid around the par- 
ticles and leads to a magnetic-field dependence of the 
viscosity (cf. Refs. 3 and 4). It is clear that a magnetic 
field will affect the bulk viscosity of a suspension only 

- - 

to be oriented along the propagation direction of a plane 
wave). In other words, not only the bulk viscosity, but 
also other viscosity coefficients of a ferromagnetic sus- 
pension,c41 which also a re  frequency dependent because 
of the relaxation of rotational degrees of freedom, may 
also play a part in the absorption of sound in a magnetic 
field. Unlike the effects of the bulk viscosity, however, 
the effects now being discussed depend essentially on the 
orientation of the magnetic field with respect to the prop- 
agation direction of the wave, and this permits us to re- 
frain from discussing them in what follows. 

2. A PARTICLE I N  A COMPRESSIBLE FLOW 

As an auxiliary problem let us further consider the 
effect on a flow having a constant velocity gradient of a 
single particle immersed in the liquid. The calculation 
of the bulk viscosity of a suspension differs from the 
calculation of the shear viscosity (Ref. 1, 022) in that 
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one must assume that the flow has a nonvanishing veloci- 
ty divergence a t  large distances from the particle: 

where r is the distance from the center of the particle 
and S2 = div v is a constant. 

Of course if div v + 0 one cannot assume that p is con- 
stant, since then it would not be possible to  satisfy the 
equation of continuity: 

In that case one must also take the equation of motion of 
the liquid in the form 

p d v / d t - - - ~ p + q ~ ~ v +  ( ~ , + ~ / , q , )  v ( V V )  (2.3) 

with the boundary condition 

a t  the surface s of the particle, where u and o a r e  the 
velocity and angular velocity of the particle. 

It is easily seen, however, that for all reasonable hy- 
drodynamic processes the inertial terms in expression 
(2.3) for dv/dt a re  small as compared with the viscous 
terms, which a re  of the order of v / r t ,  where r' = ~ ~ ~ / q , ,  
a being a linear dimension of the particle. In fact, if 
we take a -  cm and vdp- cm2/sec, we find r' 
-10'1° see. As was noted in the Introduction, the fact 
that r' is small also means here that the viscous fric- 
tion associated with flow around the particle (velocity 
relaxation) does not lead to viscosity dispersion a t  any 
acoustic frequencies. 

Since the velocity can now be regarded a s  a function 
of the coordinates alone, the space and time variables 
can be separated in the equation of continuity (2.2), and 
if at the initial time there was a uniform distribution of 
liquid throughout a volume containing the particle, that 
distribution will remain uniform at all  subsequent times. 
In other words, the density p is to be regarded a s  a 
function of time, but not of the coordinates. Actually, 
this assumption imposes a limitation on the velocity (2.1) 
of the liquid a t  large distances from the particles: this 
velocity must be small  a s  compared with the velocity c 
of sound, so that a local variation of the density will be 
dissipated in a much shorter time than the time required 
for a significant change in the density: m / c  << 1, where 
R is the radius of a large sphere centered a t  the particle. 
Taking R =10a (cf. Ref. 2), a -  lo-' cm, and c - l o 5  cm/ 
sec, we find thatthe velocity v of the liquid a t  large dis- 
tances from the particle must be small enough for the 
condition S2 << 10" see" to be satisfied, which is virtually 
always the case. 

When p is a function of t alone, i. e., is a constant a s  
far as the coordinates a r e  concerned, we find from Eq. 
(2.2) that divv is also a constant in that same sense. 
Having evaluated the latter constant from the boundary 
conditions (2. I) ,  we can write the equations of motion 
of the liquid in the form 

v p = q ~ A v ,  div v=Q. (2.5) 

Knowing the solution of Eqs. (2.5) under the boundary 
conditions (2.1) and (2.41, we can calculate the force F, 
and the couple L, acting on the particle as a result of its 
presence in the flowing liquid, as well a s  the quantity 
Sf, /V, i. e., the s t ress  tensor averaged over the volume 
V of the particle: 

where the vector element ds, of the surface of the parti- 
cle is directed along the outward drawn normal. In 
writing Eqs. (2.61, the volume integral Sjk has been 
transformed to a surface integral, using the equation of 
motion (2.5) and the equality of action and reaction at 
the surface of the particle (this makes i t  unnecessary to 
consider the internal s t resses  in the particle). Because 
the equations of motion a r e  linear, F, and St, will be 
proportional to the boundary values of 62, u, , and w, , 
and the form of the proportionality constants (which of 
course a r e  tensors-we may call their components the 
generalized coefficients of friction) will depend only on 
the shape of the surface of the particle (cf. Ref. 4). 

In the presence of hydrodynamic forces, the transla- 
tional and rotational motions of the particle will be de- 
termined by the equations 

where m and J, ,  a r e  the mass and the tensor of inertia 
of the particle, and Kj is the couple exerted on the par- 
ticle by the external forces. The inertial terms on the 
left in Eqs. (2.8) a re  significant only a t  small times of 
the order of the viscous time r' introduced above; hence 
we may neglect them, as we did in the equations of mo- 
tion (2.3) for the liquid. Equating the right-hand sides 
of Eqs. (2.8) to zero and bearing in mind that Fj and L j  
a r e  linear in u, , wj, and 52, we can write the expres- 
sions for the velocity and angular velocity of the particle 
in which their proportionality to 52 and Ki a r e  explicitly 
exhibited: 

(for brevity we shall not write down the analogous ex- 
pression for u,). Then eliminating u, and w, from the 
s t ress  tensor St,, we find the following expression for 
the quantity S = (1/3) S,, of interest to us: 

The scalar, pseudovector, and tensor coefficients g, g, , 
and gtk occurring in Eqs. (2.9) and (2.10) may be ex- ' 

pressed in terms of the generalized coefficients of fric- 
tion; moreover, it is precisely because of the symmetry 
of the latter (see Ref. 4) that K, occurs in S with the 
same coefficients g, as S2 occurs in w,, and that the 
tensor g,, is symmetric: gik =gki. 

It is important that the coefficients g, g,, and gfk a r e  
invariant under the same symmetry transformations as 
a re  the particles themselves. As will be evident later 
on, the bulk viscosity of the suspension can depend on 
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the magnetic field strength only if the symmetry group 6=60+At, AC-cp (qog+<gXi>/QV).  (3.3) 
of the particles allows the existence of the pseudovector 
g,  . The point groups C,, S,, Cnh C2, and D2 have the 
propem. No ellipsoid has this kind of symmetry, nor 
has a slighly deformed sphere (in the first order in the 
asphericity parameter). A fairly simple and physically 
interesting case is that of a surface consisting of two 
slightly deformed spheres fastened together to form a 
dumbbell; such a surface may serve as a model for two 
particles of a ferromagnetic suspension that are  adher- 
ing to one another. This example will be treat& in more 
detail below. 

As was already noted in Sec. 2, when d i w  #O the den- 
sity of the liquid cannot be regarded as constant in time, 
and it follows that none of the other thermodynamic 
quantities can be so regarded either. In particular, uni- 
form compression results in heating of the liquid and 
therefore increases the effective stresses in the suspen- 
sion. Because the thermal expansion coefficient of the 
liquid is very small, however, one can neglect effects 
of this sort. In fact, from the equation of continuity 
(2.2) and the relation (2.5) we find that 

We note that in addition to Eq. (2. lo), we should write a p / a t = - p ~ .  

down analogous relations for the symmetric tracefree 
part of the tensor St,; in the final result, however, this 
part leads to viscosity coefficients of the suspension that 
have already been investigated,"' so we shall not con- 
sider it here. 

In the linear approximation in 62 the motion of the liquid 
may be regarded as adiabatic, i. e., we may assume 
that 8st/Bt =O, where st is the entropy per unit mass of 
the liquid. Treating the temperature as a function of 
the thermodynamic variables p and s' and forming its 

3. THE EFFECTIVE VISCOSITY OF A SUSPENSION differential in these variables, we easily find that 

Now let us turn to the calculation of the viscosity of a _=- a~ - d~ a p  C'PT 
at ( a p ) , ~ = - y  Q, suspension treated as a homogeneous continuous medium. 

(3.4) 

To do this we must obviously average the microscopic 
stress tensor over a volume that contains many parti- 
cles (for more details see Refs. 1, 2, and 5). The mi- 
croscopic stresses in the suspension are made up of the 
stresses (2.7) in the pure liquid and the stresses (2.6) 
in the particles due to the motion of the liquid. When 
the particle concentration is low, the contributions 
from the individual particles turn out to be additive, 
and as a result the averaged stress tensor has the 
form 

where N is the number density of the particles and the 
angle brackets indicate averaging over the orientations 
of the particles. Since the tensor S,, represents the in- 
ternal stresses in a particle averaged over the particle's 
volume, the additional averaging over the angles ensures 
complete averaging over the ensemble of particles. 

Limiting ourselves here to ihe calculation of the bulk 
viscosity of the suspension, we make use of Eq. (2.10) 
to rewrite the scalar part 5 = (1/3)5,, of the stress tensor 
(3.1) in the form 

where we have used the fact that =NV, as well a s  the 
notation 

- 
av, aii, 

Q - - - -  
a z ,  ax, 

The effective bulk viscosity of the suspension should be 
defined as the proportionality constant between the vis- 
cous-stress tensor 5+5 and the quantity SZ (the velocity 
divergence of the suspension). A s  will be shown below, 
the last term in Eq. (3.2) is proportional to SZ; hence 
the bulk viscosity of the suspension can be written in 
the form 

where @ and c, are  the thermal expansion coefficient and 
the heat capacity per unit mass of the liquid, and c is 
the velocity of sound. If the volume occupied by a par- 
ticle of the suspension were filled with liquid, then the 
rate of expansion of this volume due to heating of the 
liquid would be given by 

Neglecting the changes in the temperature and density of 
the particle for simplicity, we can effectively take the 
disturbance due to the particle into account by assuming 
that the volume of the particle changes in such a manner 
as  to compensate the thermal expansion (3.5) of the liq- 
uid. For this it is  necessary, according to Eq. (3.5), 
that the velocity of a surface element of the particle be 
of the order of @8T/8t. A t  the same time, according 
to Eq. (2.1) the velocity of the undisturbed liquid flow 
at the surface of the particle is a a. Equating these 
two velocities and eliminating aT/8t with Eq. (3.4), we 
obtain the condition for the effect under consideration to 
be negligible: c2p2T/c9 << 1. For typical values of the 
parameters, say c - lo5 cm/sec, j3- 10" deg", T - 300 O K ,  and c,, - 1 cal/g a deg = 4 X 10' erg/g deg, we 
find that c2fi2~/c, - lo-', showing that the condition is  
well satisfied. 

Thus, as  is evident from formula (3.3), to calculate 
the viscosity it is necessary, first, to solve the hydro- 
dynamic problem of the fluid flow around particles of 
the given shape (Sec. 2) and thereby to evaluate the co- 
efficients g and g,, and second, to know the distribution 
W(0, cp, $) of the particles with respect to orientation 
(0, rp, and qb are Euler's angles) in order to perform the 
averaging necessary to evaluate ( g, K,  ). 

We shall assume that the magnetic moment C( of an 
individual particle is  rigidly fixed to the particle (the 
frozen-in-dipole modelce1): 1 = pe, where e is a unit 
vector which is constant in a coordinate system rigidly 
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fixed to the particle. We note that in atomic systems, 
on the other hand, the magnetic moments a r e  not fixed 
to the particles themselves, but to their angular momen- 
t a  (the relation C( = pe is replaced by the gyromagnetic 
relation). In the presence of a magnetic field H, there 
is a couple p x  H acting on each particle. In addition, 
the small particles of a ferromagnetic suspension a r e  
subject thermal fluctuations, s o  the external f%rces on 
the particle must also include t i e  couple - kTiRlnW due 
to  the stochastic forces (here iR is the operator for an 
infinitesimal rotation; the imaginary unit has been in- 
troduced to make R Hermitian). Thus, the total couple 
acting on the particle is 

The distribution function W satisfies the rotational- 
diffusion equation 

where the angular velocity w of the particle is given by 
Eq. (2.9) with the external couple (3.6); thus, the kinet- 
ic equation (3.7) becomes 

The characteristic time for changes in W is of the 
order of ro, which amounts to -10" sec at room tem- 
perature if 710" lom2 g / c m ~  sec  and V- 10'" cm9. Virtu- 
ally all hydrodynamic flows may be assumed to satisfy 
the condition S2ro << 1, s o  we shall neglect higher order 
terms in S2ro and seek the solution to Eq. (3.8) in the 
form 

where Wo and x a re  unknown functions of the angles and 
time. 

Relaxation of the distribution function may lead to 
bulk-viscosity dispersion at frequencies w -l/rO. TO 
examine this effect we shall assume that the velocity of 
the liquid surrounding the particle varies periodically 
according to the law 51-exp(iwt) (the use of the same 
letter to denote both the frequency of the sound wave and 
the angular-velocity vector of the particle cannot lead 
to confusion). Now we substitute the distribution func- 
tion (3.9) into the kinetic equation (3.8). It is easily 
seen that during the short time ro the solution to the 
equation will reach the regime of steady-state oscilla- 
tions in which we shall be interested. In the absence of 
a hydrodynamic flow (51 =0) the steady-state regime takes 
the form of an ordinary Boltzmann distribution: 

In the next approximation in h2ro one must, generally 
speaking, take into account the fact that distribution 
(3.10) is only locally an equilibrium distribution, since 
the temperature of the liquid, which occurs in it, varies 
with time in accordance with Eq. (3.4). Since the tem- 
perature occurs in Wo only through Langevin argument 
5 = @/kT, however, its variation is equivalent to a weak 
(-S2r0) longitudinal modulation of the magnetic field, 

which, in the final analysis, may contribute terms of 
higher order in Oro to the s t ress  tensor of the suspen- 
sion. 

The above discussion permits us to  neglect time vari- 
ation of the temperature of the medium, and after sub- 
situting (3.9) and (3.10) into (3.8) we obtain the following 
inhomogeneous equation for the nonequilibrium correc- 
tion x to the distribution function in the steady-state re- 
gime: 

Noting that the extern$ couple (3.6) can be expressed in 
the form Kt=-kTS2roiRjx with the aid of E s. (3.9) and 
(3.10) and making use of the hermiticity of$,, we trans- 
form Eq. (3.3) for the bulk viscosity of the suspension 
to the form 

where the subscript zero on the angle brackets indicates 
that the equilibrium distribution function (3.10) is to be 
used in averaging over the angles. 

4. BULK-VISCOSITY DISPERSION 

Formula (3.12), derived above, expresses the kinetic 
coefficient 5 in terms of the average value of the product 
PX of the solution x to the inhomogeneous kinetic equa- 
tion (3.11) by the inhomogeneous term P of that equation. 
This makes i t  possible here, as in the kinetic theory of 
gases,cT1 to formulate a variational principle and to use 
i t  to obtain an approximate solution to Eq. (3.11). We 
shall seek the unknown function x as a linear combina- 
tion of generalized spherical functions D::,(O, rp, $), re- 
taining only the functions with I =1 in the simplest ap- 
proximation (cf. Ref. 4). In this case, however, it is 
more convenient to express the @!,;I in terms of the unit 
vectors ni ( n  = l ,2 ,3 )  along the axes of a coordinate sys- 
tem fixed rigidly to the particle (the vectors nj  a r e  the 
columns of a matrix that transforms a Cartesian vector 
under rotation of the coordinate system): 

where the coefficients a, a r e  to be found by the usual 
variational procedure: substituting (4.1) into (3. l l ) ,  
multiplying the equation by ni , and averaging over the 
angles, we obtain the following set  of linear algebraic 
equations for the a,: 

The matrix element of the operator f can be calculated 
with the aid of averaging formulas given in Ref. 4: 
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The right-hand side of Eq. (4.2) can be calculated in a 
similar manner: 

After substituting Eqs. (4.3) and (4.4) into (4.21, the 
equations for the a, reduce to 

For an arbitrary orientation of the magnetic moment 
of the particle (specified by the vector ei) with respect 
t o  the principal axes of the rotational-diffusion tensor 
go the solution to Eq. (4.5) has a complicated form, so  
we shall consider only the simplest case and assume that 
e, has the direction of one of the principal axes of the 
tensor gik and that this axis coincides with the z axis of 
a coordinate system rigidly fixed to the particle. Under 
this condition, the matrix I,, is diagonalized in the sys- 
tem whose axes a re  the principal axes of the tensor go, 
and the projections of the vector a, onto these axes have 
the form 

where the g'n' a r e  the principal values of the diffusion 
tensor, while theg, a re  the components of the vector g 
in the chosen coordinate system. 

By substituting the function x in the form (4.2) into 
formula (3.12), we can express the viscosity of the sus- 
pension in terms of the coefficients a,: 

Now using formula (4.6) and assuming for simplicity that 
the principal values of the tensor gik along the x and y 
axes are equal to one another, i. e., that g"'=g'2', we 
finally obtain the formula 

which expresses the correction to the bulk viscosity in 
the same form as it appear in the Mandel'shtam-Leonto- 
vich theory (cf. Ref. 1, 878). Here the relaxation time 
r and the relative change 6 in the velocity of sound de- 
pend on the field strength: 

In view of the asymptotic behavior of the functions L, 
and L2, 

it is easily seen that the bulk viscosity AI; increases in 
weak fields ((<< 1) a s  e2. As was noted in the introduc- 
tion, the relaxation of rotational degrees of freedom 
does not affect the viscosity at all in the absence of a 
field. In strong fields (5 >> 1) the bulk viscosity, like 
the other viscosity coefficients of a ferromagnetic sus- 
pension,c41 ceases to depend on the field strength (the 

saturation effect) and reaches the maximal value 

It is interesting that in this limit the viscosity is also . 
independent of the frequency, since the relaxation time 
r decreases a s  1/( with increasing field strength. 

Turning now to the problem of sound absorption in a 
ferromagnetic suspension, we note that the correction 
to the bulk viscosity is of the same order a s  (or of lower 
order than) the ordinary viscosity of the liquid. Hence 
in calculating the absorption coefficients we may im- 
mediately make use of the general expression y = w 2 ~ b /  
zpcS (see Ref. 1, 877). Substituting the complex bulk 
viscosity (4.8) into this expression and separating the 
real  and imaginary parts, we obtain the following for- 
mula for the absorption coefficient: 

in which X =c/o is the wavelength of the sound. The ab- 
sorption coefficient, like the bulk viscosity itself, in- 
creases monotonically with increasing field strength and 
reaches saturation in strong fields. In order of magni- 
tude we have y =  y&, where yo is the absorption coeffi- 
cient of the pure liquid. The volume concentration rp of 
the particles may ordinarily amount to some 20-30%, 
and when a magnetic field is applied to the ferromagnetic 
suspension the sound-absorption coefficient should ob- 
viously increase by that same amount. 

The imaginary part of the absorption coefficient de- 
termines the change of the velocity of sound in the sus- 
pension. This effect may be neglected here, however, 
since estimates show that the quantity 6, which is a 
measure of the relative change in the velocity of sound, 
is small. 

5. DUMBBELL-SHAPED PARTICLES 

The formulas derived in the preceding section enable 
one to calculate the bulk viscosity of a ferromagnetic 
suspension in terms of the coefficients g. To determine 
these coefficients themselves, however, one must solve 
the auxiliary hydrodynamic problem of flow around par- 
ticles of given shape, a s  was discussed in sec. 2. This 
problem is comparatively easy to solve for spherical, o r  
nearly spherical, particles. Below we shall consider an 
example in which the suspended particles have the shape 
of dumbbells whose balls a r e  slightly deformed spheres 
(see Fig. 1). This example demonstrates the change in 
the bulk viscosity that takes place when the particles 
stick together. The bulk viscosity increases in the ab- 
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sence of a field even when spherical particles stick to- 
gether, and when aspherical particles stick together the 
bulk viscosity becomes field dependent. 

The equation of the surface of a slightly aspherical 
particle can be taken in the form 

where a is the radius of the approximating sphere, f(9, 
p) is an arbitrary function of the spherical-coordinate 
angles, and c is a constant that may be called the 
asphericity parameter. The origin of coordinates and 
the mean radius of the particle can always be so chosen 
that the equations 

j f ( e .  p )  { :) sin o do dp=o 

will be satisfied. Limiting ourselves to the first order 
in the asphericity parameter, we can solve Eqs. (2.5) 
and calculate the force, the couple,C81 and the scalar 
part S of the stressesLa3 acting on the particle in the 
flowing liquid: 

Ft=-G~qoa(b,r-efia) uk, 

L,=-8nqoa3 (6,*-3&fra) or, S="/,fi (qo+3/i50)a3Q, 
(5.3) 

where 

Since we intend to calculate the coefficients of fric- 
tion for dumbbell-shaped particles, let us assume that 
the particle is displaced from the center of the unper- 
turbed liquid flow, and let us denote the displacement 
vector by 1. Since the velocity of the liquid no longer 
vanishes at the particles, the force F must be assumed 
to be proportional to the difference between the velocity 
of the particle and the velocity of the flow (2.1): 

Now let us displace the origin of a coordinate system 
rigidly fixed to the particle by the quantity - 1, thus re- 
turning it to the center of the flow (2.1). It is known 
(see Ref. 9, 0931 and 34) that in this case the force F 
and the angular velocity w do not change, while the quan- 
tities U, L, and S transform as follows (cf. the defini- 
tions (2.6) of L and S): 

Here the primes mark quantities referred to the new 
origin of coordinates. 

Now let us consider two particles each of which lies 
at a distance 1 from their common center of mass (we 
assume that the particles have equal masses). If we 
neglect the hydrodynamic interaction between the parti- 
cles, we can seek the force, the couple, and the stresses 
Sf, acting onthedumbbell-shaped particle as the sum of 
the contributions from the two component particles. To 

estimate the errors  made in such a calculation, let us 
consider, for example, a particle of radius a rotating in 
the medium with the angular velocity w. Then there will 
be a couple L1-qasw acting on the particle as a result 
of the frictional forces due to the surrounding liquid. If 
there is a second particle rotating with the same angular 
velocity o at a distance 1 from the first  one, then there 
will be an additional couple L,-q,a6w/l3 acting on the 
first particle (cf. Ref. 1, 820). The condition L, >> LIa 
reduces to the condition (a/l)' << 1. Thus, the interaction 
between the particles will be an order of magnitude 
weaker than the interaction of each particle with the 
principal flow, even if the particles touch one another, 
i. e., if 1 =2a. Now substituting (5.6) into (5.5) and then 
substituting (5.5) and (5.3) into (5.7) and noting that 1 
must be replaced by - 1 for one of the particles, we find 
without difficulty that the condition F = O  yields the re- 
sult u, =O(c) (here uf is the velocity of the center of in- 
ertia of the composite particle). Now by equating the 
total couple L, +Kt to zero, we can express the angular 
velocity of the particle and the quantity S in the form of 
Eqs. (2.9) and (2.10) with 

where we have used the notation q =la/$ and (fe), =f,#,, 
and the quantity f,, i s  to be understood here as the arith- 
metic average of the two tensors (5.4) for the two com- 
ponent particles. We have also assumed that the parti- 
cles a re  magnetized in the direction of the line joining 
their centers (i. e., that 1 is parallel to e). 

Let us use this result to calculate the bulk viscosity 
of the suspension. First, by substituting the scalar g 
from (5.8) into formula (4.8) and comparing the result 
with (1. I), we can easily see that even in the absence of 
a field the correction to the viscosity increases when 
the dumbbell-shaped particles a re  formed by more than 
a factor of two (more precisely, by a factor of 2 +3q/4 
if  we assume that cO=O; here we have used the fact that 
the volume concentration rp of the particles does not 
change when the particles stick together in pairs). But 
of course the magnetic-field dependence of the viscosity 
of the suspension is of greater interest since the com- 
posite particle, unlike its constituent particles, admits 
of a pseudovector g even in the first order in the aspher- 
icity parameter c .  According to Eqs. (4.11) and (5.8), 
the correction to the viscosity due to the field in the lim- 
it  f >> 1 has the form 

i. e., it i s  quadratic in the asphericity parameter. 

As a specific example of slightly aspherical particles 
let us consider spheroidal particles whose surfaces are  
described by the equation 

When the difference between the principal diameters of 
the spheroid is small this equation can be written in the 
form of Eq. (5.1) with 

31 7 Sov. Phys. JETP 46(2), Aug. 1977 M. A. Martsenyuk 31 7 



(the angle 0 is measured from the direction of the axis 
of the spheroid). Then calculating the tensor f,, with 
Eq. (5.4) we find 

where k, is a unit vector in the direction of the axis of 
the spheroid. Now by substituting (5.10) into (5.9) (and 
assuming for simplicity that the axes of the two spher- 
oids are parallel) we can easily see that the viscosity 
coefficient is proportional to 4. e)e((kx e) x 0)' and may 
vanish if the spheroid is magnetized either parallel or 
perpendicular to the axis. 

Thewauthor thanks G. Z. Gershuni and V. I. Cherna- 
tynskii for discussing the results. 
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A strong enhancement of magneto-optical effects (Faraday rotation of the plane of polarization of light, 
magnetic circular dichroism of the reflection) was observed when CdTe crystals were doped with Mn2+ 
ions. It was established that the effect reduces to splitting, of the band of the 1s exciton into five 
components in an external magnetic field. The splitting is proportional to the concentration and to the spin 
polarization of the system of the Mn2+ impurity ions. At the employed manganese concentrations (- 8 X 10" 
cm-') the effective field in which the splitting of the exciton band takes place reaches several hundred kilo- 
oersteds in an external field of 30 kOe. The change of the spin polarization of the impurity system upon 
saturation of the microwave EPR transitions of the Mn2+ ions decreases the splitting. The magneto-optical 
effects observed in the exciton band of the Cd~e:Mn'+ crystals, their dependence on the field H and on 
the microwave pump, and the polarization of the split components are all attributed to exchange 
interaction of the localized magnetic Mn2+ ions with the hole and electron contained in the free exciton. 

PACS numbers: 78.20.L~ 

INTRODUCTION 

Investigations of the exciton spectra of semiconducting 
CdTe crystals doped with certain ions (Fe, Mn) of the 
iron have shown that when these ions are intro- 
duced into the crystal a short-wave shift of the exciton 
line takes place. The magnitude of the shift depends 
strongly on the impurity concentration, but the exciton 
line itself does not disappear. Investigations of the in- 

fluence of the impurity on the character of the Zeeman 
splitting of the exciton band can yield important informa- 
tion on the singularities of the excitons in crystals doped 
in this manner. Taking into account the difficulty of ob- 
serving the Zeeman effect of a sufficiently broad exciton 
band in the CdTe : ~ n %  crystals, we have decided to mea- 
sure the Faraday rotation (FR) and the magnetic circular 
dichroism (MCD) of samples with different degrees of 
doping by ions. 
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