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Linear interaction of ordinary and extraordinary waves in a neutral current layer of a plasma is 
considered. The interaction is the result of violation of the geometric-optics approximation in a region 
adjacent to a plane with a zero magnetic field. The effectiveness of the interaction is determined by a 
parameter whose value is independent of the frequency. Analytic expressions for the degree of 
transformation are derived for the limiting cases of small and large values of the interaction parameter in 
comparison with unity; for arbitrary values of this parameter, the degree of transformation is obtained by 
numerical methods. The ~ssibil i ty is noted of using the effect in question for diagnostics of laboratory 
and cosmic plasma. 

PACS numbers: 52.40.Db 

Interest has noticeably increased in recent years in 
a theoretical and experimental investigation of neutral 
current layers containing a surface with a zero mag- 
netic field. This circumstance is due to a considerable 
degree to the role played by neutral layers in cosmic 
plasma, and namely in the origin of magnetospheric 
substormsL1' and solar flares. 

At the same time, current layers in a plasma can 
alter significantly the polarization of the electromag- 
netic radiation that passes through them. This phe- 
nomenon is closely connected with the new form of lin- 
ear interaction of ordinary and extraordinary waves in 
the inhomogeneous magnetic field that i s  characteristic 
of the current layer. This interaction effect, which i s  
considered in the present paper, can turn out to be use- 
ful for the diagnostics of cosmic o r  laboratory plasma. 
We note also that the singularities of the passage of 
electromagnetic waves through current layers in the 
solar corona help explain certain polarization charac- 
teristics of the radio emission from the corona (seec3s4] 
on this subject). 

1. PASSAGE OF WAVES THROUGH A CURRENT 
LAYER (QUALITATIVE PICTURE) 

In a cold magnetoactive plasma, the refractive index 
of the wave and its polarization a re  determined by the 
values of the parameters v = w;/w2 and u = w;/w2 and of 
the angle cu between the propagation direction in a sta- 
tionary magnetic field B, where w is the wave fre- 
quency, w, is the electron plasma frequency, and w, i s  
the electron gyrofrequency. The dependence of the 
square of the refractive index n, on the quantity uV2 
taken with the proper sign1) is shown in Fig. 1 (for con- 
stant cu and v). The numbers I and I1 on the figure stand 
for the numbers of the dispersion curves, and the sub- 
scripts j = 1, 2 of the refractive index n, label the type 
of the wave (I-extraordinary, 2-ordinary). For the 
plasma neutral-current layer, in which 

( I  is the coordinate along the propagation direction), the 

curves of Fig. 1 characterize also the function n?(l). 
The curves of Fig. 1 were plotted for  a, * n/2; they a re  
characterized by intersection of the dispersion curves 
at the point u'" = 0. If a, = n /2, the plots a re  qualita- 
tively different, and the intersection gives way to tan- 
gency of the dispersion curves at u " ~  = 0. 

The polarization of the waves in a tenuous plasma with 
v << 1 depends in thg geometric-optics approximation on 
the parameter 

u sin' a =-- 
- 4 c o s z a  ' 

If q2<< 1, then the propagation is quasilongitudinal, with 
circularly polarized ordinary and extraordinary waves; 
at q2>> 1 we have the quasitransverse case, which cor- 
responds to linear polarization of the waves of both 
types. The character of the polarization of these waves 
on opposite sides of the layer q2 - 1 is shown in Fig. 1. 

FIG. 1. Distribution of the squares of the refractive indices of 
the ordinary and extraordinary waves in a neutral current 
layer (a * l r / 2 ) .  The arrows and the c i rc les  near the disper- 
sion curves indicate the character of the polarization of the 
waves on opposite'sides of the layer q2 = (1 - v ) ~ =  1. 
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We assume from now on that in addition to the condi- 
tion v << 1, the inequality u << 1 is also valid within the 
limits of the current layer. The conditions for quasi- 
transverse approach q2>> 1 a r e  then satisfied only for  
angles that a re  close enough to n/2. Therefore in ex- 
pression (2) for q2 and later, in the derivation of Eq. 
(8), i t  is assumed that sin2a= 1. We note also that in 
the case v << 1, u << 1, there a re  no reflection points and 
singularities of the extraordinary wave nt in the current 
layer, and these will not be taken into account below. 

An analysis of the geometrical-optics approximation 
in the plasma current layer shows that i t  is violated 
for both waves simultaneously in the vicinity of the 
points where n1 =n2. There a re  three such points on 
the complex 1 plane: I = 0 and I =* (2i/b) cosa. The 
qualitative character of wave propagation under similar 
conditions was made clear earlier (c31, $7). It turned 
out that at sufficiently high frequencies (when u<< 1 and 
v << 1) it is determined by the value of the 'interaction 
parameter" 

Accurate to a numerical coefficient of the order of 
unity, this parameter is equal to the integral 

in the complex 1 plane between the points I = 0 and 
1 = (2i/b) cosa. 

If Go >> 1, then the geometric-optics approximation 
holds along the entire propagation route in the current 
layer. In this case, when an extraordinary wave i s  in- 
cident on the layer, the refractive index of the wave 
corresponds to the values given by curve 11. '' The po- 
larization of the wave fa r  from the plane B = O  (in the 
region of quasitransverse propagation q2<< 1) will be 
linear, with the vector E perpendicular to the plane of 
B and l(1 is a unit vector in the wave propagation direc- 
tion). Closer to the plane B =0, in layers where q2<< 1, 
the polarization becomes circular; on going through the 
plane B = 0, the designation of the wave corresponding 
to the curve I1 changes to "extraordinary," but the di- 
rection of rotation of the vector E in the wave remains 
unchanged. The wave then again reaches layers where 
q2 >> 1. The polarization again becomes linear, but the 
vector E now lies in the plane of B and 1, a feature 
characteristic of the ordinary wave. 

Thus, at Go>> 1 the propagation through a current 
layer takes place along one and the same dispersion 
curve, and i s  accompanied by rotation of the polariza- 
tion plane by n/2 in comparison with the polarization in 
the incident wave. The deviation of the character of the 
solution from the geometric -optic approximation in a 
narrow layer near I =0, where q2 << 1, leads to a sup- 
pression of the weak extraordinary wave that propagates 
"along the curve I" in the region I > 0. 

In the case of small values of the interaction param- 
eter, Go<< 1, the wave propagation through the thin layer 

is substantially different. A wide region where geo- 
metric optics is not valid is located on both sides of 
the plane B = 0, and q2 >> 1 on the edges of this region. 
Consequently, that part of the current layer near the 
plane B = 0 where q2 >> 1 lies entirely in the indicated 
region. A linearly polarized extraordinary wave enter 
ing from the left on Fig. 1 into this region does not 
change its polarization to fit the requirements of geo- 
metric optics, aswas the case at Go>> 1, namely, i t s  
polarization remains linear and the orientation of the 
vector E remains unchanged all the way to the emer- 
gence to the layer with q2 >> 1, which is located on the 
right of Fig. 1. Here, however, in the region where 
geometric optics holds again, this orientation of the 
vector E (in the direction of the vector B X  1) corre- 
sponds to an extraordinary wave with dispersion curve 
I. It follows from the foregoing that as  i t  propagates 
through a current layer under conditions when Go<< 1, 
the wave goes over from one dispersion curve to the 
other, but preserves is polarization. 

Finally, in the intermediate variant Go- 1, the di- 
mensions of the region where geometric optics is vio- 
lated a re  of the order of the distance between the layers 
q2 = 1 on the two sides of the plane B = 0. In this case, 
waves of equal intensity, corresponding to curves I and 
11, emerge to the outside of the current layer. These 
linearly polarized components a r e  mutally coherent, 
so  that they a re  subject to  the Cotton-Mouton effect. 
The resultant polarization of the radiation will depend 
on the phase shift produced between the waves in the 
current layer of the plasma. 

2. CALCULATION OF LINEAR INTERACTION 
IN TWO LIMITING CASES 

A quantitative investigation of the effect of linear in- 
teraction in a neutral current layer will be carried out 
here on the basis of the so-called "quasi-isotropic ap- 
proximation" developed by ~ r a v t s o v [ ~ '  for  the descrip- 
tion of wave propagation in a smoothly inhomogeneous 
weakly anisotropic tenuous plasma (u<< 1; v << 1). 

In this approximation, the high-frequency electric 
field in the inhomogeneous plasma is sought in the form 

1 
E = _ ( F , P , + F , & ) ~ X ~  ( i f  n d l ) ,  

Yn 

where n =(I- v ) " ~  is the refractive index in the isotropic 
plasma, dl is a length element of the ray, and el and e2 
a re  unit vectors of the polarization in a plane perpen- 
dicular to the tangent 1 to the ray. (The vector ex lies 
in the plane of B and 1, while the vector e2 is perpen- 
dicular to this plane.) The functions F1(l) and F2(l) a re  
then described by a linear system of equationsL8' 

d F ,  0 0 
-=- i  - u u  cos2 a F ,  + - uu'" cos aF,, 

d l  2c 2c 

dF,  0 0 
-=-- uu"' cos aF,-i - uuF,. 

d l  2c 2c 

In (5), a is the angle between B and 1; the torsion of the 
ray, due to the rotation of the force lines of the field B 
relative to the ray, i s  disregarded. 
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We approximate the magnetic field in the neutral 
current layer by the linear relation (1); we assume also 
that the plasma is homogeneous (v = const) and tenuous 
enough (v<< 1). The latter assumption allows us to ne- 
glect refraction and put a = const. Taking the foregoing 
into account and changing to new variables 

A= (ovb'l2e) ", 
\ (7) 
we obtain from the system (5) a nonlinear equation for 
the polarization coefficient K: 

dK - 9 i p t  ( i -F) +it2K. 
9 

Equation (8) contains only one parameter 

From a comparison of (9) and (3) it is clear that this 
quantity is connected with the characteristic interaction 
parameter Go by the relation 

Equation (8) can be easily solved at values of p that 
ensure satisfaction of the inequality I I << 1 along the 
entire route, including the interaction region. Then 
ip5(1- ~ ' ) = i p 5  and the solution of (8) is obtained in 
this case in elementary fashion. If the boundary condi- 
tion is K(5 = -*) = o , ~ '  which correspond to incidence of 
a linearly polarized extraordinary wave with vector 
E 11 e, on the current layer, the solution is 

To find the transformation coefficient that determines 
the effectiveness of the wave interaction we must know 
the value of KK* at 5 >> 1 (see Sec. 3). It follows from 
(11) that as 5 - + * we have 

where vf(0)= -0.459 i s  the derivative of the Airy func- 
tion for zero argument. In the change from (11) and 
(12) we took into account the fact that 

According to (12), in order for the obtained solution to 
be valid it i s  necessary to satisfy the condition p2<< 1. 

It is possible to obtain for (8) an asymptotic solution 
in the other limiting case p - *. This solution is close 
to that obtained by geometric optics practically in.the 
entire current layer, including the interaction region 
(see Sec. 1): The foregoing allows us to represent K 
in the form 

assuming that the wave incident on the current layer 
from the side of negative 5 corresponds to the dispersion 
curve II. The value of K,, in the geometric-optics ap- 
proximation should coincide with the corresponding 
value in a homogeneous medium (with the same param- 
eters u and v as at the given point of the inhomogeneous 
medium). In a homogeneous medium, however, d ~ / d [  
= O  and consequently the function K,,(5) in the current 
layer i s  subject to the relation 

Substituting (14) in (8) we obtain, taking (15) into ac- 
count, the following equation for x : 

Its solution subject to the boundary conditions x=O 
(i.e., K=K,d at the point 5 = -5, (to>()) i s  of the form 

To find subsequently the transformation coefficient 
in the case of large p we shall need the value of x k  at 
the point 5 =+ to  ; it is equal to 

The integrals in (18) with stationary point (5 =0) can be 
evaluated by the stationary-phase method. As a result, 
at fixed value of 5, and as p - * , we get 

The last equation takes into account, in agreement with 
(151, the fact that at the point 5 = O  the values of IK,,l 
and I dK,,/d[ I are  respectively 1 and 1/2p. 

3. COEFFICIENTS OF LINEAR 
TRANSFORMATION 

For a quantitative estimate of the effectiveness of the 
interaction, we introduce the linear-transformation co- 
efficient Q defined by the relation 

Here F:" and F:" are the amplitudes of the components 
of the field of the extraordinary wave with polariza- 
tions el and ez ,  respectively, passing through the inter- 
action region in the current layer. The coefficient Q 
characterizes the intensity of this wave relative to the 
total intensity of the ordinary and extraordinary waves 

I F1l '+ IF2I2. The quantity Q can also be expressed 
in the form 
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FIG. 2. The transformation 
coefficient Q vs. the inter- 
action parameter p in the 
linear layer (1). The 
dashed and solid curves 
represent the results of ana- 
lytic and numerical calcu- 
lations, respectively. 

where 

4. TRANSFORMATION I N  A SELF-CONSISTENT 
CURRENT LAYER 

The foregoing results a re  correct provided that the 
linear approximation (1) remains valid in the interaction 
region. In the self-consistent current layer of a plas- 
ma, however, the distribution of the magnetic field B 
and of the electron density N is more complicated. 
Thus, for  example, in a collisionless plasma with a 
Maxwellian distribution of the electron and ion veloc- 
ities in the plane B = O  the neutral current layer (the 
Harris layercT1) is described by the formulas 

Here L is the characteristic thickness of the current 
layer, Bo is the value of the magnetic field far  from the 
plane (B = 0) (at a distance I z I >> L), and No is the elec- 
tron density in this plane. 

In accord with (25), the variations of u and v along a 
ray passing through the current layer a r e  given by 

(the superscripts 1 and 2 in the parentheses indicate 
U=U, thz( l /L)  , v=u, ch-'(lIL). 

that the amplitudes F1 and F2 pertain to the extraor- 
(26) 

dinary and ordinary waves, respectively). In the where I =.z/sincu=z. The equation for the polarization 
change from (20) to (21) we took into account the fact coefficient K can then be written in the form 
that 

dK 
-= f e  E E 
dE 

ipg (1-K2) th - ~ h - ~  - + igZK thz - ch-2 - 
F~=F:"+F,'~', F ~ = - ~ K P ~ = - ~ K ~ ~ ) F : " - ~ K ( ~ ) F ~ ) .  (22) g g g g '  (27) 

where 
In the case p2<< 1 we have K"'=o and K'~ '=,  for  the 

waves in the region of the quasitransverse propagation, 
and I KI is defined by formula (12). Substituting these 
values in the expression (21) for  Q, we obtain 

In the other limiting case of large p (as p-m) we 
have calculated the value of xx* (19) at the point 5 =I0. 
Since the layer q2 = 1 corresponds to the value 5 = 2p, 
i t  i s  clear that a s  p - 03 we have q2<< 1 at a fixed point 
to and the propagation is quasilongitudinal. This means 
that K"' = 1, K ' ~ '  = - 1, and K is determined by relation 
(14) in which K,, = K ' ~ '  = - 1. Taking these equations into 
account, we obtain from (21) and (19) 

In the transition to the last expression we took relation 
(10) into account. 

Plots of Eqs. (23) and (24) for Q(p)  in the limiting 
.cases of small and large values of the interaction param- 
eter p a re  shown dashed in Fig. 2. Equation (8) with 
arbitrary p was solved by numerical means with a com- 
puter. The resultant Q(p) dependence is also shown in 
Fig. 2 (solid curve). It is clear from the figure that 
the transformation coefficient is close to unity in the 
region p << 1 and decreases rapidly with increasing p at 
p >> 1, in full agreement with the qualitative conclusions 
deduced in Sec. 1 concerning the character of passage 
of waves through a neutral current layer. 

The quantity w, in (28) and (9) now stands for the plas- 
ma frequency in the plane B =0, while w, stands for 
the electron gyrofrequency f a r  from this plane. The 
derivative dw,/dl in (9) is taken a t  the point I =0. 

Under the condition g>> 1, Eq. (27) goes over in (8), 
i. e., in this case the effect of the linear interaction in 
the self-consistent current layer will be characterized 
a s  before by the transformation coefficient Q on Fig. 2. 

The results of the numerical solution of (27) a re  
given for  several values of the parameter g in Fig. 3. 
It is seen from the figure that the Q (p) curves become 
nonmonotonic when g- 1, i. e., if the width of the ef- 
fective interaction region 16 1 5 1 is comparable with 
the characteristic thickness of the current layer g. 
We note also that the Q (p) curve for  g = 10 practically 
coincides with the results of the calculation of Q for 
the layer (I), shown in Fig. 2. From a comparison of 
the plots of Q(p) for different g it is clear that in tenta- 
tive estimates of the transformation coefficient Q one 
can use Fig. 2 not only a t  g >> 1, but also a t  g- 1. 

5. CONCLUDING REMARKS 

The investigation of the polarization properties of a 
wave passing through a current layer can serve a s  a 
convenient device for  plasma diagnostics. In fact, a t  
sufficiently low frequencies, at which the parameter g 
(28) becomes much larger than unity, the transforma- 
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FIG. 3. Plot of Q(p) in a self-omistent neutral current layer 
at fixed values of the dimensionless layer thickness g. The 
dashed curve is a plot of Q(p) a t  g =  10. 

tion coefficient Q ( p )  is described by the solid curve of 
Fig. 2, By measuring the relative intensity of the ex- 
traordinary wave emerging from the layer in the case 
when the wave incident on the layer is also extraordi- 
nary, we determine the value of Q by the procedure 
described in Sec. 3. Finding next the corresponding 
value of p from the plot of Fig. 2, we determine from 
the known values of the angle CY and of the magnetic 
field gradient d ~ / d l ,  with the aid of (9), the electron 
density No. If, on the contrary, we know No, then the 
indicated procedure allows us to assess the value of 
d~/dE in the current layer, 

It should be noted that the singularities of the propa- 
gation of electromagnetic waves considered above are  
typical of a stable (stationary) neutral current layer. 
The thickness L of such a layer must be large enough 
(seec8]). On the other hand if L i s  comparable with 
rBi(T,/T,)""at T, >> Ti) o r  if L- r, {when T, = Ti), 
then the layer becomes turbulized as a result of the de- 
velopment of Buneman and modified-Buneman instabili- 
ty on the longitudinal waves produced by the electric 
current in the layer (In the foregoing relations, r, and 
rBi are the gyrofrequencies of electrons and ions mov- 

ing with velocities (T,/rn,)"' and (~,/rn,)~') ,  respec- . 

tively.) At the same time a current layer of thickness 
L-r,, is destroyed as a result of the development of an 
instability at which the layer breaks up into individual 
clusters with a characteristic perturbation dimension 
A> 2nL, and the magnetic-field force lines are  reclosed 
through the layer. 

The author i s  indebted to Z. N. Krotova for help with 
the numerical computer calculations. 

')1n a current layer with a magnetic field parallel to the plane 
B= 0, the projection of the magnetic field on the propagation 
direction (i. e. , the quantity ~ ' / ~ c o s f f )  reverses sign on going 
through this plane. Instead of reversing the sign of cosff, 
we shall henceforth reverse the sign of u " ~ ,  assuming that 
cosff is constant. 

')we have in mind here the region v - 1 <u'12< 0 on the left in 
Fig. 1. It is assumed that in this region there is specified 
an extraordinary wave propagating towards positive ui12. 

 ore accurately speaking, a t  f < 0 and 15 I>> 1. To realize 
the latter inequality in the region u << 1, where Eq. (8) holds, 
i t  is necessary to satisfy the condition ( ~ / 2 b c ) " ~ > >  1. 

* ' ~ c c o r d i n ~  to the system of equations (51, the quantity \F112 
+ lFz12 remains constant along the ray, and is  consequently 
equal to the intensity of the extraordinary wave incident on 
the current layer. 
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