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We consider the evolution equations for non-linear waves which differ by small terms from equations 
soluble by the inverse scattering method (Korteweg-de Vries equation, non-linear Schrtdnger equation, 
and so on). We formulate a perturbation theory scheme which is based upon the inverse scattering 
method. Using this scheme we give an analytical description of the evolution of a soliton, including the 
deformation of its shape and tail formation as the effect of the perturbation in first approximation. We 
show that the found solution satisfies the whole infinite set of polynomial conservation laws, modifled for 
the perturbation case. 

PACS numbers: 03.40.Kf 

1. INTRODUCTION where 

The present paper is devoted to the problem of per- 
turbation theory for non-linear waves described by 
evolution equations of the form 

In the case (1.6) 

where S and R are  non-linear operators acting on u(x, t), 
c is a small parameter, and Eq. (1.1) a t  E = O  (unper- 
turbed equation) can be solved by the inverse scattering 
method. C"3'" This means, f i rs t  of all, that the unper- 
turbed equation can be put in the operator formcz3 

iaL/at+ [ L ,  A ]  =o, (1.2) 

where i (u )  and 424) a re  linear operators depending on 
u(x, t) and acting in a $-function space. The Korteweg- 
de Vries (KdV) equation 

belongs, for instance, to this class of equations. c'*21 In 
that case 

L ( u )  =-az/axz+rr, (1.4) 
2 ( u )  =-4ia3/ax3+3i(dlax) u f 3 i u a l a ~ .  (1.5) 

The operators (1.4), (1.5) a re  Hermitean (u is real). 
This condition is, however, not obligatory. For in- 
stance, in the case of the non-linear SchrEdinger equa- 
tion ( m S )  which describes the one-dimensional self- 
modulation o r  self-focusing of a plane-parallel beam, 

and of the modified Korteweg-de Vries (MKdV) equa- 
tion, which plays an important role in plasma physics, 

(the operator for? was found, respectively, in Refs. 3, 
4) the operators L and A a re  non-Hermitean and matrix 
operators. They can be written in the form 

for (1.7) 

For  the sake of si2plicity we do not give the form of 
the matrix operator C(u) which in both cases vanishes 
with the potential u(x, t) a s  I xl -m, since we do not need 
it.2' We shall not discuss here other examples of evolu- 
tion equations which can be reduced to the form (1.2) 
(at the present time there a re  rather many of those 
known), referring to the paper by Zakharov and  hab bat,'^' 
where a general study of this problem is made. 

The perturbation theory developed in the present pa- 
per is, like the solution of the equations which a re  re-  
duced to the form (1.21, based on the inverse scattering 
method. It turns out that for Eq. (1.1) with c +0 we can 
also introduce Jost functions and coefficients a and b 
which couple them. The wave field is established in 
terms of these coefficients and other parameters of the 
scattering matrix by means of a linear integral equation 
which has the same form a s  the equation obtained when 
we neglect the perturbation. The difference is that the 
perturbation completely changes the time dependence of 
the parameters of the scattering matrix. One of the 
basic results of the present paper consists in finding for 
the elements of the scattering matrix equations that de- 
termine their time dependence for a given form of ~ [ u ]  
(Sec. 2). These equations can then be solved by the 
"adiabatic perturbation theory" method which is devel- 
oped in the present paper using the example of the case 
when at the initial time the wave field consists of a sin- 
gle soliton. In the "adiabatic" approximation considered 
in Sec. 3 we obtain general expressions describing the 
change in the soliton parameters caused by the perturba- 
tion &R[u]. In the adiabatic approximation we neglect 
the distortion of the shape of the soliton and tail forma- 
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tion. These effects are described in the next, first, 
approximation (Secs. 4.and 5). In Secs. 4 and 5 we de- 
velop a method for finding "averaged" coefficients a and 
b in the first approximation (in &) which, after substitu- 
tion in the Gel'fand-Levitan equation and solution of the 
latter, lead to the general picture of "tail" formation 
and distortion of the soliton shape a s  the effect of the 
perturbation. It is interesting that in the asymptotic 
limit these processes can be completely described 
analytically for quite arbitrary ~ [ u ] ,  without having to 
invoke numerical calculations. Finally, in Sec. 6 we 
show that the results obtained by us are in complete 
agreement with the whole set of conservation laws, tak- 
ing perturbations into account. The averaged "tails" 
which were obtained in the framework of our method are 
thus completely equivalent to real tails from the point 
of view of their contribution to the whole set of poly- 
nomial conservation laws. 

In conclusion we note that the method can be general- 
ized also to many-soliton states. To avoid unnecessary 
complications we expound our theory using as examples 
the three above-mentioned equations: KdV, NLS, and 
MKdV. It is, however, clear from what follows that 
this does not restrict the general nature of the method. 

2. BASIC EQUATIONS 

If we write Eq. (1.1) for & = O  in the form (1.2), we 
can write it for & + 0 in the form 

6 

where R is an operator acting in the $-function space. 
In the case of the KdV equation it is  simply equal to the 
operator of multiplying by ~ [ u ] .  For the NSE and 
MKdV, we have, according to (1.8) to (1.11) 

We now coyider  the problem of the eigenvalues of 
the operator L which satisfies Eq. (2.1): 

We y e m e  c a t  there zxists also a solution of the equa- 
tion L+$= A*$, where L' i s  the Hermitean conjugate 
operator with respect to the scalar product ($, cp) 
=I: $*cp dx (in the matrix cases $cp =z, $,cp,). We now 
differentiate (2.3) with respect to the time. Using (2.1) 
we get 

For the continuous spectrum A,=O. For the discrete 
spectrum we take the scalar product of (2.4) with $ 
(from the left). In that case 

(We assume that ($, $) # 0. ) In particular, we get A, = 0 
when & = 0-a well known result which occurs when the 
evolution equation can be written in the form (1.2). In 

the latter case the eigenvalues of the discrete spectrum 
determine the amplitudes of the solitons which are 
formed from the initial wave pulse. 

Equation (2.5) gives only part of the information about 
the solution. It can be completed by other equations 
which in principle allow us to reconstruct u(x, t) to any 
approximation in the framework of the inverse scatter- 
ing method. We consider these equations firstly using 
the example of the perturbed KdV equation. 

We introduce the Jost functions corresponding to Eq. 
(2.3), assuming that 2 has the form (1.4). In that case 
(2.3) i s  the Schradinger equation. A positive k=k2 cor- 
responds to the continuous spectrum where each eigen- 
value is two-fold degenerate. The Jost functions in-that 
case are the eigenfunctions f and g of the operator L 
which have the asymptotic form 

j  ( 5 ,  k )  +elkr, z + m ;  g ( x ,  k )  +e-*=, x+-m. (2.6) 

We list the basic properties of the Jost functions, 
which are important for what follows (for proofs and de- 
tails see Ref. 6). We can write the function f in the 
form3' 

where K is  some real kernel, while 

Equation (2.3) has, apart from f and g, the eigenfunc- 
tions f * ( x ,  k) =Ax, - k) and g*(x, k) =Ax, - k) (it is im- 
portant here that k is real) and if k+ 0 then f * and 8 are 
linearly independent off and g, respectively. In that 
case 

g ( z ,  k ) = a ( k ) f ' ( x ,  k ) + b ( k ) f ( x ,  k ) .  
(2.9) 

f ( x ,  k ) = a ( k ) g " ( x ,  k ) - b ' ( k ) g ( x ,  k ) ;  

l a ( k )  I 2 = l + l b ( k )  1'. a e ( k ) = a ( - k ) ,  b ' ( k ) = b ( - k ) ,  
(2.10) 

where a(k) and b(k) are coefficients which play a funda- 
mental role in what follows. We note finally that 

So far we have considered the functions f and g for real 
k. We can analytically continue them into the upper 
half-plane where they have no singularities while 

It then follows from Eq. (2.11) that a(k) is  an analytical 
function in the upper half-plane. In that case 

so that a(k) can have only a finite number of zeroes for 
Imk> 0. (There are no zeroes for Imk =0, as  is clear 
from (2. lo).) The zeroes of a(k) are on the imaginary 
axis and they correspond to the eigenvalues of the dis- 
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crete spectrum k, = kF> 0. We shall denote them in what 
follows by k, = in, (n,> 0, r = l ,2 ,  . . . , n). It follows 
from (2.11) that for k=ix,  the functions f and g become 
linearly dependent (the quantity in the square brackets 
in (2.11) is the Wronskian), i. e., 

where the p, a r e  constant factors while 

where f,(x) =Ax, k,). It follows from this last  relation, 
in particular, that a:+ 0, i. e., all zeroes of a(k) a re  
simple ones. 

It is shown in scattering theory that the coefficients 
of the scattering matrix d k )  and b(k) for real  k, and the 
quantities characterizing the discrete spectrum, i. e. ,  

= - n:, a; p,, uniquely determine the kernel K(x, y) 
and, hence, the potential u(x) from Eq. (2.8). In 
fact, the kernel K satisfies the Gel'fand-Levitan 
equation' 4 ** 'I: 

where y > x ,  and 

In the cases  of the other f and A operators, the inverse 
scattering technique is in principle similar, but the non- 
Hermiticity and matrix nature of the latter may lead to 
some peculiarities which must be borne in mind. As 
typical examples which have an important physical value 
we consider the NLS and MKdV. As before, the basic 
equations a re  here (2.3) and (2.41, where J I  is a two-di- 
mensional eigenvector. However, tbe eigenvalues A a r e  
no longer necessarily real because L is non-Hermitean. 
For each eigenvector JI =(JIi, JI,) of Eq. (2.3) we can de- 
fine two vectors 

satisfying the equations 

as  one can easily check, using (1.8) and (1.9). It is 
also important that real A belong to the continuous spec- 
trum, and complex ones to the discrete one'. The Jost  
functions a re  for real  A defined a s  followsCi4': 

The latter relations differ slightly from the correspond- 
ing formulae for the Schrijdinger equation and this must 
be borne in mind in what follows. 

It was shown in Refs. 3 and 4 that flx, A) and g(x, A) 
can be analytically continued in the upper A half-plane 
where they have no singularities. The eigenfunctions 
of the discrete spectrum in the upper half-plane a re  
the analytical continuations of Ax, A) into the upper A 
half -plane, while the eigenvalues A = 3, a r e  the roots of 
the function a(A) which can also be continued into the 
upper half-plane by using (2.24). If a(C,) = 0 (Y = 1, 
2, . . .) we then have 

s!x, f.) = P , ~ ( x ,  S , ) ,  Q,' = - 1 = - i p r  j T ( ~ C . ) ~ ( Z . ~ . ) ~ X .  
-m 

(2.25) 
Similarly, one can obtain the eigenfunctions of the dis- 
crete spectrum for ImA< 0 by analytically continuing 
Bx, A) into the lower half-plane, while the eigenvalues 
a re  the roots of the function which is the analytical con- 
tinuation of a*(A) into the lower half-plane. 

We can write the vector functionflx, A) in the form 

while 

u ( z )  =-2 iKI ' (x ,  z ) .  (2.27) 

The analogue of the Gel'fand-Levitan equation now has 
the form ( y  >x)'i4' - " 
K , ( x ,  y;  t ) = F ' ( x + y ;  t ) -  S K , ( X ,  y"; t )  J ~ ' ( y + y ' ;  t ) F ( y ' + y N ;  t ) d y ' d y N ,  

i 

(2.28) 
where 

1 " b ( h , t )  
P ( x :  t )  = - --exp(iAx) d - i  e x  ( i  ( t )  2 29) 

2n -_ a  (h, t )  , a, ' ( t )  

From the relations given here it is clear that if the 
ratio of the Jost coefficients b/a as function of the time 
and also l;,(t) and the functions a:(t) and p,(t) a re  known, 
the solution of the Gel'fand-Levitan equations allow us 
in principle to reconstruct the evolution of the wave. 

In the case of the KdV equation one can start  from 
(2.3) and (2.4) and use the analytical properties of the 
Jost functions to show that the following equations hold 
for the parameters which occur in the Gel'fand-Levitan 
Ea. (2.16)'~': 

f ( ~ . h ) = ( f t . f ~ ) + ( O , l ) e ' " ,  x - c m ;  
g ( x ,  h ) = ( g , ,  gl)-+(l ,  O)e-''x, x - - m ,  

while, if ImA = 0, we have 

g(z7 A ) = Q ( ~ ) ~ ( X ,  h ) + b ( h ) f ( x ,  A ) ,  

f ( ~ , A ) = - a ( h ) g ( x ,  h ) + b ' ( A ) g ( x ,  A) ,  

(2.20) 
a a  ( k ,  t )  - i s  

(2.21) ---[a(k,t)a(k,k;t)+b(k,t)a(-k,k;t)], (2.30) a t  2k 

-- 
i s  

a b ( k ' t )  - 8 i k z b ( k ,  t ) - -  [ a ( k ,  t ) a ( k ,  - k ;  t ) + b ( k ,  t ) a ( k , k ;  t ) ] ,  
a t  2 k  (2.31) 

(2.22) -- d  
dpr 8x ,Jp ,  +-- '" dk [ p r a ( - k ,  i x . ) - p ( - k ,  ix.) ] k - 4 .  (2.32) 
at 2x,a,' 
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where, we remind ourselves, the x, are the eigenvalues 
of the discrete spectmm, 

The complete derivation of Eqs. (2.30) to (2.34) is  
given in Ref. 9b. The method of the derivation is rather 
general and can be applied also to other forms of Eq. 
(1.1) which can be solved in the framework of the in- 
verse scattering method when there are no perturba- 
tions. In particular, it was shown in Ref. 9b that the 
following equations which are similar to (2.30) to (2.34) 
are true for NLS and MKdV: 

t ) / a t = i e [ a ( h ,  t ) a  (A, h; t )+b (h ,  t ) a ( h ,  h; t )  1, (2.35) 
ab(h, t ) l a t= ih (h )b (h ,  t )+ i e [a (A ,  t ) a ' (h ,  h; t ) -b (h ,  t ) a ( h ,  h; t )  I ,  

(2.36) 
where 

- 
a ( h ,  h'; t ) =  j j ' (x ,  h; t )  R [ u ( x ,  t )  If (2 ,  A'; t ) d z  (2.38) 

-- 

and 

respectively for NLS and MKdV. The analogue of Eq. 
(2.32) has the form 

-- iep, d  
"' - *(C.)p. +Tx I p l a ( h  Cr)-B(L t) 1.-r,, dt 

(2.40) - - 
B (A, A'; t )  = F(2,  h; t )  R [ U ( Z ,  t )  ] f (x ,  h'; t) dx. 

-- 

We draw attention to the fact that Eqs. (2.30), (2.31) 
and (2.35), (2.36) are the same as the unitarity condi- 
tions (2.10) and (2.23). 

Equations (2.5), like (2.30) to (2.32) or, respectively, 
(2.35), (2.36), and (2.40), are exact and they are the 
basis of the perturbation theory developed here. In 
principle they allow us to find the soliton amplitudes and 
the Jost coefficients a ( ~ ,  t) and b(A, t) to a given approxi- 
mation in the matrix elements calculated to a lower ap- 
proximation. Mterwards through a and b one calculates 
the kernels occurring in the Gel'fand-Levitan equation, 
and after solving that equation one evaluates the wave 
field u(x, t). We demonstrate the general nature and the 
efficiency of this method by two approximations of the 
perturbation theory which we shall call the adiabatic and 
the first approximation. In the present paper these ap- 
proximations will be applied to a study of the evolution 
of a single soliton acted upon by the perturbation. 

3. ADIABATIC APPROXIMATION 

We start for the sake of simplicity with the perturbed 
KdV equation. Let there be at some time t a wave pulse 

which has the shape of a soliton 

When n = const, 5 = 4n2t + to, (3.1) describes a soliton 
which satisfies the KdV Eq. (1.3). In the adiabatic ap- 
proximation considered here we substitute (3.1) and the 
Jost functions corresponding to it with the so  far unde- 
termined parameters x = n(t) and 5 = 5(t) into the matrix 
elements (2.33) and (2.34). We can then obtain from 
(2.5) and (2.32) several equations for u(t)_and 5(t). To 
do this we first of all solve Eq. (2.3) for L in the form 
(1.4) and u =u,(x, t) and find the Jost functions 

f ( z ,  k )  =el"(k+ix th [ x  (x-E) 1) (k+ ix )  - I ,  

(3.2) 
g(x ,  k)=e-""{k-ix th [ x ( x - g )  I} (k+ ix ) - ' .  

Hence we find 

(the last equation corresponds to the fact that the poten- 
tial (3.1) belongs to the class of "non-reflecting" poten- 
tials). The discrete spectrum consists here of a single 
eigenvalue which is the same as - n2 (n, = n) and satis- 
fies the equation a(k) = 0. The eigenfunctions Ax, in)  and 
Ax, in) corresponding to it are linearly dependent: 

g(x ,  i x )  =pf ( z ,  i x ) ,  p=exp ( 2 2 4 ,  f ( x ,  i x )  = ' / , exp ( -xg )  sech z .  

(3.4) 
Substituting X = - u2 into (2.5) and p, = p, n, = w into 
(2.32) we get 

dx  e ---- R [ u . ( z )  ]sech2 z dz,  
dt 4% -_ 

For 6 = O  the well known results of the zeroth approxi- 
mation follow from this. We note also that if R[u,(z)] 
is an odd function of z, the perturbation does in first 
approximation not affect the soliton amplitudes, but it 
does affect its velocity; i f ,  however, ~[u , (z ) ]  is an even 
function of z the soliton amplitude is  changed and its 
velocity depends on the amplitude in the same way as 
for & = O .  

To illustrate this we consider some examples. 

1. Let ER[U] =YU so  that Y has the meaning of a field 
instability growth rate. In that case 

2. Let R[U] = 8'u/8x2, i. e., we have the Korteweg- 
de Vries-Burgers equation (see, e. g., Ref. 10). In 
that case 

The corresponding expressions for x(t) were obtained 
earlier in Refs. 11, 12 by other means. In our case 
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they a re  the result of a simple approximation. 

We finally evaluate with a view to further approxima- 
tions the matrix elements ff(k, i k) in the adiabatic ap- 
proximation for a single soliton. Substituting (3.2) into 
(2.33) we find 

a ( k ,  - k )  = f ( k - i x  i h  z ) z ~ [ C ( z ) ] r - ' t k z ; z  dz ,  (3 .  10) 
x  ( k - i x )  '-_ 

One can obtain similar results for NLS and MKdV. We 
look here for the soliton pulse in the adiabatic approxi- 
mation in the form 

ticular, satisfied for real  u, ~ [ u ] .  If, therefore, ini-' 
tially us is a real  quantity ( p  = 6 = 0) and I ~ R [ U ]  = 0, p 
= 6 = 0 for all t. 

For  the NLS and pGO, Eq. (3.17) was recently ob- 
tained in Ref. 13. This result was found by means of 
one of the conservation laws. However, the problem 
ar ises  what happens to the remaining conservation laws, 
of which there is an infinite number (in particular, do 
they not lead to new equations for the soliton parame- 
ters?).  The problem of the interrelationship between 
the perturbation theory considered here and the conser- 
vation laws is discussed in Sec. 6. 

As an illustration we consider the example when &R[u] 
=yu (Y is the growth rate). In that case condition (3.20) 
is satisfied. As a result we get for the NLS 

u, ( x ,  t )  =2v sech z  e s p  (ipz/v+iI3),  z=2v ( x - p ) ,  (3.11) 

where p(t), ~ ( t ) ,  t(t), and 6(t) must be determined. Sub- 
stituting (3.11) and (1.8) into (2.3) we find the Jost  func- 
tions and coefficients: 

e s p  ( i l z / 2 v +  ihE) v sech z  e s p  ( - i p z l v - i s )  
j\x,A)= 

A-p+iv ( A - @ + i v t h z  ) (3.12) 

The discrete spectrum consists here of a single eigen- 
value 

One verifies easily that the functions A x ,  A) and g(x, A) 
for A =  5 become proportional to one another: g(x, 5) 
= PAX, 51, 

p=i e s p  (is- if:). (3.15) 

For 5, = 5, p, = p ~ q s .  (2.5) and (2.40) give 

d p  E - t h z  - = - Im j - R [ u S ( 3 )  ]e-ap",-'6 
dt 2 ch z 

dz, 
- x 

- 
dZ 
-=-- ' ~m h ( b )  + + R. I ~ R [ u .  ( ~ ) l r - + ~ : l ~ - ~ ~  dz.  
dt 2v 4' - %  ch z  

dI3 d; - 1-2 thz 
- = 2 p - + ~ e h ( j ) +  LI~I  - R [ u ,  ( z )  ] e-'":'v-'d dz .  
dt dt 2v 

- x  
r h  z 

(3.19) 
Of particular interest a re  perturbations for which 

dp/dtn 0. For such perturbations p r 0, if initially we 
had p =O.  The condition which the quantity ~ [ u ]  must 
satisfy in order that we may assume that pEO has the 
form 

t h z  
Im j - R [ o , ( z )  ]e-"dz=O 

- = c11 z 

The physical meaning of the condition p 5 0 for the NLS 
consists in that then the soliton velocity d</dtm& a s  one 
can easily check from (3.18) and (2.39). 

For the MKdV equation condition (3.20) is, in par- 

where vo>O, pO, to, and 60 a re  arbitrary constants. 
For the MKdV we shall have 

vu2 
P = ~ o ,  v=v0 e s p  ( Z y t ) ,  e = -- [ e x p ( 4 y t )  - l l  - 1 2 p ~ t + ~ ,  

We finally give the expressions for the matrix ele- 
ments ff (A, A), Z(X, X) which occur in (2.35), (2.36) in 
the adiabatic approximation: 

- - R 1 u .  ( z )  ] e-z'wr'r-'r 1 dz.  
chZ z  

a 0.. ?.) = -- I j 1 ( 1 . - ~ + i v  t h  z ) R S t u ,  ( z )  leruz/~+16 
21L-fI2-_ 

dz 
+(I . -p- iv  t h z ) ~ [ u , ( z )  ]e-'uZ"-" I-. (3.24) 

ch z 

In the adiabatic approximation considered here we 
neglected the change in the shape of the soliton and the 
growth of the "tail" a s  the result of the perturbation. 
These effects a re  determined by the deviation of the co- 
efficients a(A, t), b(X, t) from their "non-reflecting" val- 
ues (3.3) o r  (3.13). As these deviations grow the wave 
increasingly differs from a soliton s o  that the validity 
of the adiabatic approximation is violated when time 
moves on. These effects will be analyzed in detail in 
the following sections where the next approximation is 
considered. 

4. EVOLUTION OF KdV SOLITONS AS THE EFFECT 
OF PERTURBATIONS (FIRST PERTURBATION 
THEORY APPROXIMATION) 

The f i rs t  perturbation theory approximation which 
follows the adiabatic one allows us  to describe the dis- 
tortion of the shape of the soliton and the growth of the 
tail. We consider here this approximation for the per- 
turbed KdV equation. 

We look for  a solution of the perturbed KdV equation 
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in the form 

where z was defined in (3. I), ~ ( t )  and t(t) satisfy Eqs. 
(3.5) and (3.6), and w(z, t) is a function which is not yet 
known, and to fix the ideas we assume that w = 0 when 
t = O .  Moreover, we write the functions K and F in the 
Gel'fand-Levitan Eq. (2.16) in  the form 

where K, and F, correspond to the soliton: 

F, ( z )  =2x exp [ x  (2E-z) 1. 

Unless i t  causes confusion, we drop here and henceforth 
the time t on which these functions depend a s  a param- 
eter. Using the fact that us in (4.1) corresponds to Eq. 
(2.16) for K=Ks, F =F, and assuming that the functions 
w, 6K. 6 F  a re  f i rs t  order quantities ( a  &) we get in the 
first  approximation 

- 
= - 6 F ( z + y ) -  K.(z, y 1 ) 6 F ( y + y ' ) d y = Q  ( z ,  y ) .  (4.6) 

* 

The function 6F(x) has then, according to (2.17) the 
form 

1 " b ( k )  i, 
6 F ( z ) =  - I -e  dk,  

2 n  -_ a ( k )  

and a(k, t) and b(k, t) satisfy the se t  (2.30), (2.31). 

The solution of Eq. (4.6) has the form 

" 
6 K ( z ,  y ) = K . ( z ,  y)e" j Q ( z ,  y ' ) e - * ~ '  d y f + @  (s, Y ) ,  (4.8) 

as one can easily verify through direct substitution. 
Substituting now (4. I), (4.2), (4.4), and (4.8) into (2.8) 
we get 

1 d  " b ( k )  k+ix th z  2 ,kE  +rtrz,x 
w ( z ) = - - -  j 

2nx dz -- m ( ~ )  d k .  (4.9) 

For the calculation of w(z)  i t  is thus necessary to deter- 
mine first  of all the ratio b/a. As the quantity b/a, 
like w, is formally a f i rs t  order quantity, we can deter- 
mine i t  from the s e t  (2.30) and (2.311, neglecting terms 
a cb on the right-hand sides. As a result we would get 
the expression 

However, this expression becomes invalid in the vicinity 
of k = 0, as the small  parameter c occurs in  the se t  

(2.30) and (2.31) in  the combination c/k. The small  k 
region is very important, as can be seen from what 
follows. We must therefore determine b/a in that re- 
gion without using the fact that c/k is small. 

To study that problem, we consider the relation 

where 6b(k)/6u(x) is the variational derivative of the co- 
efficient b(k), considered as a functional of the potential 
u(x). According to Ref. 14 

where f and g a r e  Jost  functions. Substituting this ex- 
pression into (4.11) and using the fact that for u =u, we 
have Eqs. (3.21, (3.3) we get 

b ( k ,  t )  =exp 1-2ikE(t) ] 6 ( k ,  t ) ,  (4.12) 

(It-ix th z )  ' w  ( z )  e-2'k"x d i .  (4.13) 

We shall now assume that b(k, t) is a quantity which 
varies slowly with time and we define 

Differentiating (4.12) with respect to the time we get 

a b ( k ,  t ) / a t = - 8 i x 2 [ k + i x a ( k ,  t )  ] b ( k ,  t )  + O ( e Z ) ,  (4.15) 

where we used (4.14), (3.6) and neglected terms of or-  
der c2. NOW substituting (4.15) into (2.31) we get 

For  sufficiently large k we can neglect terms contain- 
ing u and & in the denominator and (4.16) changes to the 
non-oscillating term in (4.10) (since b/a occurs in (4.7) 
under the integral sign in the integral over k, the con- 
tribution from the oscillating terms is small  for not too 
small  k). On the other hand, for small  k the t e rms  with 
u and E in the denominator in (4.16) a r e  very important 
and here (4.16) differs from the expression (4.10). 

In particular, i t  follows from (4.16) that 

This result is in correspondence with the general prop- 
ert ies of the Jost  coefficients for the SchrSdinger equa- 
tion and, for instance, when b(k) has a singularity for 
k =O, a(k) has the same singularity while their ratio is 
given by Eq. (4.17). c6' 

From what we have said earl ier  i t  follows that a s  &a 
and o a re  small  and play an important role only when k - 0, we can make the substitution in (4.16) 
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where according to (3.9) one checks easily, after integrating by parts, that 

- 
q= ( 1 / 4 x 5 )  j R [ u . ( z )  ]thZ z  dz.  (4.19) 

-- 

Performing this substitution and substituting (4.16) into 
(4.9) we get the following expression for the correction 
to the soliton: 

where we have also substituted the expression for the 
matrix element (3.10). When I cq/u2 1 , 1 u 1 << 1 we 
have4' 

ieq - ieq 
P I = -  - ( l + V l - e q / o Z ) - ' = -  - 

20 40 ' 

After integrating over p in (4.21) we must put PI-  0, as 
in (4.20) the small parameter & is already contained a s  
a factor and i t  would correspond to excessive accuracy 
to assume that pi + 0 after integration (the term &a in 
the denominator in (4.16) thus serves solely to deter- 
mine the correct way of going around the pole a s  k- 0). 

It follows from (4.21) and what has been said earlier 
that the asymptotic form of v(z) has the form 

where e(x) = 1 (x> 0), O(x) = 0 (x < 0). We find from 
(4.20) and (4.23) that whatever the signs of u and cq 

In particular, using (4.24) we can determine the quantity 
u which was earlier introduced purely phenomenologi- 
cally. To do this we note that i t  follows from (4.13) for 
small k that 

where we have used the relation 

- 
J w ( z )  sech2 z  dz=O, 

-- 

which can be proved a s  follows. Rewriting Eq. (4.9) 
in the form 

d "  
w ( 2 )  = - cp ( p )  (p+i  th 2)' erp (2 ipz)  dp,  

d z - _  

- 
d  sech2 z  

I ( p ) = -  J ( p + i t h z ) ' -  exp (2 ipz)  dz.  
- - dz 

Integrating I(#) by parts we get zero. 

It follows from (4.24) and (4.25) that 'i;- icxq/4uk as 
k - 0. Substituting this into (4.14) and neglecting terms 

c2, we get du/dt = - 8x3u which leads to 

where ti is an arbitrary integration constant. Bearing 
in mind that x ( t )  and q(t) a re  slowly varying functions 
of the time we can write 

(the above-made assumption 1 ul << 1 (see (4.14)) is cor- 
rect  when t >> ti). Another restriction is connected with 
the condition I cq/u2 1 << 1 (see footnote4). The above 
obtained results a r e  thus applicable in the region 

where we have introduced two characteristic time 
scales 

We can call the quantity t, the characteristic soliton 
time scale; after this time the soliton is displaced over 
a distance of the order of i t s  length, t, is a time scale 
caused by the perturbation (it is clear from (3.5) that 
after a time tp the amplitude of the soliton is signifi- 
cantly changed due to the action of the perturbation). 

We have thus established that u decreases with time 
as  t,/t and the area  of the deviation of the wave pulse 
from the soliton increases, according to (4.24), pro- 
portional to the time (in the region (4.29)). 

We now turn to Eq. (4.20). Evaluation of the integral 
(4.21) leads to the following result: 

As far  a s  w3(z) is concerned, this function has a rather 
complicated form s o  that in the interest of succinctness 
we restrict  ourselves in listing i ts  most important char- 
acteristics. 

We shall assume that ~[u, (z)]  decreases sufficiently 
fast a s  1 zl - *. In that case wi(z) also decreases fast 
as  z -*, but decreases very slowly a s  z - - *. The 
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function w2(z) is localized approximately in the same 
region as the soliton, but it has a relatively large am- 
plitude (of the order &/a). This amplitude increases 
proportional to t/t,. It is interesting that this term is 
absent when &q>O. Finally, wS(z) a & and is character- 
ized by the following asymptotic behavior a s  1 z l - =? 

E sign z  
w, ( z )  * - - z2e-21z1 dz' 

8%" f R~U, (Z , )  I =. 
- m 

We see that while w2(z), wS(z) describe the distortion of 
the shape of the soliton proper, the function wi(z) char- 
acterizes the formation of a tail at the soliton, the 
length of which increases a s  l/um t/t, As a conse- 
quence of our method of solution we obtained an "aver- 
aged" tail. However, it can be seen from the results 
of Sec. 6 that due to its contribution to the conservation 
laws i t  is equivalent to a true tail which has an oscillat- 
ing structure. 

As illustration we give two examples which a re  of in- 
dependent interest. 

1. Let &R[u] =YU. In that case Eqs. (4.20) and (4.21) 
give 

th  z  +-- 1+2z ( th  2 - 1 )  +t th  z ] )  
chZ z  

2. ~ [ u ]  =u, (K~v- urgers equation), & > 0. In that 
case 

8 44 t h z  

6 t h z  82 --- + - ( 1 + 2 t h z ) - - t h z  
5 ch'z 15 

So far we have assumed that q #  0. The case q = O  re- 
quires a separate consideration and will not be discussed 
here. 

5. ACTlON OF PERTURBATIONS ON NLS AND MKdV 
SOLITONS I N  THE FIRST APPROXIMATION 

We write the correction to the soliton in the adiabatic 
approximation (3.11) in the form 

Gu(x, t )  =2vw(z ,  t )  exp [ i (G+pzlv)  1, z=2v(x-E) ,  (5.1) 

while we write the functions K and F in the Gel'fand- 
Levitan Eq. (2.28) in the form 

where the index s distinguishes the appropriate quanti- 
ties for the soliton: 

In that case 6Ki(x, y) satisfies the equation - * 

6 K 1 ( x ,  y ) +  6 K , ( z ,  y") 5 F.'(Y+Y'JF.(Y'+Y")~Y' dyM=Q(z ,  Y ) ,  

Q (x ,  Y )  -6F' (x ,  Y )  (5.5) - m 

- ~ K , . ( x ,  y") j [F.'(y+y')GF(y'+yN) +6F'(y+y')F,(yr+y") Idy' dy". 

(5.6) 
@(x, y) is considered a s  a known function. The solution 
of Eq. (5.5) has the form 

whence, using (2.271, (5. I), (5.3), and (5.4) we find 

where a and b satisfy the set  (2.35) and (2.36). We 
further apply the method already employed in the pre- 
ceding section, namely, we bear in mind that b is a first  
order quantity and write 

The variational derivatives for this case a re  evaluated 
in the Appendix (see (A. 2)). We take the components of 
the Jost functions from (3.12), (3.13), and 624 from 
(5.1). As a result we get 

b(h ,  t )  =exp i [ G ( t )  -2he( t )  16 (A, t ) ,  (5.9) 

6 ( h , t ) =  j [ (A-P-iv th ~ ) ~ w ( z )  -u2sech' Z W . ( Z )  1 
(A-p)2+vZ-_ 

x exp i ( p - ~ ) - - ]  dz,  [ t 
By analogy with (4.14) we introduce the quantity 

~ ( h ,  t )  = - ih - ' ( t )d  In b (h,  t ) / a t ,  (5.10) 

and we shall assume in what follows that l U(X, t) I << 1. 
Differentiating b(X, t)  in (5.9) and using (5.10) we find 

Substituting this into (2.36) we get 

b 0 , )  ca'(h, h )  
-= 
a ( h )  6,-2hE,-h(h) + h ( c ) o ( h ,  t )  + € a  (h, h )  ' 

We now apply these relations to the NSE. In order to 
avoid cumbersome formulae we restrict ourselves now 
to the case when the perturbation satisfies condition 
(3.20) which enables us to assume p = 0. One can also 
reduce the more general case (p  # 0, R a linear opera- 
tor) to the case IJ. = 0 in  the first  approximation by 
means of a transformation of variables, which means 
in actual fact to a transition to a frame of reference in 
which the soliton is "almost a t  rest." 
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Substituting t t  and 6, from (3.18), (3.19) into (5.12) 
and h(k) = - 2k2 one can easily check that in contrast to 
the perturbed KdV equation the small terms with & and 
a in the denominator in (5.12) a r e  unimportant as  it 
does not vanish, even without them. As a result we get 

We note that we could have obtained the same result di- 
rectly by integrating Eq. (2.36) with the small term with 
b dropped from the right-hand side. 5' If after that we 
drop the terms which a r e  fast oscillating for sufficiently 
large t and which give a small contribution when we in- 
tegrate over k, one obtains (5.13). One can thus say 
that (5.13) is obtained from the exact expressions after 
some averaging and that i t  is the asymptotic ratio, valid 
for sufficiently large t. 

Using now a(X, A) (see (3.23)) and substituting (5.13) 
into (5.8) we get after integrating over A 

dz' 
W ( 3 )  = -- - [ A  ( z ,  z ' )H[u , ( z ' )  ]e-"+B(z, z ' )R ' [u8 ( z ' )  Ie"] 

32iv'ch2: {-! ch2 2' 
(5.14) 

where 

A ( z ,  z') =ch2 z'eZT"+ 4 ch z ch z'+chZ ze-'-"-39, (z-z')  (e' ch z' 
+e-" ch z )  + 3 ~ P ~ ( z - z ' )  ch (z -z ' ) ,  

B ( z ,  z') =e:'-'(ch%+ch2 z') - 39 , ( z - z ' )  (ez'  ch z+e-. ch z') (5.15) 
+39'2(z-3') ch ( z + z f ) ,  

9, ( z )  = l+2/3z, 9 ' 2  ( 2 )  = l+z+'j3z1. 

It has been assumed here, of course, that R[U,(Z)] de- 
creases sufficiently fast a s  l z l - so  that all integrals 
converge. 

We get the asymptotic behavior of w(z) from (5.14), 
(5.15): 

- Y *  

(5.16) 
We see that here no tail is formed and w(z) a 6. 

As a simple, but important example we consider the 
case when &R[u] =YU (i. e., Y i s  a growth rate). We 
then find from the relations obtained 

. We now turn to the MKdv equatioh and restrict our- 
selves for the sake of simplicity to R[u] so  that we can 
assume that 6 = p 0. We note also that for a * 0 the 
denominator in (5.12) does not vanish for real A. If we 
neglect terms a & and use the fact that now h(X) =8h3, 
we can write 

where, a s  for the KdV equation, we substituted a(X, t) 

- o(0, t) = a (as, due to a(X, t) being small this term is 
important only when A- 0). Putting A- 0 in (5.18) and 
a(X) = a,(k) = (X - f)/(X - f *) - - 1 and substituting this into 
(5.11) for A- 0 we get an expression for a: 

valid for t>> t,. Our assumption that a is small is thus 
justified for sufficiently large t. 

Finally, substituting (5.18) into (5.8) we get after in- 
tegrating over X an explicit expression for w(z). The 
latter, however, turns out to be rather complicated so  
that we here only give the asymptotic behavior following 
from it: 

Furthermore, we can obtain a simple expression for the 
complete integral of the perturbation. Putting p = 0, 
X = O  into (5.9) we get 

This relation is valid both for the MKdV and for the 
NLS. We can evaluate the quantity b(0, t )  respectively 
from (5.13) and (5.18): 

eei6 - 
b (0, t )  = - - [ th2  z R [ u .  ( z )  ]e-'b+sech2 zR'[u. (z )  ]e ib]dz  (NLS), 4v3 -_ 

(5.22) 
- 

b(0 ,  t )  =A j R [ u . ( z )  ldz (MKdV), 
16iov'-_ 

(5.23) 

where we used Eq. (3.23). The integral (5.21) for the 
MKdV thus increases proportional to t (corresponding 
to the tail "growth") while i t  is constant for the NLS. 

Finally, we consider the condition of the applicability 
of the results obtained. They a r e  restricted by the con- 
dition I b(h, t) I << 1. Since, a s  can be seen from (5.91, 
I b(X, t) I 5 I b(0, t) I and using (5.22), (5.23) we find that 
the conditions I b 1 << 1, a << 1 reduce for the MKdV to 

Here t, i s  a characteristic time produced by the per- 
turbation. For the NLS I b(0, t) 1 & even for sufficiently 
large t. 

6. SATISFYING THE CONSERVATION LAWS BY THE 
FIRST APPROXIMATION SOLUTIONS 

For Eqs. (1.1) with & = O  there is an infinite number 
of conserved quantities (invariants) of the form 
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where the qn[u, u*] a re  polynomials of the functions u 
and u* and their spatial derivatives. For the KdV, NLS, 
and MKdV equations these invariants were found and 
studied in Refs. 15, 3, and 4. When E f 0 these quanti- 
ties a re  no longer conserved, but one can obtain a sim- 
ple expression for their time derivatives, namelyct6': 

(6.2) 
where, for instance, 61n{u, u*l/6u(x) a r e  the variational 
derivatives of the functional I,{U, u*} with respect to u 
at the point x for fixed u*. We shall call Eqs. (6.2) the 
conservation laws, modified for the case of perturba- 
tions or, briefly, the modified conservation laws. 

We apply Eqs. (6.2) to a study of the evolution of 
solitons under the action of perturbations to first  order 
in E. In that case we can put in (6.2) 

where the index s indicates quantities evaluated for soli- 
tons. On the other hand, we can write the left-hand side 
of (6.2) in the form 

We now show by the example of the KdV equation how 
one can evaluate the variational derivative "at the soli- 
ton." In this case we can use the following relations"": 

Substituting (3.2) into (6.5) and varying (6.4) with re-  
spect to u(x) we find 

We now substitute (6.3) and (6.6) into (6.2) and use the 
fact that 

(One can obtain this relation from (6.4) if we substitute 
(3.3) into the left-hand side and afterwards expand i t  in 
powers of x / k .  6') The derivatives dx/dt occurring on 
the left-hand side of (6.2) can be taken from (3.5). Tak- 
ing only terms = E into account we then find that the in- 
finite set  of Eqs. (6.2) leads in all to two equations 
for w: 

maining conservation laws (n 2 2) lead to the single Eq. 
(6.9). Since, a s  we saw above, w(z, t) satisfies condi- 
tion (4.26), i t  also satisfies Eq. (6.9). Further, sub- 
stituting (4.24) and (4.28) into (6.8) and restricting 
ourselves to terms c, we can satisfy ourselves that 
(6.8) is also satisfied. The solution of the perturbed 
KdV equation found by us thus satisfies the whole in- 
finite set  of modified conservation laws (6.2). 

We now apply Eqs. (6.2) to the NLS and MKdV. In 
that case one has instead of (6.4) and (6. 7)c31 

c4 

In a (A) --- (i/2h) "I,, (6.10) 
"-1 

and instead of (6.5) Eq. (A. I), obtained in the Appendix. 
Substituting into (A. 1) instead of fi and gt their values 
for the soliton from (3.121, (3.13) for p = O  and expand- 
ing in powers of v /A  and after that comparing the ex- 
pressions obtained with the appropriate variations of 
(6.10) we get 

6 I r m  ' th z [-!&..I , =- IW] . = - ( 2 ~ ) ~ ~ - e - ~ ~  
chz ' 

where m = l ,2 ,3 ,  . . . . Finally, we substitute (6.3), 
(6. l l ) ,  to (6.13), and (5.1) into (6.2) and after that use 
(3.17). As a result we find that all conservation laws 
with odd n lead to the relation 

and with even n to 

d " t h z  
-1m I-w(z)dz ]e-radz=O. (6.15) 
d t  

- % 

ch z 2v - x 

In (6.15) we have used the fact that in the case p = 0, 
which is considered here, (3.20) holds. 

We now check that the sohtions found by us satisfy 
the conditions (6.14), (6.15). Substituting (5.8) for p 
= O  into the integral from (6.14) and integrating over z 
we get 

The right-hand side of this equation is purely imaginary 
and, hence, its real part vanishes. Thus, (6,14) is 
satisfied. Similarly, we can check that (6.15) is satis- 
fied. All these results a re  valid both for the NSE and 
for the MKdV. If in the latter we assume that u(x, t) is 
a real function we are, by integrating the perturbed 
MKdV equation, to an additional conservation law 

d -J u d x - e  5 R r u l d x  
at 

where (6.8) follows from (6.2) for n = 1, while all re- 
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(this relation is not valid for the complex MKdV equa- 
tion and i t  is, of course, not contained in the above dis- 
cussed conservation laws). Putting u =us + 6u in (6.16) 
and using (5. I), where p =6 = 0, we get in the f i rs t  ap- 
proximation 

- -- -- 

Substituting here (5.21), (5.23) and using (5.19) we 
verify that also this equation is satisfied by the solu- 
tions found by us. 

Thus, notwithstanding that for our method of solution 
w(z)  is an averaged correction to the soliton, in all 
cases considered it satisfies all conservation laws with 
perturbations included. 

APPENDIX: VARIATIONAL DERIVATIVES OF THE 
JOST COEFFICIENTS FOR THE NSE AND MKdV 

Varying the equation i$ =A$ for from (1.8) we find 

a o o 
( ~ - - k ~ - h ) ~ = 6 ( ~ - ~ ' )  d z  6 u  (x')  ( i  o ) f ( x ' , h ) .  

The solution of this equation with the boundary condition 
6f(x, A)/6u(x') - 0 ( x - m )  is of the form 

s f  ( x ,  h )  0 ( z f - z ) f i ( x ' ,  h )  -= 
6u (x ' )  ia (A) 

[ g I  (x' ,  A) f ( x ,  h )  - f l  (x', h ) g ( x ,  A) I. 

Similarly one can find 

s f  ( x ,  h )  (2I-x) f i ( z P ,  h) - = * 
6u' (2')  ia (h )  

[ f i ( x l ,  a ) g ( x ,  A)  - g z ( x f , a ) f ( x ,  A)  I. 

Now taking the limit as  x - - m and using (2.21) and 
(2.22) we get 

-- 6 a ' " - - i f l ( x , ~ g i ( x , h ) l  b~-(i)- 6 a ( h )  - i f , ( z ,  h ) g ~  ( x ,  h )  ; (A. 1) 
s u b )  
s b  ( a )  
-= i f  X ,  A) g  , - 8 b ( h )  - - i f Ie(x ,  h ) g r ( x ,  A ) ,  (A. 2) 
s u b )  6u.  ( x )  

where f j  and gj ( j  = 1,2) a re  the components of the Jost  
functions. 

Note added in proof (June 29, 1977). The authors 
recently became aware of the fact that Eqs. (2. 5)2 
(2.35), (2.36), and (2.40) were for the operator L of 
the form (1.8) obtained by D. Kaup. 

" ~ t  the present there is a large literature about the inverse 
scattering method. We restrict ourselves to referring solely 
to the most fundamental papers about that problem, the re- 
sults of which are  used in the present paper. 

"We note that we restrict ourselves here to a study of prob- 
lems forwhichu!x,t)-0, 1x1 --. 

3'We do not write out the independent variable t where this is 
inessential. 

4'When I &q/u2 I > 1 the physical nature of the solution (4.21) 
changes, in general, as  compared to the one given below and 
will not be discussed here. 

')In contrast to (2.30) and (2.31), Eqs. (2.35) and (2.36) do not 
have singularities a s  A- 0 and we can therefore assume that 
b@=& and & @ = E  for all A. 

 he expression for I,{u$ (for a somewhat different definition 
of I,,) was obtained in Ref. 17 even before the discovery of 
the inverse scattering method. 
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