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An expression for the Coulomb part of the thermodynamic potential of a plasma is obtained, on the basis 
of a quantum physical model of the plasma and a diagram technique, in the form of an expansion of the 
chiral type in the m e t e r  f ,  = h-3exp(19p). Besides the known terms proportional to t3", t21n 4, and 
C2, terms proportional to -fJ'21nf and t'" are also calculated. The latter terms contain contributions 
from the states of both the continuum and the discrete energy spectrum. The results are used for a plasma 
in which exchange effects are small but the direct interaction plays an essential role. 

PACS numbers: 52.25.Kn 

1. INTRODUCTION and C a re  known temperature-dependent coefficients. 

It is known that a low-temperature plasma (T- lo5 
- lo5 K) is a quantum system, since its physical prop- 
erties depend, first, on the quantum character of the 
interaction of the charges that have a continuous energy 
spectrum, and second on the bound states of the dis- 
crete energy spectrum. To calculate the thermody- 
namic function of a plasma it  i s  customary in the litera- 
ture to use two approaches, dubbed the "chemical" and 
the "physical" models. inmost cases the simpler 
chemical model i s  considered, where the presence of 
particles of definite species, having a continuous en- 
ergy spectrum, i s  postulated beforehand. 

The influence of the internal structure of the parti- 
cles (bound states) on the thermodynamic functions is 
taken into account by introducing the partition functions 
for isolated particles. The latter assumption gives 
rise to certain difficulties connected with the diver- 
gence of the aforementioned sums. In practice of the 
calculations of the thermodynamic quantities, these 
divergences a re  eliminated by various kinds of "cutoffs" 
of the partition functions, based on one physical con- 
sideration or  another. Thus, the introduction of the 
concept of an isolated particle with an internal struc- 
ture is in the chemical model an artificial procedure, 
that leads to fundamental difficulties in the theory. 

A consistent approach to the determination of the 
thermodynamic functions of a plasma is based on the 
physical model, where the nuclei and electrons are  
considered, while the Coulomb interaction between 
them is taken into account on the basis of the quantum- 
statistical theory. The contributions to the thermo- 
dynamic functions of the continuous and discrete spectra 
arise simultaneously and are  finite. The results ob- 
tained from this point of view in the equilibrium theory 
of a nonideal plasma reduce to an expression for the 
Coulomb part of the thermbdynamic potential AS1 in the 
form of an expansion in powers of the quantity 5 = x - ~  
x eB lr [l-41: 

The first two terms of this expansion describe the con- 
tribution made to AS1 by the continuous spectrum. The 
third term contains the contribution of the discrete 
spectrum in the Planck-Larkin form. [2*51 Strictly 
speaking, this contribution was calculated inc2'41 for 
a hydrogen plasma. The results, however, can be used 
also for other two-component systems where hydrogen- 
like ions and electrons are  present. 

An attempt to go outside the framework of formula (1) 
was undertaken inc6'. An expansion of the grand parti- 
tion function in group integrals yielded here for AS1 a 
formal expression containing arbitrary powers of the 
quantity 5. Numerical calculations for a hydrogen 
plasma were performed on the basis of an expression 
for the second virial coefficient with an effective chain 
potential. No expansion in powers of 5 in explicit form 
was obtained, so that it is difficult to speak of the lim- 
its of the applicability of the results. 

When the enthalpy calculated with the aid of (1) for a 
hydrogenlike cesium plasma is compared with its ex- 
perimental  value^[^*'^ obtained with a cesium shock 
tube, ['I a discrepancy i s  observed between the theo- 
retical and ex~erimental data even at relativelv low 
values of the interaction parameter y =fie2[4nfie2 
x(c* + 5,)11'2. 

This suggests the natural assumption that to describe 
satisfactorily the experimental results it is necessary 
to add to (1) the next higher terms of the expansion in 
5. These next higher terms a re  DC 'I2 lng, Eg5I2, and 
Fc3. A rigorous theoretical calculation of the coef- 
ficient F encounters groat mathematical difficulties, 
since the problem reduces here to the quantum-me- 
chanical three-body problem. The terms 05'12 In5 and 
Eg5I2 are  due, as  is the Debye term ~ 5 ~ ' ~  in (I), to po- 
larization effects in the plasma, and the calculation of 
the coefficients D and E can be reduced to the two-body 
quantum-mechanical problem. We present below the 
results of the calculation of these coefficients. 

2. ANALYSIS OF THE DIAGRAMS 

where fi = l / kT  ; V is the volume of the system; X 
= ( 2 n p ~ ~ / r n ) " ~  is the de Broglie wavelength of the parti- 
cle; j~ i s  the chemical potential of the particle; A ,  B, 

To calculate the thermodynamic potential it is con- 
venient to use a diagram technique. The required dia- 
grams a re  chosen on the basis of an analysis of the 
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FIG. 1. ~lassical diagrams corresponding to the second and 
third virial coefficients. 

perturbation-theory series for the Bloch equationc3*'01 
and is a cumbersome and tiresome procedure. We 
choose therefore a simple path towards .the necessary 
explanations, which is made possible by the existing 
analogy between the construction of the virial series 
for ordinary gases and the construction of an expansion 
of the type (1) for  a plasma. The necessary principles 
of the indicated analogy can be explained by using 
classical diagrams as an example. 

It is known that in the classical theory of ordinary 
nonideal gases the contribution to the second virial co- 
efficients comes from a sum of diagrams of type a, 
while the contribution to the third virial coefficient 
comesfrom a sum of diagrams of type b and c in Fig. 
1. The points mark here the coordinates of the parti- 
cles, the thin lines correspond to the potentials of the 
interaction between these particles. The sums of the 
diagrams with thin lines describe terms of the per- 
turbation-theory series for the canonical Gibbs dis- 
tribution. clll The diagrams with the thick lines corre- 
spond to the usual Mayer diagramsc12] and are  the re- 
sults of summation of perturbation-theory diagrams. 

The analogy between the diagrams for the virial 
series, shown in Fig. 1, and the diagrams for the 
plasma expansion of type (1) arises if the problem of 
finding this expansion is formulated as a problem of the 
interaction of two, three, etc. particles situated in the 
field of the remaining particles. The problem consists 
then of finding the effective potential that characterizes 
the interaction of the chosen particles with one another 
in the presence of the field particles. If the effective 
potential i s  impaired in this case, then under certain 
conditions the conversion of the diagrams of Fig. 1 
into plasma diagrams reduces to a formal replacement 
of the interaction lines by effective interaction lines. 

In fact, i t  was shown inC3v101 that at  ken<< 1 (Ae is  
the de Broglie wavelength of the electron and x 

= [ 4 ~ @ ~ ( 5 ,  +l;,)lu2 i s  the reciprocal Debye radius) the 
many-particle diagrams that describe collective and 
individual interactions in a plasma within the frame- 
work of the applicability of the expansion (1) actually 
reduce to a sum of ladder diagrams with a Debye ef- 
fective potential whose classical analog is the sum of 
diagrams a in Fig. 1. A similar situation obtains also 
in the case when account is taken in the expansion (1) 
of the next higher terms: Dg5I21ng, ~ l ; ~ " ,  and ~ 5 ~ .  
These terms are  described by quantum anaLogs of the 
diagrams b and c of Fig. 1, and the calculation of the 

contributions made by themto the thermodynamic po- 
tential i s  connected with the solution of the three-parti- 
cle SchrBdinger equation with a Debye effective goten- 
tial. However, if we confine ourselves to the terms 
Dg5I2 ht and EC~", thenthe problem becomes much 
simpler and reduces to an approximate solution of the 
two-particle Schradinger equation. To this end it i s  
necessary to select from the indicated diagrams all the 
diagrams that make contributions - g5/2ilng and g5' '. The 
selection procedure i s  greatly simplified if account is 
taken of two circumstances that take place for both 
classical and quantum diagrams. First, all the dia- 
grams having a point connected by only one interaction 
line each with other points make a summary zero con- 
tribution to  the thermodynamic potential, since the 
plasma i s  electrically neutral. [lo] Second, diagrams 
in which all points a re  interconnected by not less than 
three interaction lines yield the lowest order g3, with 
the exception of the fourth diagram of Fig. lc,  the 
contribution of which to the thermodynamic potential i s  
- 5512. It is then necessary to consider from among 
the diagrams of Fig. l b  only those in which one of the 
points is connected to two interaction lines (the first  
of them is the fourth diagram in the indicated firm). 
The remaining diagrams should be excluded from con- 
sideration because all the diagrams, starting with the 
fifth, make contributions - g3 and g3 lng, while the first  
three diagrams - l3l2, g5I2 lng, g5I2 a r e  contained in the 
diagrams of Fig. la. The latter situation is the result 
of the use of the Debye effective potential which corre- 
sponds, as is well known, to a sum of chain diagrams 
where each point i s  connected with the remaining ones 
only by two interaction lines and integration i s  carried 
out over the coordinates of all the points. Therefore 
if, for example, integration is carried out in the first 
three diagrams of Fig. l c  with respect to the coordi- 
nate of one of the points connected to two interaction 
lines, then the obvious result a re  the diagrams con- 
tained in the second, third, and fourth diagrams of Fig. 
la ,  respectively. 

The sums of the classical diagrams and their quan- 
tum analogs that must be considered are  shown in Fig. 
2. In the quantum diagrams the loops correspond, as  
usual to particle propagation and the lines denote the 
interaction potentials. Diagrams of similar type were 
used earlier in the calculation of the effect of the shift 
of the ground level of an atom on the thermodynamic 
functions of a plasma. [13' It must be noted that con- 
sideration of quantum analogs of classical diagrams 
is equivalent to the use of Boltzmann statistics in 
quantum calculations. This leads to an incorrect al- 
lowance for the exchange -effects; in particular, if  the 
results %re obtained in the form of expansion in the 
interaction parameter y and the quantum parameter 
ken, then the coefficients of the powers of the last pa- 
rameters have incorrect values. To obtain the correct 
values in terms of the parameters X,n it i s  necessary, 
naturally, to use quantum statistics. 

We confine ourselves below to consideration of quan- 
tum diagrams that have classical analogs and give the 
correct dependence on the interaction parameter y. In 
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FIG. 2. Three-particle classical and quantum diagrams that 
make contributions ..,~~/~lnt and t5t2 to the thermodynamic po- 
tential of the plasma. 

the calculation of the contributions from these diagrams 
we shall neglect the exchange terms, i. e., assume that 
the quantum parameter A,w is small, but we shall take 
into account in the final results the exchange effect in 
first order in the indicated parameter, using the re- 
sults 0fc~9143. 

Thus the expressions obtained below for the thermo- 
dynamic potential contain all the terms - g5/ 1r-g and 
gS1 proportional to the parameter y(g5' 1ng -5y3 lny, 
g512 -5y3), and the analogous terms proportional to 
( ~ , n ) ~ ( t ; ~ /  '1115 - 6y(X,d2 lw, c512 - ~ Y ( A & ) ~ )  have been left 
out. This approach is justified for a low-temperature 
plasma, where the conditions (A,x)'e 1 and y 5 1 hold 
in the temperature and pressure range of practical 
significance. [15' 

To complete the construction of the theory, accurate 
to terms g5"1ng and f5" inclusive, it is necessary also 
to take into account a diagram shown in Fig. 3 in the 
classical and quantum variants. 

3. CALCULATION OF THE PLASMA 
THERMODYNAMIC POTENTIAL 

By summing ladder diagrams with a Debye effective 
potential, an expression was obtained for AS2 in a pre- 
ceding paperts1 and is an analog of the second virial co- 
efficient for ordinary gases 

Here &(r) and En are respectively the eigenfunction 
and eigenvalues of the three-dimensional Schrijdinger 
equation with a Debye effective potential 

$:(r) and p tare the eigenfunctions and eigenvalues of the 
Schrijdinger equation for free motion; 2, is a number 
characterizing the value of the charge. Calculation of 
the contribution made to the Coulomb part of the thermo- 
dynamic potential by the sum of the quantum diagrams 

In view of the dependence of the quantities &,,(r), En ,  
and &,,(r) on the interaction parameter y, the expan- 
sions of (2) and (3) contain arbitrary powers of this pa- 
rameter, and, in addition, terms of the type y" lny ap- 
pear. The problem is to separate from (2) and (3) all 
those terms of the expansions in the parameter y, 
whose contributions to An are of the order g5l2 lng and 
c ' ~ ,  inclusive. Let us indicate the main procedures 
used for this purpose. For like charged particles that 
have only a positive energy spectrum, it is possible to 
use in (2) and (3) the quasiclassical values of &,(r) and 
to replace the sum over {n} by an integral over the 
number of states. For particles of unlike sign, the en- 
ergy-level spectrum consists of a discrete spectrum 
of negative values and a continuous spectrum of positive 
values. In this case it is possible to go over in (2) and 
(3) from sums to integrals by the indicated method not 
only for  positive energies, but also for the quasiclassi- 
cal part of the negative energies. It is then necessary 
to choose in the sum over {n) a principal quantum num- 
ber n, such that 81 En, I << 1. Then, in view of the quasi- 
classical character of the states with large quantum 
numbers, the spectrum of the negative energies En, 
G En-' Owill be dense enough and the corresponding part 
of the sum over {n} can be replaced by an integral. c231 

This integral is written jointly with the integral of the 
positive -energy spectrum. 

Separating in (2) the contribution made to the thermo- 
dynamic potential by the continuous spectrum, we have 

where for particles with the same charge 

and for oppositely charged particles 

The integrals are written in dimensionless variables in 
the coordinate 7x0  r and the charge e2 -ge2; r(3/2; x )  
is the incomplete gamma function; r, is the root of the 
equation Eno - *,,(rO) = 0. If the interaction parameter 
y is regarded a s  a small quantity, then we can find the 
approximate values of the integrals written out above. 
It is necessary for this purpose to expand the integrands 
of (5) and (6) in the perturbation-theory series, where 
the perturbation is  the difference between the Debye and 
the nucleon potentials, the maximum value of this dif - 

of Fig. 2 is carried by the same method as the deriva- 
tion of (2). 

As a result we obtain the expression FIG. 3. Four-particle diagram 
(classical and quantum) that makes 

--=-- 'no''' (.mr'p2(Z,,'+Zbg) j x de' I I$,,'(') e-pE"$U (r) 
V 8 

a contribution dn to the thermo- 
0 In1 

(3) 
dynamic potential of the plasma. 

-$,'Yr) e--P.m'$no (r) ]Dab (r) dr. 
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ference not exceeding the small quantity y. 

As a result, accurate to terms - y lny and y2 in- 
clusive, we get 

where C=  0.5772 is the Euler constant; a =5 '/m,e2 i s  
the Bohr hydrogen radius. The no-dependent terms in 
(8) describe the contribution made by the quasiclassical 
part of the negative spectrum; the last two terms cor- 
respond to a positive spectrum and coincide with (7). 
As n,,-m expression (8) tends to infinity owing to the 
presence of terms proportional to no and $, but i t  will 
be shown below that this divergence i s  canceled by cor- 
responding terms in the expression for the discrete 
spectrum. 

The contribution made to the thermodynamic potential 
by the discrete spectrum is determined by part of the 
sum (2) over the principal quantum number 1 Q n a  no. 
Here, too, it is necessary to expand z),(r) and En in the 
perturbation-theory series and retain those powers of 
the parameter y which contribute to the thermodynamic 
potential, accurate to terms -c5/' inclusive. To this 
end, we can regard the $,(r) in (2) a s  Coulomb wave 
functions, and we can retain for  En, the first-order 
correction to the Coulomb level PEno= PE:~' + Z,y. We 
then obtain for the discrete part of the spectrum the 
expression 

where 

is a confluent hypergeometric function; In = -E;O"'. It 
is easily noted that a s  n - a  expression (9) tends to in- 
finity. But if (9) is combined with the no-dependent 
terms of (81, then the result is finite a s  no -a. To this 
end i t  is necessary to write the numbers n, and 4 in (8) 
in the form of the sums 

The combined result for the entire negative spectrum 
is written in the form 

Here w;" , w: , and A(%) stand f o r  the expressions 

The factor w!" - Zayw: has the measuring of a weighting 
function and ensures convergence of the sum (10). We 
note that the sum over n contained in (10) with the 
weighting factor (11) i s  the Planck-Larkin formula. 

We discuss now the possibility of going to the limit- 
ing form of (1) a s  and of eliminating by the same 
token the uncertainty in the choice of the number no. 
We investigate for this purpose the quantity (13). Since 
( &,I2 << 1 at n > n,, , the expression eB'n(w;" - Zayw$) 
can be expanded in powers of Pl, with only terms -(&)' 
retained. If we put by way of estimate also y = 0, then 
a t  values of n from 1 to 5 the expression ~ ( n ~ ) / ( / % , ) ~  
decreases rapidly from 1.21 to 0.155 and then tends 
slowly to zero with increasing q,. If n,,> 5, then 
A(%) 5 0.155(/31~)~. At PI,> 1 the quantity Aho> 5) then 
becomes negligibly small in comparison with the first  
term of the sum (10); on the other hand, this quantity 
can be neglected a t  PI,> 1 because of the smallness of 
the numerical coefficient. 

Let us write out the expression for the contribution 
made to the thermodynamic potential by the positive 
spectrum. It is obtained with the required accuracy if 

in (4) i s  taken in the form (7): 

This expression i s  valid for particles with either like 
o r  unlike charges. The sum of (10) and (14) describes 
the total contribution made to the thermodynamic poten- 
tial by the ladder diagrams, accurate to terms -c5/'lnI 
and c5l2 inclusive. 

Expression (3) differs from (2) only by a factor 
$pw.e2(Z; + z:), SO that all the calculation methods used 
for (2) a re  fully applicable also to (3). As a result we 
obtain for the positive and negative spectra the expres- 
sions 
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Relation (16) has a limiting form (n, -a) that can be ob- 
tained under the same conditions a s  (10). The function 
w y  has, just a s  in (11) and (12), the meaning of a 
weighting function. 

We consider now the fourth diagram of Fig. l c  and 
the diagram of Fig. 3. They a r e  calculated in accor- 
dance with the usual principles, and in the classical 
limit the final results have the respective forms 

The sum of the expressions (10) and (14)-(18) over all 
particle species, together with the thermodynamic po- 
tential of an ideal gas 

and the exchange corrections from [14], yields the value 
of the total thermodynamic potential of the plasma in 
the employed approximation; 

where 

The contributions -55/21n5 and b5/' to formula (19) a re  
made by the last four terms of (20) and by the last term 
of (19). The remaining terms coincide with expression 

(1). With an aim of using in the future formula (19) 
not only for a hydrogen plasma, we have introduced in 
the last expression, under the summation sign, the 
quantity gn that serves a s  the statistical weight of an 
isolated particle (g,= 2n2 for hydrogen). In this form, 
formula (19) can be used in a certain approximation also 
to calculate a non-hydrogen plasma. If the ion i s  not a 
nucleus, then it i s  necessary to use for the level ener- 
gies either experimental o r  approximately calculated 
values. If we add to (19) the equations for the charged- 
particle densities 

then we obtain the equation of state of the plasma in 
parametric form. 

The author considers i t  his pleasant duty to thank 
A. M. Dykhne and A. N.  Starostin for useful discussions 
and critical remarks. 
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