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We consider strong fluctuations of the intensity of an electromagnetic wave behiid a random phase screen 
and in a randomly inhomogeneous medium. The statistical moments of the intensity are represented in the 
fonn of ordinary (for the phase screen) and continual integrals of the Feynman type (for the 
inhomogeneous medium), and the asymptotic fonns of these integrals are investigated in the re.gion of 
strong fluctuations. It is shown that the intensity moments <In), at not too large values of n ,  
correspond to an exponential distribution for I .  The employed method, in which the solution of the 
problem is repnsented in the fonn of a continual integral, makes it possible to investigate the region of 
applicability of the phase approximation of the Huygens-Kirchhoff method through an inhomogeneous 
medium. It is shown that this method gives qualitatively correct results but with an error on the order of 
the principal term. 

PACS numbers: 41.10.H~ 

1. INTRODUCTION 

When electromagnetic waves propagate in randomly 
inhomogeneous media with large-scale (compared with 
the wavelength) inhomogeneities of the refractive index, 
strong field-intensity fluctuations arise in a number of 
cases. This effect is  due to the concentration of the 
scattered radiation in a narrow angle interval about the 
initial direction of propagation. Strong intensity fluctu- 
ations can arise when radiowaves propagate through the 
ionosphere, the solar corona, or the interstellar me- 
dium, '" when light propagates in a turbulent atmo- 
sphere, '23 when the atmosphere of a planet becomes 
transparent when the planet occults a natural or artifi- 
cial radiation source, '31 and in a number of other cases. 

A theoretical description of the strong fluctuations in 
the propagation of a wave in a randomly inhomogeneous 
medium should be based on methods that go beyond the 
framework of perturbation theory. The principal equa- 
tions of strong fluctuations were obtained by various 
methods inc4-". Since the case of interest is that of 
large-scale inhomogeneities, the depolarization of the 
radiation can be neglectedci0' and we can start with the 
parabolic equation for the smoothly varying complex 
amplitude u(r), which is  connected with the considered 
components of the electric field E by the relation E 
=u exp(ikx - iwt). This equation takes the form 

Here x is the coordinate along the initial direction of 
the wave propagation, p = (0, y, z )  is  the transverse ra- 
dius vector, k =  c-'w(Z)"~, Z=(C -z)/%, i s  the mean 
value of the permittivity, which we shall assume to be 
constant, and E are the relative fluctuations of E .  In 
the plane x = 0 we assume the initial distribution of the 
field to be specified: u(0, p) =uo(p). We consider hence- 
forth cases in which E differs from zero in the entire 
layer from the x=O plane to the observation point (this 
may be, for example, propagation of light along the 
earth's surface), and the case of a very thin inhomo- 

geneous layer-a "phase screen, " with which it is  easi- 
est to explain the calculation procedure which is common 
to both methods. 

We consider the statistical moment of the field u 

(the angle brackets denote averaging over all the pos- 
sible realizations of 3. In the Markov random process 
approximation[51 it is assumed that z(x, p) is a Gaussian 
field that is  6-correlated in x, so that 

where @,(H., X )  is  the three dimensional spectral density 
of the fluctuations z. In this approximation satisfies 
the eq~ation'"~' 

(1.4) 
where A( = a2/8p:. 

We confine ourselves next to the case of a plane in- 
cident wave, when the initial condition for Eq. (1.4) can 
be taken in the form r2n(0, {P~}) = 1. The solution of Eq. 
(1.4) can be obtained analytically only for n = 1, and it 
takes the form 

r2(z ,  p,, p2) =exp{-k2zD(~~-pz)/4). (1.5) 

The function r2 = (u(x, pi)u*(x, p2)) determines the coher- 
ence of the second order of the field. From the condi- 
tion 

'lrkztL (p,) = f (1.6) 

we can determine the coherence radius p, for the field. 
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For n > 2 it is impossible to obtain the solution of (1.4) 
in quadratures. At n = 2 the equation for the function r4 
in the case of a plane wave can be simplified and takes 
the form 

where 

F ( r t ,  r*)  =2D ( r , )  +2D ( r , )  -D(r ,+r2)  -D ( r 1 - r 2 ) ,  (1.8) 

rl-p2-pl=p~-pk, r2=pi-p,=p3-pz. 

Equation (1.7) was investigated inc""31 by numerical 
methods. The result was a fluctuation-intensity fluctu- 
ation that agreed with the experimental datac2] qualita- 
tively. 

If we denote by L the longitudinal coordinates of the 
observation point, then the quantity k2LF(rl, r2)  is pro- 
portional to the mean square phase shift of the wave in 
the inhomogeneous layer. If k2LF(r l, r2)  << 1 at I r 1, l 
-(L/k)lI2, then we can assume in (1.7) that $k2Fr4 
,r 2 -4k F, and this leads to results that agree with the cal- 
culation by the smooth perturbation method (SPM). '14] 

In the opposite case k2LF>> 1 the solution was investi- 
gated inL1h171 (see also the reviewL1*]), where the as- 
ymptotic form of r4 a s  k2LF-- was obtained. 

In this paper we investigate the asymptotic forms of 
the functions r2, in the region of strong fluctuations. 
Exact solutions for r2, are  written in the form of Feyn- 
man continual integrals (or in their equivalent operator 
form) and the asymptotic limit of these integrals is in- 
vestigated a s  L o w .  

The solution of the stochastic Eq. (1.1) can be written 
in the 

u ( z ,  p) = exp (AS - dE- 6 : ( & O + p i ) d ~ )  

x ~ X P  (Gi d x ' ~  (x', P + j T ( E )  d f ) )  
I' 

It is equivalent to the continual integral 

Here 

Formula (1.9a) can be easily obtained from (1.1) by the 
method ofC21*223, while (1.9.b) is obtained from (1.9a) 
with the aid of a continual Fourier transformation. 

If we assume the fluctuations Z to be Gaussian and 6- 
correlated in x, then by substituting (1.9b) in (1.2) and 
averaging over E we can obtain the formula 

(1. lOa) 
or, in operator form, which is sometimes more con- 
venient for actual calculations 

(1. lob) 
Formulas (1.10a) and (1. lob) can, of course, be ob- 
tained also as  solutions of Eq. (1.4), derived from (1.1) 
under the same assumption: z(5, p) is a Gaussian ran- 
dom function that is 6-correlated in 5. We note that 
r2, was expressed in the form of a continual integral 
inL231 , where an attempt was made to investigate the be- 
havior of r, under strong fluctuations, but an incorrect 
result was obtained. 

Before we investigate the asymptotic form of r2, for 
the case of fluctuating parameters of the medium, we 
consider the simpler of the fluctuations of the field be- 
hind a random phase-screen. The analogy between 
thase problems has already been noted ~ I I ' ' ~ ' ~ ' ~ ~ .  HOW- 
ever, when the solutions for r2, are  expressed in con- 
tinual form, this analogy goes over in fact into a method 
common to both problems for obtaining the asymptotic 
form of solutions in the region of strong fluctuations. 

2. RANDOM PHASE SCREEN 

Assume a layer of inhomogeneous medium of thick- 
ness Ax so small that when a wave passes through the 
layer i t  acquires only a random phase shift 

and does not change its amplitude. We assume that 
z(<, p) is a Gaussian field, 6-correlated in 5 and de- 
scribed by formulas (1.3). After passing through the 
inhomogeneous layer the wave propagates in a homo- 
geneous medium, and its propagation is described by an 
equation obtained from (1.1) with =O. The solution of 
this problem is given by the formulas 

which a re  analogous to formulas (1.9a) and (1.9b) given 
above. 

We consider now the function rzn(x, Substituting 
(2.2b) in (1.2) and averaging, we readily obtain 
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This formula is the analog of (1. lob). Let us ex- 
amine in greater detail the case n = 2 for pairwise co- 
inciding observation points p, =p, = p', p, =Pa = p", p' 
-pU=p. Then 

is the covariation of the intensities I =  4 uI2. If we in- 
troduce in (2.3) (at n = 2) new integration variables 

then the integration with respect to r and r3 can be car- 
ried out and we obtain as a result the formula 

<I(x, p')I(z, p") )- - { i: 
kZAz ( 2Ex ) ' j jdirl  +h exp -rt (rz-p) - - 

4 ~ ( h ,  rz)],, 

(2.4) 
where F(rl, rz) is  determined from (1.8). The integral 
(2.4) was investigated in detail (including by numerical 
methods) in a number of studies (see the reviewt181). 
We examined its asymptotic form as x--. 

The factor expi- k24x~(r1 ,  r2)/4}=f1(rll r2) becomes 
equal to unity at r, = 0 and at r2 = 0. The equation 

determines the boundary of the region outside of which 
fl(rl, r,) is exponentially small. " Since F consists of a 
linear combination of the functions D, and the equation 
I S  rk AxD(p,) = 1 (see (1.6)) determines the coherence ra- 

dius of the field, it is clear that p, is also one of the 
characteristic dimensions of this region. 

Figure 1 shows plots of (2.5) for the function D(r) 
=pc;rY3, which appears in the problem of wave propa- 
gation in a turbulent medium. L514' The curves are 
plotted on the plane r, = I ri I , r2 = I r21 for two limiting 

cases of mutual orientation of the vectors rl and r,, 
namely rl r, = 0 and r1 X rz = 0. All the remaining 
curves lie between those shown in the figure. In the re- 
gions ri >> r 2  and rz >> rl the curves (2.5) approach as- 
ymptotically straight lines that are  the solutions of the 
equations ik24xD(r2) = 1 and +k24xD(rl) = 1. The reason 
i s  that the combination 

Q(rr. 14 =D(ri+rt) 
+D (r,-r2) -2D (r,) 

vanishes at ri >> r2 and only the first term i s  left in (2.5) 
in this region. This form of the region bounded by the 
curve +k2hxF= 1 is practically independent of the choice 
of the correlation function BE. If, for example, we plot 
this region for the function B,(r) =u;effpC- 2/212), then 
we obtain (at r1 r, = 0) curve 3 of Fig. 1, which has the 
same character as for the power-law function D. 

The factor f2(r1, r3 =exp{ikx"'r1(r2 - p)) has a charac- 
teristic scale ~ ,=(x /k)"~  (the radius of the first Fres- 
nel zone). Therefore, if 

then the function f2 varies little inside the central part 
of the region bounded by the curve (2.51, i. e., the cut- 
off factor is  here the function fl. At rll2>sx/2kp,, how- 
ever, the period of the oscillations of the diffraction 
factor becomes smaller than p, (see Fig. I), so that f 2  

becomes the essential factor on the periphery of this re- 
gion. The length of that band in Fig. 1 which is signifi- 
cant for the integration is  therefore determined by the 
factor fi and is  of the order of x/kp,. In this connec- 
tion, a second characteristic scale appears in the prob- 
lem, namely 

It can thus be assumed that when the condition (2.7) is 
satisfied the essential region for the integral (2.4) is 
the one adjacent to the hyperplane r l  = 0 and r2 = 0. The 
larger the parameter r0/p,=x/kp~, the narrower this 
region. Therefore the integral (2.4) can be broken up 
into two, one of which extends over the region rl 5 p, , 
and the other over the region r, 5 p,. But in the first re- 
gion of integration we can use the expansion 

since the isolines of the function f1 are  here quite close 
to the isolines of the function exp{+k24x~(ri)) shown 
dashed in Fig. 1. In exactly the same manner, in the 
region r, < pc we can put 

1 ' I 
I' S 10 

r, Ip, j6 

FIG. 1. Plots of b2-(ri, r,) = 1 for the cases 1) D(r) arr5I3, 
ri I r,, 2) D(r) ~ r ~ ' ~ ,  r1 II r2, 3) D(r) = 11 -exp(-?/2l2)], rl  
L r2, &/212 = 0.1. Curve 4 corresponds to the Fresnel factor 
a t  rirz = 16~:. The dashed lines a re  the isolines ri = p,, r, = p,. 

Since the factors exd- $k2hxD(rltz)) decrease rapidly 
outside the bands ri < p, and r2 < p,, each of the integrals 
can now be extended to infinity. As a result we obtain 
the asymptotic form 
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kzAx k'Ax 
x {exp [ - T ~ ( r t )  ] [ I  +--i- ~ ( r z . r . ) + .  . .I1 

We note that we took here twice into account the integra- 
tion region made up of the intersection of the bands r, 
< p, and r2 < p,. The contribution that is taken into ac- 
count twice can be estimated at 

and turns out to be a quantity of higher order of small- 
ness (with respect to the small parameter pc/ro = kpyx) 
than the principal included term, and also smaller than 
some of the succeeding terms. Nonetheless, neglect of 
this term does not make i t  possible to obtain still higher 
order terms of the asymptotic expansion. 

If we use the spectral expansion (1.3) of the function 
D in formula (2.6) for 0, then we get from (2.11) 

kzAx 
+ n k 2 ~ Z J m . ( 0 . x )  [ i - c O s ( x p - - $ . ) ~ e x p { - ~  ~ ( p - ; ) ) # x . .  

(2.12) 
If we put here p= p1 - pl'=O and recognize that w <,Yii, 

then we obtain for the mean squared value of the relative 
fluctuations 

Let the fluctuations 5 in the inhomogeneous layer be 
caused by the turbulence, s o  that 

where A ~ 0 . 0 3 3 ,  p -0.46 and C: is the structural char- 
acteristic that enters in the "$-law9' for (seeci4'). 
Then (2.13) leads to the known resultcis1 

where & = 0 . 5 6 3 ~ ~ k " ~ x ~ / % x  is the mean square, calcu- 
lated by perturbation theory, of the relative intensity 
fluctuations. The e r ro r  6 cited above turns out to be in 
this case of the order of (@,)-'2'5, i: e., i t  is small at 

>> 1 in comparison with the term taken into account 
in (2.14). 

We consider now the intensity correlation function, 
which according to (2.12) consists of three terms: 

The largest of them is 

B!" ( x ,  p) = l r2 ( 5 ,  p) I2=exp ( -L /2kzAzD ( p ) ) .  

Calculation of the terms B:~' and B : ~ )  yields 

The scale of the function gj3'(x, p) is the coherence ra- 
dius p,. The function B,(x, p) is shown schematically in 
Fig. 2. 

The foregoing arguments can be readily generalized 
to include the higher moments rzm. We confine our- 
selves here to an investigation of (I ") r2,(x, 0). For- 
mula (2.3) takes in this case the form 

where 

,=1 I ? <  

The random phase shifts S(v,) defined by formula (2.1) 
a re  connected with the function F by the relation 

It is clear therefore that if all the odd points vz,+i coin- 
cide pairwise with some even points, then the positive 
and negative phase shifts cancel each other and F van- 
ishes. It therefore becomes obvious that at ( ~ / k ) " ~  
>> p, the main contribution to (1")s given by those re- 
gions where such a cancellation takes place. It is easy 
to calculate that the number of these regions in n!. 
Then, replacing (2.16) by the integral, multiplied by n! , 
over only one of these regions A*, in which 

we obtain 

FIG. 2. Schematic form 
of the correlation function B:(I p& ,5;l ,,,.. 

B,(x, p) of the intensity 
fluctuations. 

- - -. 
a 

P C  '0 \ J P  
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The decrease of the integrand with respect to each of 
the variables vi - v2, VQ - v4, etc. is ensured by the cor- 
responding term 

etc. from (2.17). These terms should be retained in 
the argument of the exponential, and the exponential in  
the remaining terms, just as in the case n = 2 consid- 
ered above, should be expanded in a series: 

(2.19) 
The primes of the summation signs denote that the sums 
do not include the terms that have gone into the exponen- 
tial. The integration in (2.19) can be extended over all  
of space, inasmuch a s  outside the region Al the inte- 
grand is negligibly small. Taking this fact into account, 
the multiple integrals in (2.19) can be calculated ex- 
actly and we obtain for (In) the formula 

in which d is defined by (2.13). We shall discuss this 
formula somewhat later, after we consider the propaga- 
tion of waves in a randomly inhomogeneous medium, 
since the results obtained in both cases are  analogous. 

3. RANDOMLY INHOMOGENEOUS MEDIUM 

We consider here the asymptotic form of the higher 
moments r2, of a field propagating in a randomly homo- 
geneous medium. The solution of this problem is given 
formally by expressions (1.10a) and (1. lob). They dif - 
fer from the formulas considered above for a phase 
screen only in that the ordinary integration is replaced 
by continual integration. We consider first  the quantity 
(I(x,  p')I(x, p")) which is obtained from r4 by pairwise 
merging of the observation points pi = pz = p', p~ = p, 
= p". For a plane wave (ri:' = I), using (1, lob) and in- 
troducing new variables, we obtain (p = p' - p") 

(3.1) 
Formula (3.1) can be written also in a form that fol- 
lows from (1. lOa), but we shall write i t  in operator 
form. We put 

The functional in the exponential 

is non-negative and vanishes on trajectories r, and r2 
such that R1 =0 or  R, =O. A substantial contribution to 
the continual integral is made by the trajectories lying 
in the region whose boundary is determined by the con- 
dition * = 1. However, for trajectories having R2 large 
in comparison with Ri we have 

and the condition * = 1 goes over into 

For these trajectories we therefore have 

and the integration can be extended over the entire re-  
gion, similar to what was done for the phase screen. 
Exactly the same formula can be written also for the 
second region, where 1 Ri 1 >> I R2 1 . 

If x/kp: >> 1 then, just a s  in the case of the phase 
screen, the diffraction operator 

is effective only on the periphery of the integration re-  
gion, where we have either 1 Rl 1 >> I R2 1 or 1 Rz 1 >> I Ri I . 

We substitute the expansion of em{- 9) in the corre- 
sponding region in (3.1). We then have 

If we use spectral expansions for the functions D in the 
pre-exponential factors, then we can apply the operator 
L to (3.4), after which (1'1'1 takes the form 

where 

B:" (2, p )  =exp{-'/;kzzD (P)), (3.6) 

B:" (x, p) =nk2 J dr' J Jd2x @, (0, x )  exp [ i x p  - - k y ( ;  D -(I-2') ) 
a 
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(3.8) 

Putting here p=O and taking into account the f i rs t  term 
in the expansion of 1 - cosx2(x - xl)/k, we obtain for 
P(x) = BI(x, 0) a formula analogous to (2.13): 

Expression (3.9) remains in force also in the case when 
@, and D vary slowly along x. C24' In this case i t  is easy 
to change over from (3.9) to (2.13) if i t  is assumed that 
@,=O outside the layer 0 cx1sAx<<x.  

The correlation function B,(x, p) is investigated in 
analogy with the phase-screen case considered above. 
The principal term B:" in (3.5) is the square of the 
modulus of the second-order coherence function. In the 
second term of (3.7), owing to the presence of the fac- 
tor expi- +k2x'~(x(x - xl)/k)), the argument of the cosine 
is small in the greater part of the integration with re- 
spect to x', s o  that 

sj2) ( x , p ) = q j  ( x - z f ) z d z r j j d 2 x  x 4 ~ . ( ~ ,  x ) e x p  ( i x p  
0 

Inasmuch as  n <- kpc/x = l/ro in (3.101, we have p 
<<roexp(ixp) z l .  It follows therefore that relation 
(2.15a) is satisfied in this case. On the other hand, if 
p>> yo, then we need retain in the exponential in (3.10) 
only the term in p, which leads to a formula analogous 
to (2.15b) 

At p << p, the term B:~' is equal to (0' - 1)/2, which 
agrees with (2.15~).  In the distance region p, << p <<yo 

we easily obtain the expression 

(3.12) 
which is similar to (2.15d). 

If we consider the case of a turbulent medium, then 
we get from (3. 9)C1"i"1 

P ( x )  = 1 + 0 . 8 6 I ( g ~ ) - " ~ + . .  . , (3.13) 

where we have used the symbol fi20=0.307~~kT/6~ii16 for 

the mean square of the intensity fluctuations, 'I4' calcu- 
lated by the method of smooth perturbations. For  the 
terms of the correlation function B,(x, p) we obtain in 
this case formulas that coincide with the corresponding 
results ofC16~'T1. 

We consider now the higher moments (I ") r d x ,  0). 
It is clear from (1.10a) that a t  pj = O  the main contribu- 
tion to the integral is made by those trajectories for 
which the functional 

vanishes. We can proceed here in analogy with the 
phase screen. Separating one of the n! essential inte- 
gration regions and retaining in the argument of the ex- 
ponential of (1. lob) only terms of the type 

which ensures rapid decrease of the integrand of the 
functional, we obtain 

(3.14) 
The prime on the summation sign means that the sum 
does not include terms retained in the exponential. We 
introduce new variables 

Then 

In terms of these variables, the f i rs t  term in (3.14) 
takes the form 

7, = 

X ~ X P [ - : ~  d x r D  ( j * ( E ) d E ) }  I = n! .  (3.15) 
I-, 0 lit - .-0. R-0 

If we use in the second term of (3.14) the spectral ex- 
pansion (1.3) of the functions D in  the pre-exponential 
factor, then after simple transformation we can rewrite 
this term in the form 

n I II = 
I,=-n! nkz j dz' j j d 2 x  @. (0, x )  exp 

6' 

i.,=i 0 

X sin ( - ; j r . ( E ) d E ) s i n  ( c l r l ( E ) d E ) X  
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Applying the operators, we ultimately obtain 

where 6,, is the Kronecker symbol. Summation over s 
and 1 yields 

Expanding sin2[n2(x - xt)/2k] in a series and comparing 
the obtained formula with (3. I), we have 

Taking (3.15) into account, we find that in the case when 
waves propagate in a randomly inhomogeneous medium 
we also have the expansion 

which coincides with (2.20) for a phase screen, but 
naturally @(x) is  determined by a different formula in 
each individual case. 

Formula (3.18) yields the first two terms of the as- 
ymptotic expansion of (I ") as- rn. Since a2- 1 as 
&- "0, the second term in (3.18) is small in compari- 
son with the first at sufficiently large &. Only in the 
case when 

does expression (3.18) have any meaning. However, at 
fixed & there are always numbers n for which the con- 
dition (3.19) is  violated. Therefore formula (3.18) is  
valid only for not too large values of n. If we disregard 
the limitation (3.19), then from the known (3.18) we can 
reconstruct the probability density for I: 

It would follow from this formula that as 82 - 1 - 0 the 
probability density for I tends to an exponential, which 
corresponds to a Gaussian distribution for a random 
wave field. By virtue of the condition (3.19)' however, 
this is not so, and only the lower moments (I? can be 
adequately described by the distribution (3.20). It must 
also be noted that the asymptotic form of (3.18) may be 
reached as &-- quite slowly (for example, for a 
power-law structure function D(p)= p5" the essential 
role is  played by the difference between the growth rate 

of the functions pw3 and p2). 

The higher moments @ h e r e  investigated also idz5', 
where the obtained probability distribution differed 
from (3.20). It should be noted, however, that the 
higher moments @'')with n> 2 were not calculated inL2", 
and an approximation formula, the justification of which 
is not quite clear, was proposed for them. 

4. THE HUYGENS-KIRCHHOFF METHOD 

By expressing the statistical moments of the field in 
the form of continual integrals, we can investigate the 
applicability of the so  called Huygens-Kirchhoff method, 
which is presently used in a number of studies for nu- 
merical estimatestz6] as  well as to obtain analytic ex- 
pressions. "" 

The Huygens-Kirc hhoff method proposed int281 is 
based on writing down the solution of (1.1) in the form 

where uo(p? is the distribution of the field in the initial 
plane x = 0, and G is  the stochastic Green's function for 
Eq. (1.1). I€ there a re  no fluctuations of the dielectric 
constant (E = O), then Green's function takes the form 

G = g ( E ,  p; XI, pf) = k expj ik(p-P ') ' J ,  2 (z - XI) z>xp .  
2ni (x - z') 

(4.2) 
The approximation used int281 consists of expressing 
the Green's function in a randomly inhomogeneous me- 
dium in the form 

k ik (p-p') 
G (x, P; s ' ,  P') = - + Y 1 (z, P; z', P') 

2ni (x-x') 

where qi(x, p;x', p') is  the shift of the complex phase of 
the spherical wave propagating from the point (x', p') to 
the point (x, p), in the first-order approximation in E. 
For randomly inhomogeneous media, the statistical 
characteristics of were investigated ina9'. We note 
that at the present time there is  no basis for this ap- 
proximation. 

The Huygens-Kirchhoff method was used intz6] to 
study the statistical characteristics of wave beams in a 
turbulent medium. For the quantity r4, which is de- 
scribed in the case of a plane wave by Eq. (1.7), this 
method yields the expression 

where F(RI;Rd is  defined in (1.8). 

Let us see how expression (4.4) can be derived from 
the exact solution of the problem. The exact solution 
of (1.7) follows from (1.10a) and is of the form 

r, (z, r,, r,) = JJDG (e)Dra(&)exp ik dk rl ( 8  rz(e)  I 
" 
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which is  equivalent, when the shift operator is used, to 
the form 

The following identity is obvious: 

= (2n)-A j j d ' x  dzq J i d 2 p ,  d2p2 exp ix (r , -p, )  +iq(rz-pz)  

k Z  ' 
r 

- - ~ d ~ F ( ~ ~ - ~ ~ ~ d ~ ~ ~ ~ - j ~ ~ d ~ ) ~ .  4 o D o t 4.7) 

If we now substitute (4.7) in (4.6) and apply the shift 
operator, then we get 

We make the change of the integration variables 71 - 71 
+q/k, r ,  - r2 + ~ / k  in the continual integral with respect 
to r1 and r2, and then make the change ic - x + ( r2  - p)k/ 
x, q -q + ( r l  - pi)k/x in the integral with respect to x 
and q. We then obtain 

The integrals with respect to r1([), r2([) and x , q  can be 
represented in operator form 

where we have introduced the diffraction operator 

Ldirf, = erp - ( d s  
.LxaiqiI. 

Comparing (4.10)_with (4.4) we see  that (4.10) goes over 
into (4.4) only if La,,, = 1, i. e. , when the effect of the 
operator is negligible. But if the parameter P: << 1, then 

the exponential in (4.10) can expand in a Taylor ser ies  
in and the f i rs t  terms of the expansion could be cal- 
culated. It is easy to verify here that the correct  re- 
s_ult corresponds to complete allowance for the operator 
& i f f = .  

Thus, the considered approximation (4.4) does not 
hold in the region of weak fluctuations, where i t  pro- 
duces an e r r o r  of the same order of magnitude a s  the 
principal term. On the other hand, as seen-from the 
foregoing section, the diffraction operator Ldlffr deter- 
mines also the law that governs the approach of @ to its 
asymptotic value unity a s  & d m .  AS to the approxima- 
tion (4.4), i t  yields here, too, a qualitatively correct  
result, but with an e r r o r  of the same order a s  the prin- 
cipal term. The approximation (4.4) might be useful 
for the intermediate region - 1, where neither pertur- 
bation theory nor the asymptotic solutions a r e  correct. 
However, since at both << 1 and & >> 1 the approxima- 
tion (4.4) results in an e r r o r  that is not small, there 
a r e  no grounds for assuming that its accuracy will be 
satisfactory in  the region 8: - 1. 

')we consider only the case of a "strong" phase screen, when 
Eq. (2.5) has a solution. 
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Alfveri and magnetosonic vortices in a plasma 
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It is shown that Alfven and magnetosonic waves can exist in a plasma in the form of two- and three- 
dimensional vortices. The dispersion spreading of such vortices is impeded by nonlinear effects. 
Magnetosonic waves form a toroidal vortex that travels along the magnetic field with Alfven velocity. 
Nonlinear Alfven waves form along the magnetic field an axially symmetrical waveguide. Inside of which 
the plasma executes vortical oscillations in the azimuthal direction. MHD vortices of this kind are 
observed in the earth's magnetosphere. 

PACS numbers: 52.35.Bj, 52.35.Dm. 52.35.M~. 94.30.n 

1. INTRODUCTION 

It i s  known that various types of vortices can propa- 
gate in an incompressible liquid. A quantitative de- 
scription of this phenomenon, however, encounters 
considerable difficulties because there i s  no small ex- 
pansion paramter. ['' An examination of such vortices 
in a low-pressure plasma (8s 87rp/~i<< 1, where P i s  
the plasma pressure and Ho i s  the unpehurbed magnetic 
field), undertaken in the present paper, i s  facilitated 
by the presence of small parameters. This makes it 
possible to reduce the magnetohydrodynamics equations 
to simpler equations of non-one-dimensional solitons 
with the aid of perturbation theory, by assuming the 
dispersion and nonlinear terms to be small quantities 
of the same order (an expansion of the Korteweg-de 
Vries type). The importance of solutions in the form 
of non-one-dimensional solitons lies primarily in the 
fact that in contrast to simple wave packets they do not 
spread out when they propagate in the plasma, a s  a re-  
sult of which they accumulate much energy and can 
therefore be relatively easily observed. The amplitude 
and dimensions of such formations are  related by sim- 
ple equations, which make it possible to distinguish 
them in experiment from perturbations of other types. 

There a r e  known solutions of the plasma equations in 
the form of one-dimensional magnetosonict2' and Alf- 
venc3] solitons. The energy of the one-dimensional 
solitons, however, i s  very large, and they can be pro- 
duced only by large plasma perturbations, such as  so- 
lar flares. In addition, it can be shown that in the 
cases considered in the present paper the one-dimen- 

sional solitons are  stable. Taking this circumstance 
into account, we a re  interested in solitons with maxi- 
mum possible dimensionality. There a re  a number of 
known solutions of the plasma equations in the form of 
three-dimensional solitons. C4@51 All the cited studies, 
however, were confined to potential oscillations. Yet 
many observations in the magnetosphere, which i s  still 
the best object for the study of waves in a plasma, 
point to the existence of non-one-dimensional solitons 
of the Alfven and of the magnetosonic type. They con- 
stitute vortices that travel along the magnetic field with 
a velocity close to the Alfven velocity. 

Recently the interest in Alfven and magnetosonic per- 
turbations of plasma has increased because they can be 
easily made to build up in tokomaks of the future, 
where the condition B > m/M must be satisfied if con- 
trolled nuclear fusion (CNF) i s  to be realized. At low 
amplitudes these perturbations have a rather large lo- 
calization region and can therefore be easily stabilized 
by shear of the force lines. Allowance for the nonlin- 
earity leads to self-focusing-to a decrease of the 
characteristic dimensions of the perturbations. The 
influence of the shear of the force line is therefore de- 
creased and the perturbations can increase to ampli- 
tudes that a re  dangerous for plasma containment. 

MHD vortices might also be observed in a solid-state 
plasma, where MHD wave propagation i s  possible. We 
note that the existence of one-dimensional MHD solitons 
traveling along the magnetic field i s  impossible because 
of the absence of the nonlinearity which i s  needed to 
compensate for the dispersion spreading of the wave 
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