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An integral of elastic depolarizing collisions is obtained with account taken of the dependence of the 
velocity vector on the velocity of the exciting atom. The calculations are valid for any collision model 
involving a short-range interaction potential between two atoms, one of which is in the excited state and 
the other in the ground state. The result is presented in a form which is convenient in spectroscopy 
problems. Graphs of the dependence of the relaxation parameters on the modulus of the velocity of the 
exciting atom are given for quasiresonant collisions. The feasibility of determining experimentally the 
parameters characterizing elastic atomic collisions by investigating the photon echo is demonstrated for the 
case of resonant atomic transitions with change of the total angular momentum l+O. The information 
obtained in this manner is much more complete than that obtained by the existing experimental methods. 

PACS numbers: 34.20.Kn, 35.80.+s 

The photon-echo method has been more and more 
widely used in recent years in nonlinear laser  spec- 
troscopy, ['-'01 Its essence i s  the successive passage 
through the medium of two short exciting light pulses, 
separated in time by an interval 7,. The photon echo 
ar ises  at an interval of time of approximately r, after 
the second exciting pulse. The relaxation time of the 
excited atomic states i s  determined by the attenuation 
of the intensity of the echo a s  a function of G, and the 

after passage of two exciting pulses, polarized in mu- 
tually perpendicular planes, the appearance of the 
photon echo i s  due exclusively to elastic collisions. 
Moreover, the dependence of f on the direction of V 

leads to a splitting of the degenerate level. These phe- 
nomena have been established for resonance atomic 
transitions with change in the total angular momentum 
1 = 0, for which it was that the echo polariza- 
tion i s  independent of the atomic collisions. 

polarization properties of the echo permit us to identi- The validity of this or  that model of elastic atomic 
fy the resonant atomic transitioms. collisions can be tested against the experimentally mea- 

In the treatment of the results of the first  experiments 
in a gas, c21395161 a start  was made from an exponential 
law of attenuation of the intensity of the photon echo 
~(7 , )  a em(-  27,/t,), where t, i s  the sought relaxation 
time and i s  due to the radiative decay of the excited 
state of the atom and gas-kinetic collisions. However, 
spectroscopic i n ~ e s t i ~ a t i o n s ~ " - ' ~ ~  indicate that the col- 
lision matrix f depends both on the modulus and on the 
direction of the velocity v of the atom. Therefore, at 
great gas pressure, the function Z(rs) has a more com- 
plicated form. 

In theoretical r e sea r~hes , [ "*~]  under certain simpli- 
fying assumptions, the decay law of the echo intensity 
I(T,) has been determined with account of the dependence 
of f on the modulus of the velocity u. In Ref, 14 it was 
established that atomic collisions, even without account 
of the dependence of f on u, affects the polarization 
echo in the majority of atomic transitions, with the ex- 
ception of 0= 1, $ - $, 1 - 1 and $ = $. In the present 
work, we have calculated to the end the integral of the 
depolarizing elastic collisions, in which, in contrast 
to the generalized accepted approach, C'1-'3' the depen- 
dence on the direction of the velocity v of the exciting 
atom i s  preserved. In this case, the collision matrix 
f becomes anisotropic in velocity space. The anisot- 
ropy mentioned leads to a different rate of relaxation of 

sured decay law of the intensity I(?,), the angle of rota- 
tion of the plane of polarization and the shift in the max- 
imum of the photon echo profile. These data enable us 
also to determine all the relaxation parameters of the 
collision integral if they a r e  sufficiently smooth func- 
tions of the velocity of the atom. 

The found photon echo singularities due to the de- 
pendence of the collision matrix on the velocity vector 
of the atom will also be observed in other optically 
resolved atomic transitions. Therefore, the use of 
the photon echo for the experimental study of atomic 
collisions is promising. 

1. THE COLLISION INTEGRAL 

The elastic collision cross  section of atoms, one of 
which is excited and the other in the ground state, is 
inversely proportional to their relative velocity raised 
to a fractional power and significantly exceeds in cer-  
tain cases the usual gas-kinetic cross  As- 
suming this condition to be satisfied, we shall take into 
account the relaxation due to gas-kinetic inelastic col- 
lisions a s  well a s  radiative decay by means of the usual 
constants in the kinetic equation, while the intense re-  
laxation due to elastic collisions will be taken into ac- 
count in greater detail. 

the individual components of the polarization vector P We consider below collisions of atoms between which 
and, a s  a consequence, to the rotation of P under the ac- there is a van der  Waals o r  some other short-range in- 
tion of the collisions, a situation reflected in the polar- teraction. The density of the excited working atoms 
ization of the photon echo and its  profile. In particular, (called simply atoms in what follows) i s  small in com- 
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parison with the density of unexcited atoms of the gas 
o r  of an impurity gas. In collisions of identical atoms, 
the van der  Waals ipteraction exceeds the resonant 
dipole-dipole interaction. 

F o r  simplicity, we assume that the angular momenta 
of the considered excited states a and b of the atom a re  
j, = 0 and j ,  = 1, and that the unexcited atoms a re  in the 
ground S state (the state a can also be unexcited). Fol- 
lowing Refs. 16 and 17, we write down the collision in- 
tegral that enters in the kinetic equation for  the density 
matrix R,, which describes transitions of the atom be 
tween states a and b": 

Here l/y, and l/y, a r e  the times of the excited-state 
relaxation due to gas-kinetic inelastic collisions and 
radiative decay. The indices m and m' take on the val- 
ues 1, 0, and - 1, labeling the state with a certain pro- 
jection of the angular momentum. 

The collision matrix r,,., which is nondiagonal in the 
states a and b, and which takes into account the relaxa- 
tion of the polarization of the excited atom in elastic col- 
lisions with unexcited atoms, is the form 

Here S,,, is the matrix element of the S matrix of elas- 
tic scattering of an atom with angular momentum 1 by 
an unexcited atom, the atom velocities being v and vo. 
The quantity dp denotes integration over the impact 
parameter p in a plane perpendicular to the relative 
velocity v - vo. Further, no is the density of unexcited 
atoms, which have a Maxwellian distribution in the 
velocities vo, 

where H is the Boltzmann constant, T is the tempera- 
ture, uo is the average thermal velocity, and Mo is the 
mass of the unexcited atom. We have neglected in Eq. 
(2) the effect of elastic collisions on the wave function 
of the nondegenerate state a.  

The density matrix pa of an atom in the excited state 
a is subject to relaxation only because of inelastic col- 
lisions and radiative decay 

The collision integral rrk, in the kinetic equation for  
the density matrix p,,. of the atom in state b is deter- 
mined in similar fashion: 

where 

In the impact-parameter approximation the equation 

for  the S matrix in the relative coordinates R takes the 
simple formc18' 

with the additional condition S,,,,,,(- a) = b,,,, where the 
index mo characterizes the state of the atom before the 
collision. The matrix Vmm. = V,',,.(R) of the interaction 
operator of the colliding atoms is determined by the 
model assumed for  the elastic collisions. 

It is convenient to solve Eq. (4) in a system of coor- 
dinates with the Z axis directed along the relative ve- 
locity v-vo and the X axis along the vector p (the axes 
Z and X lie in the plane of the collisions). Moreover, 
it is expedient to transform from matrix to tensor no- 
tation, in which the interaction operator of the atoms 
is real. Having determined the S matrix in the given 
coordinate system, i t  is not difficult to find this same 
quantity in an arbitrary. set  of coordinates if we use the 
transformation a t  finite rotation.c1g1 We give the final 
result for (2) in matrix notation: 

V,'V,' 
r .nm--r,6mm.- ( r o - r , ) T ,  (5) 

I', =?j  dv, d p f  (v,)  Iv-vol [ ~ - - S O ~ - S , , + ( S , ~ - S ~ ~ ) ~ ~ ~ ]  
2 

(6a) 

r=no dvn dpf (vo) Iv-vol [ l -S i l -  (SOO-S,,)COS' 001, (6b) S 
v *iv 

v*, = T -L.-! v (v-vo) 
v,=v,, cos 00 = - . 

,'Z ' vlv-vol 
(7) 

The tilde labels matrix elements of the S matrix after 
the collision, calculated in the set of coordinates with 
the Z axis parallel to the vector v -v0. We emphasize 
that in the derivation of (5) the explicit form of the in- 
teraction potential of the atoms is not employed. 

The collision matrix (5) depends both on the modulus 
and the direction of the atom velocity v. Yet the com- 
plex quantities rl = rl +ir;' and l?, = r; +il?: depend only 
on the modulus v, the prime and double prime denoting 
the real and imaginary parts. 

The elastic collisions cause relaxation of the polar- 
ization vector P =$,Rm0 of the atoms moving with ve- 
locity v. This relaxation is described by the equation 

a E.-E, (-& v v )  " - P " " + ' ~ P . .  

where Ea and E ,  a r e  the energies of the atom in the 
states a and b, do, is the dipole moment of the consid- 
ered atomic transition, and r,, is the collision matrix 
(5) in tensor notation. The Greek subscripts take on 
three values, denoting the projections on the Cartesian 
axes. 

It is seen that l/r: and l/G a r e  the relaxation times 
of the transverse and longitudinal (relative to V) compo- 
nents of the polarization vector, and fir: and fir: are  
connected with the shifts of the sublevels of the split 
level of the atom with jb = 1. 

In order to understand the singularities of the behav- 
ior of the quantities rl = r i b )  and ro = r o b )  as functions 
of the modulus of the velocity v, we consider quasi- 
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resonant collisions, in which the energy E,  of one of the 
intermediate states is very close to the energy E ,  of the 
system of two colliding atoms IE, -4 1 =,g << E,. Then, 
of the entire sum over the intermediate states in the ex- 
pression V,, for the van der Waals interaction poten- 
tial, there remains only the single quasi-resonant com- 
ponent 

where Q = Id, I Id, I2/9fi[, and d ,  and do are  the reduced 
dipole moments of the optically resolved transitions of 
the excited and ground states of the atoms. 

For quasi-resonant collisions, the S matrix was found 
in Ref. 15, and made it possible, with the help of a 
high-speed computer, to plot the quantities (6a) and (6b) 
against the modulus v of the velocity of the atom (Figs. 
1 and 2). It is seen that there exists a regioncz1 (u2= Mo/ 
Ml >> 1 where the dependence of the quantities rl and 
ro on v is significant, while at crz << 1 these quantities 
are almost constant in the neighborhood of the mean 
thermal velocity u = ( 2 x ~ / ~ ~ ) " ~ .  Here MI is the mass 
of the excited atom. 

2. BASIC EQUATIONS 

We consider the formation of the photon echo in a gas 
following the action of two ultrashort exciting pulses with 
electric field intensities 

El-, exp[i(ot-kz+(D,)] at O<t-z/c<T,, (10) 
Ez=er exp[i(st-kz+(D*) ] at T,+T~<~-Z/C<T.+T,+ Ti. (11) 

The amplitudes el and e, a s  well a s  the phase shifts cP1 
and @, are constant, and the carrier frequency w is at 
resonance with the frequency w, = (E, - E  d/K > 0 of the 
atomic transition with change in the total angular mo- 
mentum j ,  = 0 - j ,  = 1. The durations Tl and T, of the 
pulses are short in comparison with the time T ,  between 
them and the times of irreversible relaxations. The 
term z / c  takes into account the delay of the electromag- 
netic signal propagating along the Z axis with the veloc- 
ity c. 

For the determination of the intensity E of the elec- 
tric field of the photon echo, we use the dPAlembert 
equation 

FIG. 1. Values of r; (continuous curves) and r;l (dashed 
curves) (r; and I?;' are in units of u) at the values cuZ = 0.1, 1 
and 10-curves 1, 2, 3, respectively. 

FIG.. 2. The values of I' (continuous curves) and A (dashed 
curves) (I' and A are in unite of U) at cu2 equal to 0.1, 1 and 
lO-curves 1, 2, 3, respectively. 

and the quantum-mechanical equation for the density 
matrix 

in which H is the Hamiltonian of an atom located in the 
electromagnetic field, and the last term on the right 
side of (13) takes into account the collision relaxation 
according to (1)-(31, and also the radiative transition 
to the lower resonance level, due to spontaneous radia- 
tion at the upper level. 

We separate in the sought functions the rapidly os- 
cillating factors 

where e and p are slowly varying amplitudes and cP is a 
constant phase shift. In the resonance approximation, 
the equations for the slow functions follow from (12) and 
(13): 

where we have introduced the notation 

Here d is the reduced dipole moment of the atomic 
transition j ,  = 0 - j ,  = 1,  and the other quantities are as  
defined above. The last term on the left side of (17) is 
due to the spontaneous radiation of the atom at the upper 
level, which is accompanied by transition to the state b. 

At the initial instant of time t - z/c = 0,  the polariza- 
tion vector p is equal to zero and the density matrices 
po=pa(v, t - z / c )  and pa, =p,,(v, t - z / c )  take the form 
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where n, and n, are  the densities of the atoms at the 
upper and lower levels at t -z/c = 0. According to the 
assumed normalization, the-quantities p, pa and p,, re- 
fer to a set of atoms moving with velocity v. 

If we neglect the reaction of the medium on the ex- 
citing pulses, then Eqs. (14)-(17) become linear and it 
becomes possible to determine the photon echo in the 
given-field approximation (10) and (11). For this pur- 
pose, the conditions 

must be satisfied, where i = 1 o r  2, No =n, -n, /3 i s  the 
repopulation density of the levels, L i s  the dimension 
of the gaseous medium, and the time To of the reversi- 
ble Doppler relaxation i s  expressed in terms of the 
mean thermal velocity u of the atoms of the gas, 
T, = l/ku. 

3. PHOTON ECHO ON A NARROW SPECTRAL LINE 

We first consider the case of a narrow spectral line 
(1 /~ ,<<  1 / ~ * ,  i =1,2), assuming the pulses (10) and (11) 
to be linearly polarized; el =ell1 and e,=e,l,. Since the 
lengths of the exciting pulses a re  small in comparison 
with the inverse relaxation time, the effect of collisions 
in time intervals on the order of T1 and T, will be ne- 
glected. Then the solution of Eqs. (14)-(17) without ac- 
count of collisions in the region 0 t - z/c Ti is the 
same a s  in the previous work.C43 

After passage of the first exciting pulse T, S t -z/c, 
the polarization vector P of the set of atoms moving 
with velocity v i s  different from zero at each point z of 
the gas medium 

Information on the elastic collisions i s  contained in 
the complex vector L(t), which has the following compo- 
nents: 

Here J ,  is the angle between the vector 1, and the X axis, 
and the functions h(t) and g(t) a re  damped in time a s  a 
consequence of the collisional relaxation and radiative 
decay: 

The quantity L(t) depends essentially on the polar ( 9 )  and 
azimuthal ((p) angles of the vector v, i. e., on the mutual 
orientation of the vectors v, k and 11, where the polar 
axis Z i s  chosen along the wave vector k. Because of 
the presence of preferred directions of k and I,, the 
relaxation of the polarization vector (18) follows a more 
complicated law in comparison with the solution of Eq. (8). 

The physically observed polarization vector IPdv i s  

rapidly attenuated in time: 

a s  a consequence of the Doppler dephasing of its com- 
ponent parts, which have different values of the velocity 
v. However, the set of atoms moving with velocity v 
and making a contribution to (18), preserves the "mem- 
ory" of the first  exciting pulse during a time interval 

where t, i s  the time of inverse relaxation, identical with 
the smallest of the quantities l/rl, l/ro and l/y (To 
<< t,). The collisional relaxation obliterates this mem- 
ory, and the degree of memory destruction i s  signifi- 
cantly reflected in the polarization and the profile of 
the photon echo. This serves a s  the source of informa- 
tion on the atomic collisions. 

During the time 

a second exciting pulse (11) passes through the medium, 
and its vector 1, on entering the medium is parallel to 
the X axis and makes an angle z/ with the vector 1,. The 
linearized equations (14)-(17) a re  easily solved in this 
case, too, with account taken of the initial condition 
that follows from (18) at t = T,  +TI. At the time t = T, 

+TI + T, +z/c, when the second pulse (11) leaves the 
point z of the gaseous medium, the polarization vector 
which makes a contribution to the echo takes on the 
value 

The quantity (21) serves a s  the initial condition for the 
solution of Eqs. (14)-(17) in the region T, + T1 + T,' t 
-z/c after passage of the second exciting pulse, when 
the relaxation phenomena again affect the formation of 
the echo. 

According to (18), (19), and (20), after passage of the 
first  exciting pulse the macroscopic electromagnetic 
field decays rapidly after an interval of time To, B s  a 
consequence of dephasing and losses of coherence of the 
individual radiators. Therefore, in the region To< t 
-z/c, the excited atoms radiate independently, and their 
lifetime is determined by the radiative decay and the 
atomic collisions. The second exciting pulse leads to 
the result that, at the instant of time t = 27, + T1 + Tz +z/c, 
synchronization of the radiators with different velocities 
v takes place and the set of excited atoms undergoes a 
transition to the superconducting state, which is rapidly 
destroyed with emission of a photon echo of an intensity 
proportional to the square of the density of the excited 
atoms. 

Omitting the intermediate calculations, we write out 
the final equation for the intensity of the electric field 
of the photon echo: 
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corresponds to the region cuz 9> 1. 
Eb-ee 

nldloLN,  
sin Q,T, (cos BIT,-1) 

413c 

e.e=cos $ I dvf  ( v )  [2h'(r.)  h(t-r.-TI-Tl-z/c) 
(23) 

+g'(r.) g(t-T.-T,-TI-zlc) ]exp[ikv,(t-2a.-T,-T.-zlc) 1. 

e s s i n  ~V~(U)~'(T.)~(~-T.-T~-T~-Z/C) 

X exp[ikv.(t-2z.-TI-T2-z/c) 1. (24) 

In the case of a narrow spectral line, the duration of 
the signal echo (22) is equal to the time To of Doppler 
relaxation, i. e . ,  it exceeds TI and T,. The photon 
echo i s  elliptically polarized and propagates with a 
carr ier  frequency w,. The elastic collisions affect the 
rotation of the axes of the polarization ellipse and the 
deformation of i ts  shape. At I+4 =n/2, the polarization 
of the echo becomes linear, coinciding with the polar- 
ization of the exciting pulse. At the same time, in the . 
absence of elastic depolarizing collisions, the polariza- 
tion of the echo is always identical with the linear po- 
larization of the second exciting pulse, and a t  I+4 = n/2 
there i s  no echo at all.'" 

The elastic collisions shift additionally the moment of 
time to a t  which the maximum of the echo amplitude is 
reached, and the shift & = t, - 27, - T1 - T, for  the ampli- 
tudes (23) and (24) is equal to 

respectively, where we have assumed &=/T, << 1 and 
&'/To << 1. If these inequalities a re  not satisfied, then 
cX and cY are  obtained by solution of transcendental 
equations. 

The quantities (23) and (24) at the instant of the maxi- 
mum are  

8 x c o s 9  - 
exC = - I exp{-2 ( y + r I 1 )  T.) (8+3e-2'Q+4e-r*cos AT.) v2f  (u )  dv, 

l 5  0 

(26) 

elc== 8n - j e ~ p ( - ~ ( l + r ; ) ~ )  (I+e-2r~-2e-r**cos AT.) u2 f (v )dv ,  
P 

(27) 
where r=rL-r; and A=~; -C .  

In contrast to the collisionless photon echo, C41 the 
plane of polarization of the echo (26) and (27) at the 
instant of achieving maximum i s  not identical with the 
polarization of the second exciting pulse, but l ies be- 
tween the vectors ll and &, making the angle e, with 
the vector 4, and tane, =e:/e,8. 

By measuring the quantities e,, &I, cY and the inten- 
sity of the echo as a function of the parameter T, we can 
verify the validity of any particular atomic-collision 
model that leads to the concrete expressions (6a) and 
(6b) for r1 = rl(v) and ro = r o b ) .  In Figs. 1 and 2, this 

The results a r e  especially interesting in those cases 
in which I?, and r0 are  functions of v that a re  quite 
smooth in comparison with vef(v) in the vicinity of the 
mean thermal velocity of the atoms. F o r  quasiresonant 
collisions, this corresponds to the inequality o? << 1 
(see Figs. 1 and 2). Then the quantities rl and r, in 
formulas (22)-(27) can be assumed to be constants: 
rl = rl(u) and r0= r,(u). If we also take into account the 
fact that usually I r I<< y + r; and I A I << y + rl, then the 
obtained expressions a r e  simplitifed: 

e:-2 cos *exp[-2(y+r, ' )  T , ] ,  (28) 
e;=z/l ,  sin $(r2+A') 7.' exp[-2  ( y+r ; )  z,], (29) 

= = - ~ ~ ~ { y + ; + ~ / - / ( + ; ) r , l }  ct (y+rr ' ) 'TTocr ,  (30) 
e ~ - ~ ' / ~ T o l ( I l ~ . - y - r l ' )  at T ~ T . ,  (31) 

15 tg B = ( P + A 2 )  T.' t g  9. (32) 

From the experimentally measured laws (28) and (29) 
of the decay of the echo amplitudes a s  a function of r,, 
and also from the shifts (30) and (31) of the maxima 
of these amplitudes, it is not difficult to calculate r, 
A and + r; separately. For  the calculation of the quan- 
tity r2 + A', we can use Eq. (32) independently for  the 
different values of O,, I) and 7,. If the gas-kinetic 
constant y is known o r  determined from another experi- 
ment, then the photon-echo method makes it possible to 
calculate the quantities r:, I' and A from the experi- 
mental data, which in turn allows us to determine the 
fundamental parameters of the elastic collisions rl 
= r ; + i r [  and ro=r,'+ir,". 

4. CASE OF A BROAD SPECTRAL LINE 

In most of the experiments that have been carried out, 
the photon echo in the gas was formed on a broad spec- 
t ra l  line (1 /~ ,>>  1 / ~ , ,  i =l ,2) .  The method set forth 
above of solution of the problem i s  also applic'able in 
this case. However, the formulas become very com- 
plicated. The electric field intensity of the photon echo 
on a broad spectral line is given by 

where the following notation has been introduced: 

81dlsele12 
F (v) = (I-cos B,T,)-sin BIT,  

313h3B,B,' 1 

The integral I F ( v ) ~ v  describes the profile of the photon 
echo amplitude in the absence of co11isions.' 9*101 

The treatment of the experimental results with the 
aim of determination of q(v)  and I',(v) is possible here 
only by numerical methods. However, in the particular 
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case of strict resonance Aw = 0, under the condition that 
r 1 ( v )  and r o ( v )  are  smooth functions of v  in the neigh- 
borhood of the mean thermal velocity rl= r l ( u )  and 
r , = ro(u) ,  the amplitudes (34)  and (35)  take the simple 
form 

e:='/, sin Ip(l+e-"'1-2e-"aces Ar.)exp[-2(y+r11)z.] 5 F (v)dv. (37)  

Use has been made here of the fact that ~ ( v )  is a very 
sharp function of the variable v, near the value v ,  
= A W / ~ = O , ~ ' ]  if l / T O > >  l / T , ,  i  = l , 2 .  

The duration of the echo signal (33)  on the broacf 
spectral line is approximately the same as the duration 
of the longer exciting pulse and the experimentally ob- 
served quantity tan 0, =e:/e,8 is connected with I? and A 
in simple fashion. 

Calculation of the relaxation parameters rl = ri +ir: '  
and r,, = I'i +ir ; '  according to (36)  and (37)  is carried 
out a s  in the case of the narrow spectral line. The final 
results a re  valid also for the atomic transition j ,  = 1  
- j ,=O (E ,>E, ) .  

If the exciting pulses a re  circularly polarized then the 
photon echo on the atomic transitions 1  = 0  ar ises  only 
for  identical rotation of the vectors of the electric field 
of these pulses, regardless of the intensity of the depo- 
larizing collisions. 
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