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An analytic solution is obtained within the framework of the displaced oscillator model for the vibrational 
transitions of molecules during resonance scattering of electrons. Limiting and special cases illustrating the 
properties of the excitation functions under different physically possible conditions are examined. More 
precise muditions are established for the validity of existing approximations (intermediate compound state 
and pulsed resonance scattering). Expressions are obtained for the vibrational transitions when these 
conditions are violated. Vibrational transitions during electron scattering by excited molecules are 
discussed. Resonance dimciation of diatomic molecules is investigated and, in particular, it is noted that 
the intermediate autoionization complex can be investigated by examining the spectrum of dimxiation 
products. The model is genemlized to the multidimensional case, and this is then used to investigate 
analytically the vibrational transitions in polyatomic molecules. The theory is illustrated by the example of 
vibrational excitation of molecular nitrogen, and the results obtained are in good agreement with 
experiment. 

PACS numbers: 34.80.G~ 

1. Resonance scattering of electrons by molecules 

e-+AB (v) + (AB-) '"+AB (v') +e-, (1) 

which proceeds via formation of the negative ion AB' in 
the autoionization state, is accompanied by a consider- 
able change in the vibrational energy of the molecules 
and plays an important role in many phenomena en- 
countered in the physics of low-temperaee plasma 
(see, for example, ~ m i r n o v ~ "  and Eletskii and Smir- 
novc2'). 

The extensive experimental material that has now ac- 
cumulated on these processes in the case of Hz, N2, NO, 
CO, and 0, is  reported, for example, in Schulz's re- 
view. 's' Resonance vibrational excitation of diatomic 
molecules by electron impact has been examined theo- 
retically by a number of authorsc4"' who used a modified 
form of the intermediate complex model (the ion AB3 
and, by obtaining improved values for the parameter of 
the model, have achieved successively better agreement 
between calculated cross sections and experimental re- 
sults. These workers have developed general computa- 
tional schemes for the solution of the problem, which 
can be used to take into account changes in the equilib- 
rium distance between the nucleica1 as well as  differ- 
ences between the vibrational spectra of the ion" and 
the molecule, C51 the anharmonic nature of the vibra- 
tions, C6'71 and the dependence of the autoionization width 
r on the internuclear distance R. 

However, these factors are  not equally important in 
different .cases, and it is shown in the present paper 
that, in the case of the vibrational excitation of nitro- 
gen, good agreement with experiment can be achieved 
even within the framework of the simple displaced-os- 
cillator model for which an analytic solution of the prob- 
lem can be obtained (Secs. 2 and 3). This solution 
covers the extensively investigated transitions from the 
vibrational ground state, as  well a s  transitions between 
the excited states of the molecules and resonance dis- 

sociation. cs' The importance of resonance electron 
scattering by vibrationally excited molecules has fre- 
quently been noted in the literature (see, for example, 
chenC6' and ~ c ~ a n i e l ~ ~ ' ) .  

The approach adopted in Secs. 2 and 3 to describe 
diatomic molecules can readily be generalized to the 
multidimensional case, and this can then be used to 
elucidate the properties of resonance scattering of elec- 
trons by polyatomic molecules (Sec. 4). 

2. Consider the resonance scattering of an electron 
by a diatomic molecule AB. In the approximation of an 
isolated parabolic term of the ion AB' (the displaced- 
oscillator modelc4'), 

the amplitude A,,(E) for il vibrational transition is 
given, apart from an unimportant factor, byCh6' 

In this expression, ! v), I v?, and I v) are the nuclear 
wave functions in the initial, final, and intermediate 
states, respectively, E is the total energy of the sys- 
tem [E = E + w(v + $), e is the energy of the incident 
electron, w(v + $) is the vibrational energy of the mole- 
cule in the initial state, E,  = A + o(v + $) is the energy 
of the v-th state of the intermediate complex, ti =m = 1, 
and m is the reduced mass of the nuclei in the mole- 
cule]. 

Simple analysis will show that corrections due to dif- 
ferences between the frequencies of vibration of the nu- 
clei in the molecule (w0) and in the ion ( w )  are of the or- 
der of 6w/wo for o! < 1 and ( Y ~ w / w ~  for >> l.2) The 
quantity a = WR;/~ is the mean change in the energy of 
the oscillator (in units of w) under the action of an ex- 
ternal force which instantaneously shifts the position of 
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equilibrium by the amount Ro and 6w = f w0 - w 1 (for ex- 
ample, for the nitrogen molecule, a - 1 and 6w/wo 
=0.17). Corrections due to a change in the autoioniza- 
tion width, on the other hand, provide a contribution of 
- ( ~ / d ~ ) , , , ( v ~ w ) ~ ' ~  to the cross  section for the process 
(I), where vo= max(v, v'). 

The overlap integrals for the vibrational functions of 
the molecule AB and the ion AB' (~ranck-Condon fac- 
tors) are, in this case, 

ul 
(uiv) = (- (- av-oe-a)'h LJ-W ( a ) ,  

v !  
(4) 

where L:(a) a re  generalized Laguerre polynomials. 

The apparent asymmetry in v and v in (4) has the same 
form a s  for the excitation of a quantum-mechanical 0s- 

cillator by a time-dependent external force [see (2. l l ) ,  
Chap. 6, in the monograph by Baz' et al. "O']. In fact, 
the representation given by (4) is symmetric in the in- 
dices, i. e. , i t  is valid for any v and v. Using the Rod- 
rigues formula for LL-(a), we can write 

Substituting this into the original ser ies  given by (3), 
we obtain 

A,,.=d,..(h, A') {Aoo(S+u, hh'la) exp [- (h+h')f12h'/a])h=hr-,. (6) 

In this expression, D,.(A, A') is the differential operator 
acting on the variables A and A': 

ADO is the amplitude for the elastic process and is given 
by 

and +(a, b;z)  is a confluent hypergeometric function. 

Equation (6) establishes a single analytic relationship 
between the different channels for the inelastic scatter- 
ing of electrons by diatomic molecules (I), and enables 
us to express the amplitudes for transitions, occurring 
during scattering by vibrationally excited molecules, in 
terms of amplitudes for unexcited molecules: 

s=~+v'-21, m=min (u, u') , 

where, according to (6), the amplitudes A,, a re  given by 

Ao.(~,  a )  = Do. (a ,  ~ ) e -~A , , ( z ,  A )  Ii=, 
r ( i  -2) 

= y ( ~ ! a ' ) "  z r ( i + s - z )  I D ( I + S , I + S - z ;  - a ) .  (10) 

The quantity r (z)  in this expression is the complete 

gamma-function of a complex argument. 

It is important to note that (6), and also (26) and (32) 
(see below), can be obtained by using the integral rep- 
resentation of the stationary Green function for the dis- 
placed oscillator in the original expression given by (3). 
This approach introduces into the theory of resonance 
scattering of electrons the physically useful quantity 

i. e., the amplitude for a transition of the nuclear sub- 
system during a sudden twofold change in the Hamilto- 
nian. "I 

Equations (6) and (8)-(10) describe resonance scat-. 
tering of electrons for arbitrary ratios of the energy 
parameters of the system, i. e., a, P =  2(& - A)/w, and 
y = r/o, and enable us to investigate the transition to 
the limiting cases of intermediate compound states 
(small y) and the resonance impulse excitation (large y). 

In the limit of small y, the amplitude for the inelastic 
process (1) in the neighborhood of an isolated electron- 
vibrational level of AB' ( I  E - E,I << ow) is obviously of 
the form 

where I?, = r 1 (v(v) 1 a r e  the widths of the corresponding 
channels for the decay of the long-lived complex AB'. 

It is important to emphasize that the single condition 
Y << 1 will, in general, be insufficient. It follows from 
(6) and (8) that the validity of (11) is, to a considerable 
extent, determined also by the characteristic parame- 
ters  (Y and 8. Let us begin by considering small and 
large values of a. 

For small values of a, i t  can be shown that (11) is 
valid for 

where v is the number of the resonance, i. e., the con- 
ditions for the validity of the approximation of an iso- 
lated resonance depend on the energy & of the incident 
electron. 

It follows from (9) and (10) that the opposite case, 
i. e., that of pulsed excitation of the molecule, is real- 
ized when 

a(I+w)y-l<l, yBmax (u,  u l ) ,  (14) 

which presuppose that there is no change in the position 
of the nuclei during the characteristic scattering time. 
The amplitude for the v - v' transition is of the form 

u,=max ( u ,  u') , u,=min (u, u'), w= 1 u-v'l . (15) 

When these conditions a r e  violated (but a /y  is small), 
the amplitude given by (6) can be determined from the 
formula 
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Hence, i t  follows that, in this case, the amplitude A,, 
, 

for small Y has w + 1 isolated interference maxima, the 
largest of which corresponds to the condition of best 
overlap in the region of the Franck-Condon transition. 
When y > 1, the amplitude given by (16) is a smooth func- 
tion with a maximum at & = A + ww. 

The case of large ff corresponds to the quasiclassical 
motion of nuclei in the ion AB', and can be considered 
in the same way for arbitrary Y. The conditions for the 
validity of the compound-state and impulse-excitation 
approximations a re  then, in general, more stringent. 

In fact, using the asymptotic behavior of the function 
@(I, 1 - 5;- ff)['23 for ff >> 1 and 1 5 - ff I ( f f  "', we obtain 

Aoo(E, a)  =Y (n/2a)"%xp [-(g-a)2/2a] {ctg ne+i Erf [i(E-a)/(2a)11z]), 

(17) 
where Erf(z) is the probability integral. We note that 
the quasiclassical character of the motion of the nuclei 
enables us to take into account differences between the 
vibrational frequencies of the molecules AB and AB' in 
(17). The difference 5 - ff must then be replaced by ( E  
+i r /2  - A - w2~i/2)/w, and ff by w2~i/2wo, where wo 
is the vibrational frequency of the molecule AB. 

The particular structure of (17) is due to the fact that 
there a re  two characteristic ranges of variation of v 
which appear when the summation is carried out over 
the intermediate states in the original expression given 
by (3), i. e., vw = I & - A1 and vw = A  + ffw. The first  
term in (17) is the set  of equidistant maxima with oscil- 
lation amplitude -e'.' (in accordance with the levels of 
the system AB3, the envelope of which is a Gaussian 
curve with a continuous maximum in the region of the 
vertical Franck-Condon transition (5 -a). The second 
term is a smooth function which falls off in accordance 
with a power law for large 1 5 - ff I >> f f i f2 .  

For inelastic transitions, the structure of the spec- 
trum is more complicated because the envelope then 
acquires additional maxima separated by A& - (ff /w)"~. 

It is readily seen that, when 5 -a and Y << 1, the ex- 
pression given by (17) becomes identical with Eq. (11) 
predicted by the theory of the compound state in the 
neighborhood of the isolated pole of cotnt. However, on 
the wings of the excitation function (8<< ff) ,  the condition 
for the validity of (11) is 

i. e., the single condition y << 1 is not, in general, suf- 
ficient to ensure that the decay of the compound state is 
independent of the method of its formation. 

For sufficiently large Y (or, more precisely, for Y 
>>av2), the formula given by (17) becomes identical to 
(15) with the corresponding nonadiabatic corrections in 
the small parameter a'j2/y. When y -au2 >> 1 (so that 
the applied force produces an appreciable shift of the 
nuclei of the molecule during the short lifetime of the 
intermediate complex AB'), the transition amplitude is 

This expression predicts the characteristic oscillat- 
ing structure of the excitation functions I Aoo 1 ', which 
corresponds to interference between two waves, one of 
which describes the departure of particles to infinity 
after reflection from the potential barrier. 'lil 

This case does, in fact, correspond to the excitation 
of diatomic molecules thrdugh the steep repulsive term 
of the ion AB'. Transition to an arbitrary repulsive in- 
teraction VAB-, describing the infinite motion of nuclei 
in the excited state, is then achieved by substituting 

This result can also be obtained by using the Winans- 
~ t u e c k e l b e r ~ " ~ '  approximation in the spectral represen- 
tation of the Green function G(E, R, R ' )  for the wave 
functions of the intermediate state: 

(where R, is the classical turning point for states with 
energy E,). We then have 

~i(R)cp*(R) 
j aR E-Vm (R) + ir/2' 

In this expression, rp, and cpf a r e  the wave functions of 
the nuclei in the initial and final states. It is clear that, 
in this representation, Eq. (21) is valid for any repul- 
sive potential for which the condition for the validity of 
the approximation given by (20) may be regarded a s  
satisfied3': 

Let us now consider the intermediate case when ff 

-Y - 1 and the formation and decay of the complex AB' 
leads to the most complicated interference structure on 
the energy dependence of the cross sections for different 
processes, u,,(&). All the characteristic features of 
the dependence of the cross sections on the incident 
electron energy and the quantum numbers v, v' can be 
deduced from (9) -(lo). 

In fact, the expression given by (10) for the amplitude 
A,, for the vibrational excitation amplitude is the sum 
of two terms containing the functions f,+1(5) = r ( 1 -  [)/ 
r ( l  + v' + I - 51, and it can be shown that, in the present 
case for which Y - 1, these functions have smooth max- 
ima at 8 = v' + I ( I  = 0,1,2, . . . ). Hence, i t  follows that 
the first  interference maximum on the excitation func- 
tion IA0,,(&) 1 i s  shifted by the amount A,, which in- 
creases with increasing number v' of the vibrational 
state.[in the case of an elastic process, v' =0, and the 
first  maximum corresponds to the vibrational ground 
state of the ion AB' and all the subsequent maxima coin- 
cide with the spectrum of the nuclear subsystem of the 
ion term, i. e., i t  follows from (8) that they lie at  @ = l  
=2k]. All these qualitative conclusions a r e  in complete 
agreement with existing experimental data. To achieve 
a quantitative verification of the above model for a -Y 
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- 1, we have used (10) to calculate the cross  sections 
for the vibrational excitation of molecular nitrogen 

e-+Na (v=O) -Nz-('II,) +Nz (v') +e- 

with a! = 2. l and y =0.85. The value of o! is known with 
good accuracy, C31 whereas Y is subject to  considerable 
uncertainty. The calculated values of the autoionization 
widths Y of the intermediate ion Ni for  the characteris- 
tic range of motion of the nuclei lie in the range 0.6- 
3.3. C31 Calculations based on (10) have shown that the 
vibrational excitation cross  sections of nitrogen a r e  not 
very sensitive to the values of Y in the range 0.75-1.20. 
On the other hand, the best agreement with the experi- 
ment of Ehrhart and  illm man^'^' is achieved for Y = O .  85. 
Figure 1 shows these results together with the data re- 
ported by Hasted and  wan'^] and the experimental re- 
sults of Ehrhart and Willman. '14] The value y= 0.61 
used by Hasted and   wan'^] is too low and leads to con- 
siderable discrepancy between theory and experiment. 
The discrepancy increases with the incident-electron 
energy and is due to the influence of anharmonism and 
the dependence of r on R. "I 

Equations (6) and (9) can also be used to consider 
transitions between vibrationally excited states of the 
molecules during resonance electron scattering. It is 
readily seen that, when a! - 1 and w >> v, the maximum 
contribution to (9) is provided by the term with 1 = v, 
so  that 

FIG. 1. Cross section 
uod ( E )  for the vibrational 
excitation of molecular ni- 
trogen as a function of in- 
cident-electron energy. 

E,  eV Solid curve-the experi- 
ment of Ehrhart and Will- -- 1"' po~ts-ca~cu~a-  
tions of Hasted and  wan,[^' 
dashed curves-cross sec- 

~ l l ' l ~ l  .. . .: . . . . k, e~ tions calculated in this pa- 
. . . . . . . . per with CY =2.1 and 7~0.85. 

I The cross sections are nor- 
malized to the maximum 
value of uol(c). 

;; 

FIG. 2. Comparison of cross sections for single-quantum 
resonance transitions in molecular nitrogen for v = 0 and v = 1. 
Dashed curve-uol(e), solid curve-ulz(e). 

v'l A =  ( )  ("I-lu-vll).  
w!u! 

i. e., the excitation functions do not depend on the ini- 
tial state of the molecule a t  a fixed energy transfer. It 
is clear that a strong dependence of the cross  sections 
for the inelastic transitions (1) on the number of the ini- 
tial excitation is to be expected for w - v .  Figure 2 
shows a comparison between the cross  sections for in- 
elastic single-quantum transitions from the ground and 
f i rs t  vibrationally excited states of molecular nitrogen, 
calculated with the aid of (9) and (10). It is clear that 
the single-quantum transition cross  section U~,(E) has a 
characteristic valley in a definite region of incident- 
electron energy, which is due to interference on inter- 
mediate vibrational levels of the ion AB' (this is also 
reflected in the calculations reported by chenCG1). The 
existence of well-defined transition regions in the case 
of the process (1) may have an important influence on 
excitation-transfer kinetics in a gas and on the electron- 
energy distribution function. 

3. Let us now consider the role of the intermediate 
electron-vibrational complex AB- in the resonance dis- 
sociation of diatomic molecules: 

(the corresponding energies of the molecule AB, the ion 
AB', and the quasimolecule A + B are  shown in Fig. 3). 
The process (24) corresponds to the inelastic autoion- 
ization of the ion, the result of which is the appearance 
of the electronically excited quasimolecule with a repul- 
sive interatomic interaction. Let us take the following 
process a s  a concrete example: 

FIG. 3. Energies of the molecule 
AB, the ion AB', and the quasi- 
molecule A + B. 
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The dissociation of hydrogen during resonance exchange IAI '  
scattering of electrons (c - 11-12 eV) has recently been 
observedci5' but, so  far, such processes have not been 
investigated theoretically. 4' 

If we use the harmonic-oscillator approximation for 
the AB' ion energy with a constant autoionization width 
Y, and write the wave function for the final state of the I Y B 12 b 
nuclei in the quasimolecule in the Wi~ns-Stueckelberg FIG. 5. Excitation function IAoa(a) I 88 a h c t i o n  of the in- 
approximationct3' cident electron energy for Ra -Ro (a =2, Y 11). 

(E' is the energy of relative motion of the nuclei, RE, 
is  the classical turning point), we obtain 

The quantities ye and Y, in this expression are, respec- 
tively, the elastic and inelastic autoionization widths of 
AB' (Y = ye + y,) and A,,, is the amplitude for the dis- 
sociation of the vibrationally unexcited molecule 

exp (-a'-d2) 
A,, ( E ,  Z )  =-ix (E l )  (y.yr)" 

I-exp ( & i f )  
B (g,  Z, a'), 

Equations (26)-(28) are substantially simplified in 
limiting cases. For sufficiently small Y [satisfying 
(12), (13), and (18) in which a! plays the role of the en- 
ergy shift for a!' << 1, and ((~a!?"~ is the corresponding 
quantity for cr'kl], the spectrum of the decay products 
in the neighborhood of the isolated v-th level of the com- 
plex AB' is 

where 

where Equation (30) suggests an interesting possibility of a 
direct measurement of the square of the modulus of the 

exp(iEq-2(za') "e-'q-ze-'iq/2) (a' "= ( U / ~ ) ' ~ R X . - ~ ' " ) .  wave function of the nuclear subsystem of the complex 
AB'[x~(R,,)] in experiments on the resonance dissocia- 
tion of molecules. This possibility can be realized in We note that, in addition to the integral representa- 
the case of the reaction given by (25) for which the con- tion (26), it is possible to obtain the differential opera- 
ditions ensuring the validity of (20) are satisfied [un- tor representation for the amplitude A,. : 
fortunately (Weingartshofer et al. C'51), the spectrum of 

5 a ~ , E , = a ( E ' ) f i * ( h , 0 )  exp - X + -  ( [ (2aY8* T] 
electron energy losses, i. e., the spectrum of dissocia- 
tion products, was not measured]. 

5 a 
X 1.0 (t I V *  p$r x)rxsl],,, ,= at,., (28) It is important to note, however, that, when Y - 1, the 

spectrum of the dissociation products is  reproduced by 
a(E1) =x  (E') (y.yi)'" exp (a ' -d2) ,  x:(R) with good accuracy. This is  illustrated in Fig. 4 

which is analogous to (6) in Sec . 2. which shows IAo,, 1 as a function of p,, [where pE, 
= (w/~)"~R,,], calculated from (27) with Y = 1 and a! - .  

Equations (26)-(28) together with (6) and (9) establish =2. '' The presence of three maxima directly reflects 
the analytic relationship between the different channels the fact that the region of the Franck-Condon transition 
of resonance electron scattering, and provide us with a (/3= 2a) corresponds, in this case, to the intermediate 
unified approach to the cross sections for all the pos- state with v = 2. 
sible transitions in the above system for given values of 

Let us now consider the properties of the excitation 
model parameters. 

functions for y - 1, which are  of particular interest for 
sufficiently heavy molecules. For example, when 
I RE. - Ro I << l / (a !~)"~ ,  the amplitude (27) is readily 
shown to be 

A Q E # = ~  (E') (y,yr)"'e-aE-'O 1.1 - - . - . a )  ( 2 . 2  
(3 1) v, irV\ The excitation function for this part of the spectrum 

[i. e., E' - V,,,,(R~)] and a! - y - 1 exhibits interference 
I I !  maximaat &=A+2wk(k=O,1,2 ,... ). Thisisillus- 

0 6 s p , ,  trated in Fig, 5 which shows the dependence of the ex- 
citation function on the incident-electron energy & cal- 

FIG. 4. Spectrum of dissociation products du/dE1 culated from (31) with y = 1 and a! = 2. 
= (AOB.(pS.) I at incident-electron energy corresponding to 
the vertical Franck-Condon transition (a =2,  'Y = 1, @ =2a ). When a!'>> 1 (this corresponds to large and small 
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relative energies of the dissociating nuclei of the quasi- 
molecule A + B), the amplitude (27), written as a func- 
tion of the energy of the nuclei, decreases exponentially 
with increasing R, (i. e., with increasing or  decreas- 
ing E'). 

4. In conclusion, let us consider the vibrational ex- 
citation of polyatomic molecules by electron impact. 
The resonance (interference),structure of the excitation 
functions have been observed, for example, for the C02 
molecule by Bonnes and Schulz. "" Before we formulate 
the approach adopted here, we note that a situation 
wholly analogous to that considered here occurs in the 
resonance scattering of light (see, for example, Per- 
lincU1). It is  well known that photoprocesses in poly- 
atomic molecules can be described with a sufficient de- 
gree of completeness within the framework of the sim- 
ple model of a displaced multidimensional oscilla- 
torC18, 181 (the "main" model of the theory of electronic 

vibrational spectra of polyatomic  molecule^^'^'). The 
electron binding energy in the autoionization state does 
not usually exceed the energy of the electronic excita- 
tion of the molecules. It i s  therefore natural to expect 
that, in general, the changes in the parameters of the 
vibrational subsystem in the case of electron attachment 
are not greater than the changes accompanying photo- 
excitation. These considerations justify the use of the 
above model in the theory of vibrational excitation of 
plyatomic molecules by electron impact. The approach 
developed in Sec. 2 can, without difficulty, be general- 
ized to the multidimensional case. 

The actual form of the dependence of the excitation 
function on the energy of the incident electron is deter- 
mined by the values of the characteristic energy param- 
eters r, w,, and f f , ~ ,  (S labels the normal coordinates 
of the molecule), and the possible relationships between 
these parameters,specify the physically different situa- 
tions in the system. A general analysis of the excita- 
tion function is outside the scope of the present paper. 
We shall confine our attention to some special cases for 
which the methodology i s  essentially the same a s  that 
investigated above. 

We note, to begin with, that, for small (r <<wJ and 
large (r >> wJ autioionization widths, the corresponding 
generalization of (11) and (15) to polyatomic molecules 
is quite obvious. Situations corresponding to the reso- 
nance scattering of electrons by plyatomic molecules 
under "composite" conditions, when the strong inequali- 
ties for the individual degrees of freedom are violated, 
are of particular interest. For example, when r - w l  

and r << w, (s = 2, . . . , N, where N is the number of nor- 
mal coordinates of the polyatomic molecule), the cross 
sections for processes can be shown to have the form 
of isolated Breit-Wigner resonances with a substruc- 
ture determined by interference in the normal coor- 
dinate for which the vibrational frequency i s  a minimum. 

When f f l  << 1 for some of the normal coordinates, this 
type of vibration is  obviously not well defined in the 
scattering spectrum. If, on the other hand, a1 << 1 for 
one of the normal coordinates, and for the others a, - 1 
(s=2, . . . , N) (this case is the most characteristic for 
triatomic molecules for which the geometry is  substan- 
tially modified when an electron is added), an irregular 
interference structure will in general appear against 
the background of the smooth envelope of the scattering 
spectrum. 

')we confine our attention mainly to the case of finite motion ot 
nuclei in the ion AB-. 

')we note that, when a! >>I, the problem can be solved analyti- 
cally for arbitrary bw/wo. 

" ~ h e s e  results show that the correct expressions for the in- 
tramolecular transitions accompanying resonance electron 
scattering cannot be obtained by simple averaging of the 
Breit-Wigner cross section over the interatomic distances, 
as suggested by ~ m i r n o v ' ~ '  (p. 194). 

4)Resonance dissociation through the repulsive term of the in- 
termediate ion AB- was previously considered by Golubkov 
et al."" 
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