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Theory of excitation of a quantum nonlinear oscillator by 
a harmonic force 

M. V. Kuz'min and V. N. Sazonov 
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Zh. Eksp. Teor. Fiz. 73, 422-429 (August 1977) 

The fmt quantum corrections to the classical equations of motion of a nonlinear oscillator are derived. 
Experiments on the excitation and dissociation of molecules by laser radiation are discussed. It is shown 
that a molecule can be excited to considerably larger quantum numbers than is indicated by elementary 
theory: for typical values of the parameters this difference amounts to one and one-half orders of 
magnitude. 

PACS numbers: 03.65.Ge, 33.10.C~ 

Experiments on the excitation of molecular vibrations There have been many papersc'-241 on attempts to solve 
by laser radiation pose problems in the theory of vibra- this problem using various simplifying assumptions. 
tions whose solution requires that quantum effects must Although a number of interesting results have been ob- 
not be neglected. Even in the simplest case, however, tained in these papers, there still exists no consistent 
that of a one-dimensional nonlinear oscillator, inclusion theory of such excitation, so that in many experimental 
of quantum effects i s  an extremely complicated problem. researches on excitation of molecules the results are  
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analyzed by means of the elementary theory, in which 
both nonlinear and quantum effects a r e  essentially ig- 
nored. Accordingly, we feel it worth while to construct 
in this paper a comparatively simple consistent theory, 
providing a framework in which an answer to any ques- 
tion about excitation can be found. It takes nonlinear 
effects into account to a high degree of accuracy, and 
quantum effects a re  also included, but only approxi- 
mately. The approximation we use  is that corrections 
to the center of gravity of a wave packet and to its di- 
mensions in a certain space (see Secs. 1 and 3) a re  con- 
sidered only to and including the f i rs t  nonvanishing or-  
der in @ the spreading of packets is assumed to be 
small. We shall call this approximation semiquantal 
theory. In this theory quantum numbers can be com- 
parable with unity. 

Numerical estimates show that semiquantal theory 
cannot be applied to the quantitative description of ex- 
periments on the excitation of molecules, since for typ- 
ical values of the parameters there is rapid spreading 
of the packets. Nevertheless, semiquantal theory is 
still of value in this situation, since i t  enables u s  to cal- 
culate a lower bound on the average vibrational quantum 
number to which a molecule can be excited. This lower 
bound is about one and one-half orders of magnitude 
larger than that found from the elementary theory. This 
greatly decreases the difficulties encountered in theo- 
retical models for explaining the dissociation of mole- 
cules. 

In the f i rs t  section we write out the equation for the 
density matrix and the equations of semiquantal theory 
which can be derived from it. We shall not present the 
actual derivation, since i t  contains only cumbersome 
elementary calculations. We then discuss the results 
(Sec. 2) and the region of applicability (Secs. 3 and 4) 
of semiquantal theory, and use i t  to analyze the excita- 
tion of vibrations in molecules (Sec. 5). To demon- 
strate lucidly the difference between the semiquantal 
and elementary theories, we give in the Appendix a 
simple way to obtain the correct explicit expressions for 
the mean quantum number and the resonance width for 
a nonlinear oscillator. 

1. Let us consider a one-dimensio_nal nonlinear 
quantum oscillator yith Hamiltonian H. Let 1 n) be the 
stationary states: HI n) = E(n) 1 n); the energy spectrum 
E(n) is of the form 

E (n) =fi (o,,fl/,a) n-'/,hang, (1 )  

where wol is the frequency of the transition 0- 1, and 
ff is an anharmonicity constant. The Hamiltonian for 
the inFraction yith the laser  field E(t) = E  coswit is 
- E(t)d, where d is the dipole moment operator. 

Let Iosc) be the state vector (wave function) of the 
oscillator; we introduce the function 5,(t; U, V) = (P 1 osc), 
where P= U + iV is an arbitrary complex number, and 

I$lZ " 
l ~ ) = e x p ( - ~ )  ~ L l n ) .  

" -0  
(n!) '" 

For the properties of the states I P) and their connection 

with coherent states for the linear oscillator see  Sec. 
3. Obviously, 

a re  the diagonal elements of the density matrix in the 
representation of the states I P). The main advantage 
of this representation is that the equation for the diag- 
onal elements of. the density matrix does not contain the 
nondiagonal elements; this equation isC241 

where n = u2 + v2, 6w = wl - ool is the frequency detun- 
ing, and f =Edo@ i s  the field broadening. Equation (3) 
holds if 

In the classical limit the wave packet of the distribu- 
tion p is localized in the neighborhood of a certain point 
on the P plane; that is, 

Equation (3) describes the motion and the diffusion 
(more accurately, the smearing out) of the wave packet 
in the P plane. The diffusion, caused by the presence 
of second derivatives in Eq. (31, occurs only for the 
nonlinear oscillator (a  + 0) when quantum effects a re  
taken into account. This assertion becomes obvious if 
we express the anharmonicity constant in terms of 
classical quantities; we have 

where w,(Z) =dE/dl  is the classical frequency, Z=&n 
being the action variable. 

Using Eq. (3), one can obtain equations describing 
the change with time of the quantities Uc and Vc, and 
also the quantum corrections to these quantities. The 
calculation must be made in the following way. From 
Eq. (3) we obtain equations for the coordinates Uc and 
Vc of the center of gravity of the packet and for the 
second moments of the distribution p, i. e., for 

and for Mvv and Muv, which a re  similarly defined. We 
neglect the higher-order moments. Suppose that ini- 
tially ( t  = 0) the oscillator is in the ground state. Then 
Uc(0) = Vc(0), and the moments M can easily be shown 
to have the values Mu, = Mvv = i, Muv =O. On the as- 
sumption that the moments M(t) change only slightly 
during a period T of the motion of the point PC= Uc +iVc 
in the P plane, i. e., that the wave function does not 
spread much in the time T, we find that the population 
p, of the n-th level is given by the Poisson formula 
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where i ( t )  = ~:( t )  + ~ : ( t )  [cf. Eq. (211. Let us substitute 
constant values of the moments M in the equations for 
U, and V,; we thus find-the first quantum corrections to 
the quantities U, and V,. Next, we can derive from the 
equations for U, and V, an equation in closed form for 
the one quantity in which we are interested-the average 
quantum number Z(t), which according to Eq. (4) com- 
pletely describes the excitation of the oscillator. This 
last equation has the potential formci2' 

The potential V depends on n and on the frequencies 6w, 
f and a. Moreover, it depends on the initial values n(O) 
and &(O)/dt and the parameters. Excitation of the os- 
cillator from the ground state corresponds to the initial 
conditions i(0) = d;(O)/dt = 0; in this case the potential 
V is given by 

2. Let us consider some semiquantal-theory results 
that can be derived easily from Eqs. (4)-(6). For ex- 
citation from the ground state the quantity a t )  reaches 
its maximum value at t = T/2, where T is the period of 
the motion in the potential V. If the frequencies and 
f are given, the maximum value of ii depends only on 
6w; we denote it by n,(6w) and write it in the form 

where x=6w/6wC and 

Figure 1 shows the potential V(i) for the case 6w 
= - 60, (i. e., x = - 1). If 6w > - 6w,, the inner maxi- 
mum lies below the axis V=O; if, on the other hand, 
6w < - 6w, the maximum is higher and the second well 
is inaccessible. Accordingly, the function Fi(x) has a 
discontinuity at the point x = - 1, and takes its maxi- 
mum value 1 to the right of x =  - 1: Fi(- 1 + 0) = 1; to 
the le f tofxz- lwehaveFi( -1-0)=f ;  for 1x1 >>I the 

\\ \\ ; FIG. 2. The functim F i ( x ) .  The 
\ \ i  
\ \ :  dashed curves show the function 

\ i \  Fz(x) .  
\ :  \ 
\: \ 

- 2  - 7  1 r 

form is  F1(x) =9/x2. The curve of Fi(x) i s  shown in 
Fig. 2. The quantity i, is the maximum average 
quantum number to which the oscillator can be excited 
for given values of the anharmonicity a and the field 
broadeningf; 6wc has the meaning of a resonance width 
for the nonlinear oscillator. 

For an instantaneous application of the field, with 
E(t < 0) = 0, the average quantum number ?i undergoes 
beats. If, on the other hand, the field E is  turned on 
adiabatically, there a re  no beats, and ii increases along 
with the increase of the field amplitude. Let us denote 
the average value of n for the case of adiabatic applica- 
tion of the field by cd. This quantity is  given by the 
equation 

where f =Edol/E and E =E(t) i s  the varying amplitude of 
the field. We note that this is  precisely the sort of 
equation that holds for the quantity Z/E, where I is the 
action variable of a classical nonlinear oscillator exe- 
cuting forced vibrations in the presence of a small fric- 
tion. The solution (9) can be put in the form n, - 
=n, F2(x). The function F,(x) i s  three-valued for x 
< - 2'1'3 and is shown as the dashed curve in Fig. 2. 
Analytic expressions for FL 2 ( ~ )  are given incz5'. 

In classical language, the period T of the motion in 
the potential V is the beat period of the oscillator am- 
plitude. For excitation from the ground state the pe- 
riod T i s  

where 

The function F4(x) has a singularity of the type of - In1 1 
+XI, with F4(- 1 + E) =2F4(- 1 - E) for E-  0. For 1x1 
>> 1, F4(x) = 2n/l X I .  Values of F,(x) are given in 
Table I. 

3. .Let us discuss the region of applicability of the 
semiquantal theory. The spreading of the packet dur- 
ing a beat period T will be small if the anharmonicity 
constant a << 1/T. In fact, since in Eq. (3) 

FIG. 1 .  The potential VG) which describes the excitation of 
the oscillator from the state of rest when the frequency detun- 
ing is  bw = - bw,. The axes are marked with scales in accor- 
dance with Eqs. (6) and (13) .  we can neglect the second derivatives in (3) when a T  
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TABLE I. odological importance. 

<< 1. Therefore, for the semiquantal theory to be ap- 
plicable over times of order T the inequality 

must be satisfied. This condition can also be derived 
in a more rigorous way from the system of equations 
for U,, V, and the moments M. 

If LIT> 1, the wave packet spreads a great deal during 
even a single beat period. This restricts the region in 
which Eqs. (4)-(6) can be applied, since they a re  de- 
rived from Eq. (3) along with the condition ff T << 1, 
which does not apply however, to the validity of (3) it- 
self. The fact that the wave packet spreads also does 
not limit the possibility of expanding an arbitrary state 
in terms of the system of states I p). In fact, for ff = 0 
the states I P) are  the well known coherent states of the 
linear oscillator, in terms of which one can expand any 
state, since the completeness condition 

is satisfied. However, according to the definition (2) 
the relation (11) holds also for ff +O, since i t  requires 
only that the stationary states I n) that appear in Eq. (2) 
be a complete set. We need the condition ff T << 1, and 
the associated slowness of the spreading of the packet 
only to let us get from the complicated equation (3) to 
the comparatively simple semiquantal theory (4)-(6). 

Near a resonance, i. e., when 16w + 6wcl S6wC, the 
beat period T - 1/6w,- 1/f 2/3ff"3. In this case the con- - 
dition ff T << 1 takes the form (f/~u)'/~-& >> 1. F a r  
from resonance, i. e., when I6w + 6w,l >> 6w,, the func- 
tion F,(6w/6wC) = 2r6wC/1 6w I ,  and the condition ff T << 1 
takes the form a <<I 6w 1 . This condition can be satis- 
fied, independently of whether the quantity Z,(6w) is 
small o r  large relative to unity. Accordingly, the ap- 
plication of the semiquantal theory is not restricted to 
the case of large quantum numbers. 

We note that the expressions (7) and (8) a re  obtained 
if we write the corresponding formulas of classical 
theory"21 in quantum notation and make the substitution 

The result (12) was obtained in a special case incz6]. 

Although the expressions (7) and (8) a re  of essentially 
classical nature, the semiquantal theory does not re- 
duce to classical theory, since besides Eqs. (7) and (8) 
i t  enables us  to derive the nontrivial relations (4) and 
(lo), and also the formula (12), which is of some meth- 

4. Let us  discuss qualitatively the excitation of the 
oscillator in the case in which the wave packet spreads 
appreciably during a single beat period, i. e., for a T 
> 1. Numerical calculationsc252"301 show that if 6w 
< - 6w,, then during a time of a few periods T an excess 
population appears on levels with n >z-; this excess 
can be orders of magnitude larger than the population 
calculated from Eq. (4). This phenomenon can be re- 
garded as tunnelingczo1 into the second potential well of 
the potential V(?i) (region I1 in Fig. I), which for 6w 
< - 6wC is separated from the f i rs t  well (region I) by a 
potential barrier. It i s  clear from general considera- 
tions that the tunneling can only increase the population 
on levels with n 2-&, and this is confirmed by the nu- 
merical calculations. An analytical investigation of the 
population of levels with n 2Z,, in the case 60  < - 6w, 
i s  a very complicated problem, since quantum effects 
must be completely taken into account. 

In this case the semiquantal theory is useful, whether 
or  not the condition ff T << 1 is satisfied, because by us- 
ing the formulas (4) and (8) we can estimate a lower 
limit on the actual values of p and n,. In the case 6w 
> - 6wC, numerical calculationsc251 show that the semi- 
quanta1 theory gives much larger values of p,. 

5. We shall now discuss experiments (~ee[~ ' -~" )  on 
the excitation of vibrations in polyatomic molecules in 
the field of a C02 laser. It i s  well known that in these 
experiments, in a field of intensity I =  c ~ ~ / 8 n  = 10' W/ 
cm2 and over a time.of T 6 sec dissociation of mole- 
cules has been observed; this is a purely radiative ef- 
fect, since 7 is smaller than the collision time. The 
characteristic values of the dipole moment dl,, the field 
broadening f, and the anharmonicity a for the excited 
vibrational mode a re  of the order of 

From this we have 6w,= 2.6 cm". Values of the fre- 
quency detuning 6 0  varied from 0 to - 20 cm". 

The experimenters' interpretationc31-361 of their re- 
sults encounters difficulties in basing the discussion on 
the following widely accepted scheme. It is well 
knownt371 that the maximum value of ii to which a linear 
oscillator can be excited is 

Since f <<a, "the field broadening cannot overcome the 
anharmonicity. " Therefore in the most favorable case 
the effective value of 6w cannot be smaller than ff,  and 
for an order-of-magnitude estimate we can replace 6w 
with a in Eq. (14); we then have 

For  the values (13) the quantity n, calculated from (15) 
is 0.04. Meanwhile, for dissociation of the molecule 
we must have populations comparable with unity on 
levels with n = 3-4 (it is a t  present generally believed 
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that the further excitation and the dissociation of poly- 
atomic molecules occurs through a quasicontinuous 
segment of their energy spectrumc"]). Since according 
to Eq. (15) -& << 3, the dissociation of such molecules 
cannot be explained in this way. 

Concerning this we can say the following. Equation 
(14) is true; i t  follows from the general formula (7) 
when a - 0. In fact, for I xl -- we have F1(x) = 1/9x2 
and we obtain (14). Equation (15) is not true. Accord- 
ing to Eq. (7) the maximum value of ii is attained at 6w 
=-6wc and is 

In the Appendix we show why the transition from Eq. 
(14) to Eq. (15) cannot be justified even in the case f 
<<a, and give a simple derivation of the correct ex- 
plicit expression for &,. 

With the values (13) we find from Eq. (16) that ?i, i s  
equal to 1.4. This i s  one and one-half orders of mag- 
nitude larger than the value given by Eq. (15), which 
was derived in the framework of the elementary theory. 
Actually the value 1.4 i s  probably an over-estimate, 
since the laser spectrum cannot be entirely concentrated 
at the detuning value 6w = - 6wC; it has a finite width, 
usually of the order of 0.05 cm". Therefore we follow 
the table and take F,(x) = 20, F1(x) = 0.7 (seec251); then - 
n, = 1, and the beat period is T = 0.26 nsec. The value 
of the parameter OT in Eq. (10) is 38, so that in only 
the time T there is a strong spreading of the wave 
packet and the semiquantal theory cannot give an accu- 
rate quantitative description. Therefore the values of 
p, given by the Poisson formula (4) must be regarded 
as a lower limit on the actual values of p,. 

According to the semiquantal theory, at time ~ / 2  
=O. 13 nsec after the beginning of the excitation %(t) 
reaches the value n, = 1; the value of p3 is then 0.06 
[cf. Eq. (4)]. We can suppose that molecules on levels 
with n > 3  are rapidly excited further and dissociate. 
Then after one beat period T = 0.26 nsec there will 
again be a fraction p, = 0.06 of the molecules on levels 
with n23, and so on. The characteristic dissociation 
time found in the experiments is  5-10 nsec.c31-361 In 
10 nsec n(t) has about 40 beats. Since at every beat 
maximum p3 = 0.06, during a time of 10 nsec at least 
90 percent of the molecules get excited to the level n = 3. 
This is  probably sufficient to explain the observed lu- 
minescence. 

We thank V. L. Ginzburg for a helpful discussion. 

The table was computed with a Wang 2200-B com- 
puter, and the figures were drawn by the machine's 
plotting device. 

APPENDIX 

We shall estimate the characteristic value of the 
quantum number n to which the oscillator can be ex- 
cited. We introduce the expression for the frequency 
detuning as a function of n 

Ao (n) = [fino,-E(n) Ilfi; 

for the spectrum of Eq. (I), Aw(n) =[tinw, -E(n)vti. 
Excitation will continue to the point at which, with in- 
creasing n, the detuning Ao(n) becomes comparable 
with the characteristic frequency of a dipole transition 
in the range of quantum numbers near n. This fre- 
quency is  given by Ed, n+t/ti=n'/2f. Comparing the val- 
ues 

Itio+'l~an 1 n and nPhf, (1'7) 

we readily see that the estimate n - ( f / 6 ~ ) ~  holds only 
far from resonance, where 6w >> f 2/3~"s.  If, on the 
other hand, 1601 sf 2/sa1/3, we get from Eq. (17) the 
value n - (f/aI2l3. 

- We have obtained the correct explicit expressions for 
n,, and the characteristic value of the frequency de- 
tuning 60, [cf. Eq. (811. 

In going from Eq. (14) to Eq. (15) by the replacement 
6w - a one incurs an error, since this does not allow 
for the fact that for the nonlinear oscillator the transi- 
tion frequency w,,+~ = wol - an, and along with it the dif- 
ference or - w, = 6w + an, will depend on n. From 
the latter expression it can be seen that the effective 
value of 6w is the term an. When we use the value 60 
- a n  in Eq. (14), we again obtain the correct value for - 
n, without the (significant) factor 4. 

  he term "semiquantal theory" is adopted from Bloember- 
gen."O' (Translator's note: Actually Bloembergen did not 
use this term in the paper cited. Kuz'min and Sazonov have 
coined this name, apparently, by their misunderstanding (or 
a translator's misunderstanding) of Bloembergen's calling 
his calculations "semiquantitative. ") 
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One-photon decay of two-hole states in atoms 
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The techniques of many-body theory are used to make calculations with Hartree-Fock wave functions of 
the probability of one-photon decay of two-hole states in the first nonvanishing approximation in the 
interaction of vacancies. Specific results are obtained for two 1s vacancies in neon, two 2 p  and 2s 
vacancies in doubly ionized argon, and two 4d vacancies in xenon. The results agree extremely well with 
recently obtained experimental data on neon and argon. An experimental study is proposed of one-photon 
decay in a process in which a two-hole state is formed as the result of an Auger process following the 
removal of an electron from an inner shell by a photon or fast electron. 

PACS numbers: 32.80.Hd 

1. There have recently appeared both experimen- 
talci-s~ and t h e o r e t i ~ a l ~ ~ ' ~ '  investigations of the mecha- 

nisms of decay of highly excited atomic states produced , 

by the removal of two electrons from an inner shell- 
two-hole states. These phenomena a r e  interesting be- 
cause their study can give additional information about 
the interaction between electrons in atoms; in the case 
of simultaneous decay of two vacancies this is the only 
information available. 

Two-hole states can decay either owing to the ordi- 
nary Auger effect, in which the two vacancies a r e  de- 
stroyed independently with the emission of two o r  more 
photons, o r  by a radiative process in which one vacancy 
decays via the Auger effect, and the other in a radiative 
transition. 

There is, however, also a different and extremely 
interesting possibility for the decay of a two-hole state, 
in which both vacancies a r e  simultaneously filled by 
electrons from the outer shells, and the energy released 

is carried away by a single electron o r  photon. In the 
case  of emission of an electron the process has received 
the name of the three-electron Auger effectc''; the other 
case, with a photon emitted, is called one-photon decay 
of a two-hole state. C2-61 Both processes a r e  possible 
only because of the existence of an interaction between 
electrons (or holes) in an atom, and consequently a r e  
essentially many-electron phenomena. Therefore in 
theoretical studies on the decay of two-hole states the 
interaction between vacancies must be taken into ac- 
count from the beginning. 

In the present paper we make an investigation of the 
one-photon decay of two-hole states in atoms by means 
of the techniques of the quantum theory of many- 
bodies. ['' The probabilities of one-photon decay a re  
calculated for two-hole states of several  atoms: ( 1 ~ ) ' ~  
in Ne, (2s)" and (2p)" in Ar++, and (4~f) '~ in Xe. A pre- 
liminary note on the theoretical interpretation and re- 
sults for this process has been published earlier.c61 
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