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Quantum effects near a singularity lead to multiparticle production and vacuum polarization. The vacuum 
polarization gives rise to various kinds of nonlinear additions in the four-curvature in the Lagrangian of 
the gravitational field. In the case of an isotropic cosmological model, their local part can be written in 
the form AL, = A + BR '+ CR YRI, (R = gikRik). It is shown that allowance for AL, in the 
Friedrnann model gives a regular minimum of the scale factor bo; out of this minimum, there emanate 
two solution branches with decreasing and increasing value of IR(. Because of the change in the sign of 
the logarithm, the first branch goes over into an oscillatory regime; the second gives a divergence of R as 
b+m . In this case, the solution b(t), which has a regular minimum, approaches the Friedmann behavior 
in the asymptotic limit t+- W ,  and the singularity is displaced to the opposite end of the time axis. 
Allowance for particle production or inclusion of viscosity near 6, may restrict the growth of the curvature 
in the second solution branch, and the universe may then approach the Friedmann solution in the limit t+ w 
as well. 

PACS numbers: 98.80.Dr 

1. INTRODUCTION 

The inevitability of a singularity in the general cos- 
mological solution of Einstein's equationsct1 has stimu- 
lated recently investigations of the modifications to gen- 
eral  relativity due to quantum effects. The most impor- 
tant of these a r e  multiparticle production and vacuum 
polarization in the strong variable gravitational field 
near the singularity (seec2] and the literature quoted 
there). 

Particle production in a field with given metric can be 
taken into account fairly rigorously. C3I Difficulties 
arise when one considers the self-consistent problem 
with the back reaction of the created particles on the 
metric. As was noted the back reaction can be 
taken into account approximately by the introduction of 
an effective viscosity. Vacuum polarization leads to 
various additions in the four-curvature in the Lagrang- 
ian density L, of the gravitational field. C3*6*71 If o nly 
their local part is taken into account, then in the case of 
a homogeneous and isotropic cosmological model these 
additions can be represented in the form 

where R=gf&'&, and A, B, C a re  constants. Although 
this approach has a number of limitations, which were 
noted i t  enables one to investigate the possibility 
of eliminating the singularity in the framework of clas- 
sical gravitation. 

It should be noted that allowance for only second vis- 
cosity of the matter in the framework of general rela- 
tivity for an isotropic model enables one to eliminate 
the singularity in a certain sense. c'0'5' The correspond- 
ing solution a s  t - - m is described by the de Sitter met- 
r ic with zero energy density &, and a s  t -  .o i t  tends to 
the Friedmann solution with all matter generated by dis- 
sipation during the expansion process. Independently of 

able of giving a continuous transition from contraction 
to expansion when & > 0. 

The addition to (1) corresponding to the second term 
(the f i rs t  leads to the cosmological X term) gives a reg- 
ular minimumof the scalar factor b,, a s  was f i rs t  noted 
inc"]. But the sign of B which ensures this behavior 
of the solution leads to a divergence of R with increas- 
ing b. Asymptotic approach to the Friedmann solution 
occurs only when R~ is added with the opposite sign. 
The results of ["I made i t  necessary to-consideraddi- 
tions of more general form; this was done inct2s131, in 
which the possibility was demonstrated of constructing 
regular cosmological models with a value of R~ which 
is regular for  all t and which tend to the Friedmann 
solution a s  t-03. Unlike th'e additions of type (11, no 
justification was given for  the form of the new addi- 
tions. 

New possibilitgs a r e  opened up if the effects of polar- 
ization and particle production a r e  taken into account 
simultaneously. The equations of general relativity 
modified by means of (1) give two solution branches em- 
anating from the point b,, one with a decreasing and the 
other with an increasing value of I R I . Ct21 (symmetric 
branches lead to divergence of the curvature a s  t- +v. ) 
This last  applies equally to (1) and to a quadratic addi- 
tion. In both cases, with increasing b, the solution 
branches with increasing curvature lead to divergence 
of the curvature. As is shown below, there is an essen- 
tial difference for the branch with decreasing I R I. At 
a definite value of R,, the addition (1) changes sign be- 
cause of the presence of the logarithm, and this ensures 
an asymptotic approach to a Friedmann universe. This 
possibility was noted in in which however the branch 
with increasing value of I R I was investigated. Thus, 
allowance for  polarization effects gives a regular mini- 
mum of the scale factor b(t) and Friedmann asymptotic 
behavior a s  t - +m o r  -rn, the singularity ( R ~ -  w) being 
displaced in this case to the opposite end of the time axis. 

the physical justification of this model, it too is incap- These properties of the modified gravitational equa- 
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tions are important for the following reason. During 
the stage of contraction that begins with the Friedmann 
asymptotic behavior a s  t -  - .o, creation of gravitonsc4] 
must commense in the neighborhood of b,. Their back 
reaction on the metric may halt the growth of I R I in the 
second solution branch, which could lead to an approach 
to a Friedmann universe in the limit t - + .o as  well. 
Rigorous investigation of this possibility requires solu- 
tion of the self -consistent problem mentioned above. 
Allowance for matter production by the introduction of 
an effective viscosity, as  in the conclusion to this paper, 
only demonstrates the possibility that the growth of the 
curvature is restricted and the second solution branch 
goes over into an oscillatory regime. 

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

We represent the addition (1) in the form 

Here, using the characteristic lengths I ,  we have intro- 
duced the dimensionless four-curvature 

and the constants X and P: are related by the inequality 

For p2>> A, the expression (2) is  equivalent to the sec- 
ond and third terms in (1). For X>> p2, it is nearly 
equivalent to the first term. 

We restrict ourselves to the model with flat comoving 
space: 

where T = ct. The gravitational equations correspond- 
ing to L,=p+fdo) are obtained in Ci21. For investigation 
it is convenient to take from this system of equations 
the one with T:, and replace the others by the equationsi 
T:;, = 0, which follow from this system. The order of 
the chosen equation can be reduced by introducing the 
new variable 

by means of which we obtain for the scalar curvature 

Then the basic equation takes the 

a f b4 d d f  
Y ~ { ~ ( y - ? )  - B f + ~ b z ( 5 ) )  =E,  

where 

E=xlZb4e/3. 

Here, x is Einstein's constant and & is the energy den- 
sity. In the case of the hot model, E = 3#, and (9) is a 
constant. After substituting (2) into (8) and making 
some simplifications on the basis of the condition (4) 
(see the conclusion), we obtain 

where p, =p,eU2. 

In accordance with what we said in the Introduction, 
we shall seek a solution b(r) that has a regular mini- 
mum at r=0 ,  i.e. 

To the single-valued dependence y (7) there corresponds 
the two -valued dependence 

Hence, in accordance with ( l l ) ,  we have the boundary 
conditions 

Y + ( ~ o )  =y-(bo) -0, 
y+'(bo) =y-'(bo) =2 (lbo) "0, - (13) 

lim (y,"y+")-=- lim (y-"y-")-2(lbo)' b,. 
b - 4  b - rh  

3.QUALITATIVE INVESTIGATION OF THE SOLUTION 

We consider the behavior of the solution (10) near the 
point bo of the regular minimum. In accordance with 
(131, 

At the same time, it follows from (10) that 

where the subscript 0 indicates the values of the quan- 
tities at b,. It can be seen from (15) that the solution 
can intersect the axis y = 0 only for cp,3 1, and that the 
upper sign of the root corresponds to a minimum of b. 
For known first  derivative, we have 

It follows from this that two solution branches emanate 
from bo on y = 0 with equal first derivatives. One, with 
increasing derivative, leads to divergence of p a s  b- m. 
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The second solution (lower sign in (16)  leads to a de- 
crease in Ipl and a change in the sign in Eq. (10)  a t  the 
point b  = b,. The behavior of the solution in the neigh- 
borhood of b, is qualitatively the same a s  in the neigh- 
borhood of bo because the factors multiplying the high- 
es t  derivative vanish in both cases. Hence, setting 

y=y.+a.z+d.zZ+O (zs), z=b-b.< b., (17)  

we obtain from (10)  

It follows from (18)  that a t  the point y  = y , ,  b =  b, there 
a re  two solutions which have the same derivative but 
second derivatives that increase and decrease with in- 
creasing x. The second of the solutions corresponds 
to analytic continuation of the solution that leaves bo 
with decreasing value of I pl . 

As will be shown below, the curvature p after passage 
through the point b  = b, >> 1  continues to decrease rap- 
idly, so  that one can set 

where I cp I >> 1  by virtue of the condition ( 4 ) .  After the 
introduction of E =  1  and the variables 

Eq. (10)  then takes the form 

We first  set  4-6" 1 / f  (this last  is achieved by the in- 
equalities y;, (1 -y,)  << I / [ , ) ;  then (21)  after lineariza- 
tion yields 

whose solution has the form 

Here, b1 and 6, a r e  constants of integration and J3 / 4 ( f )  

and N~ / 4(5) a r e  Bessel and Neumann functions. For  
f>> 1,  

In accordance with (23) ,  the solution y ( b )  oscillates 
around the Friedmann solution y  = 1  a s  the frequency 
w(b)  increases (see Fig. 1 ) .  The amplitude of the os- 
cillations increases a s  - b'l2. We have y' - b3/  ,, which 

?. 
a a 16 '-6 

FIG. 1. Solution of Eq. (10) with boundary conditions specified 
at b*. 1) Unboundedly increasing branch ( I p I -  m as b -a) 
and oscillating branch; 2) Friedmann solution; 3) direction 
of time evolution (above, the dependence b(t) corresponding to 
1). 

in accordance with ( 7 )  gives p2- b-3. This last  justifies 
the assumption (19) .  With increasing amplitude, the 
nonlinear terms omitted in (22)  become important. It 
is however easy to see  that the growth of the amplitude 
cannot be unbounded. Because (19)  holds, p < 0 ,  which 
in accordance with (15)  prevents the solution intersect- 
ing the y  = 0  axis. The form of the nonlinear oscilla- 
tions with constant amplitude follows from (21)  after 
neglect for  f >> 1  of the last term: 

The law of increase of w ( b )  remains the same a s  in the 
linear oscillations, and p- b-,. In accordance with (6), 
the corresponding value of b ( f )  for r/1>> 1 has the form 

where the f i rs t  term describes the evolution of the 
Friedman model. 

An oscillatory solution also holds for X = 0 .  At the 
point y' = 0 ,  only y"' has a discontinuity, which is al- 
lowed since (10)  is an equation of second order. 

4. EXAMPLE OF NUMERICAL CALCULATION 

Numerical solution of (10)  requires a preliminary in- 
vestigation of the neighborhoods of the points bo and b,, 
since the proximity of the second solution leads to in- 
stability of the method of finite difference~ with speci- 
fication of boundary conditions a t  one point. If one gets 
away from these points by means of the above formulas, 
the Runge-Kutta method can be used to obtain all solu- 
tion branches. In Fig. 1 ,  we give the results of calcu- 
lation for A = 1- 10'~. The boundary conditions were 
chosen a t  the point b, = 5, y: = 0 . 4 .  For  b  > b,, the! 
calculation proceeded along the direction of evolution 
of the model; for b  < b,, in the opposite direction. After 
approach to the point y  = 0 ,  b =  bo in accordance with 
Eqs. (14)-(16)  the values of y( and yo'' were determined 
f o r  the second solution branch with y (b - m) - -. After pas- 
sage through the point b, an oscillatory regime com- 
mences with the above law of increase of the frequency 
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w(b) and slow increase of the amplitude a, which tends 
to saturation at b- 100. 

Note that for E= const the direction of evolution of 
the model shown in Fig. 1 can be reversed by virtue of 
the invariance of the equations under the substitution 
t - - t .  

5. CONCLUSION 

Thus, allowance for  the polarization correction (2) 
does not eliminate the singularity in the Friedmann 
model. Although R2 - .o a s  t  - .o , at a finite t  we already 
have R ~ >  1 i 4  (Ip is the Planck length), which indicates 
that we approach the essentially quantum region, in 
which the classical treatment of the metric is invalid. 

Let us now consider approximately the influence of 
matter creation. Because of the conformal invariance 
of the corresponding wave equations for an isotropic 
universe, production of the majority of particles i s  for- 
bidden.c21 An exception i s  gravitons, whose mutiple 
production i s  possible when R2# o . ~ ~ ~  In the case of the 
hot model, this process becomes effective when the 
nonlinear addition (2) becomes effective, C141 which ac - 
cording toCS1 makes it  possible to formulate rigorously 
the problem of particle production from quantum fluc- 
tuations in an external variable classical field. Below, 
we shall, followingc4], describe the corresponding in- 
crease in & by introducing an effective viscosity with 
coefficient 

The equation for E follows from T!,,ui = 0 with allow- 
ance for (6) and (9): 

Note first  of all that the system (101, (26) has the sin- 
gular solution 

where the constants are  related by 

The solution (27) describes a steady-state cosmological 
model in which the effects of viscous dissipation play 
the role of the hypothetical C field. The corresponding 
rate of matter production has the limiting value. A 
slower rate of increase of E leads to a divergence of p 
with increasing b; a greater rate, to decrease in the 
curvature I p 1 and change of sign of the logarithm in 
(10). Let us now consider the cosmological model given 
in Fig. 1.  Allowance for (26) during the stage of con- 
traction that begins with the Friedmann asymptotic be- 
havior does not change the essential behavior of the so- 
lution, leading only to an increase in the value of b,. 
We therefore set 

FIG. 2. a) Cosmological model with allowance for effects of 
polarization and matter creation: 1) y(b) during the stage of 
collapse, 2) the expansion stage; 3) the behavior of E(b); 4) 
unboundedly increasing solution with E = 1. b) The dependence 
b ( t )  corresponding to 1 and 2; the dashed curve shows the 
Friedmann solutions with E = 1 and 2.2. 

which gives a strong increase in E after the point bo 
has been passed. For the example considered in Sec. 
4, the rate of increase of the energy was given in the 
form d ~ / d b =  12 exp[lO(bo - b)]. An increase in E to - 2.2 in the interval Ab- 0.2 halts the growth of the 
curvature for the second solution branch (see Fig. 2) 
and carries it into an oscillatory regime similar to the 
contraction stage. 

I thank Ya. e. Zel'dovich, A. A. ~ u z m s k i n ,  and A. 
A. Starobinskii for valuable advice during this work. 

APPENDIX 

Substitution of (2) into Eq. (8) gives 

h =;(,-~--b~m 6 
(A. 1) 

~ Y Y '  3 ~ '  +-[ m+i+-1. m=ln(pz+h)/p3. 
b p2++h 

The term Ab4@/6 for small b is small by virtue of the 
smallness of A. As b - ", when P2 - 0, @ - lnX/p:, , 
which is equivalent to the presence of a X term. This 
last may be compensated by the choice of A in (1). 
Hence, over the whole interval of variation of b this 
term can be ignored. 

If p >> X, then p2/(p2 + A) 1. If A> P2, this equation is 
invalid since 1 @ 1 >> 1 by virtue of (4), which determines 
the value of the brackets on the left-hand side of (A. 1) 
and the last term on the right-hand side. This last en- 
ables one to retain the given equation for the complete 
interval of variation of p. With allowance for these as- 
sumptions, Eq. (10) follows from (A. 1 ) after renota- 
tion of p,. 
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Solutions have been obtained for the Yang-Mills equations for the gauge group SU(2) in a Euclidean 
space having a topological characteristic larger than one. 

PACS numbers: 11.1O.Np 

1. Classical solutions of the Yang-Mills (YM) equa- 
tions in Euclidean four-space have been the object of 
numerous theoretical investigations in recent months. 
The Euclidean signature of the metric allows one to 
reduce the order of the YM equations and to represent 
them in the form of duality relations. The solutions 
of these equations, "instantons," describe in the 
quasiclassical approximation tunneling transitions be- 
tween various vacuum states of the YM field in normal 

tion establishes a conformal mapping between the 4- 
sphere and Euclidean four-space, the solutions of the 
YM equations in Euclidean space, when mapped by the 
stereographic projection onto the sphere, will be solu- 
tions of the YM equations on the 4-sphere ( 9 )  and vice 
versa. The instanton turned out to be a field "constant" 
(according to the definition introduced by one of usI4I) 
on the Sphere s', and is therefore invariant with respect 
to its symmetry group O(5). 

(pseudoeuclidean) Midcowski space.L1' More precisely, According to the classification of Belavin et o l . ~ ~ ~  the 
the instantons a r e  saddle points in the calculation of instanton has topological characteristic 1; at the same 
various Green's functions of inte- time these authors have predicted from topological con- 
gration methods. siderations that there exist instantons with higher topo- 

The solution of the YM equations found by Belavin 
et ~ 1 . ~ ~ '  in a Euclidean four-space having spherical 
symmetry (under O(4)) (the instanton) turned out to be 
invariant under the group 0 ( 5 ) ~ ~ ]  on account of the con- 
formal invariance of the YM equations. In the action 
for the free YM field 

the metric tensor enters only in the combination 

which is invariant under the substitution 

logical characteristics, globally defined by the action 
integral (1) over the whole four-space: for solutions of 
higher topological type I ,  the action integral must be an 
integral multiple of the integral for the instanton Ii, with 
the integer n (the multiplicity) characterizing the topo- 
logical type of the field (the degree of the mapping of 9 
onto S U ( ~ )  -s3 which determines the gauge)." But in 
mapping of the higher degree the symmetry is neces- 
sari ly lowered, since for such mappings there appear 
in four-space submanifolds where the solutions branch, 
which destroy the spherical symmetry. However, if 

(2) instead of the Euclidean space one considers the solu- 
tions on the sphere s4, one can choose the branching 
manifold (which has dimension d - 2, if d is the dimen- 
sion of space) a s  a sphere s2 ,  SO that out of the symme- 
t ry  group O(5) one retains the sufficiently high simme- 

g i , + h ( ~ )  gi,. t ry  0(3)@0(2), allowing one to find the solution. 
Therefore, any solution is a solution not on a particular 
Riemannian manifold, but on a class of conformally 2. On the sphere S' we introduce a coordinate sys- 
equivalent such manifolds. Since stereographic projec- tem which explicitly reflects this symmetry, defining 
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