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The character of the phase transition of an optically pumped superconductor to the normal state is 
investigated. It is shown that a superwnductor with nonequilibrium quasiparticle is unstable relative to a 
transition to the normal state if the gap becomes smaller than a certain value A, that is small in 
comparison with the gap in the absence of pumping. The region of instability with respect to the optical 
pumping power P coincides with the interval where the gap is not a unique function of the pump; this 
region was obtained by the author earlier (Sov. Phys.JETP 44, 780, 1976). The spatially 
inhomogeneous states that arise after the development of the instability are investigated using the 
Ginzburg-Landau equation generalized to include the nonequilibrium case. Depending on the pump power, 
stationary coexistence of the regions of normal and superconducting phases is possible (at P =Po), as well 
as nonstationary coexistence when the interface moves with a definite velocity that depends on the 
difference P -Po 

PACS numbers: 74.40. + k 

INTRODUCTION smaller than a certain value A,, (small in comparison 

Experimental investigations of superconductors ex- 
posed to light have made i t  possible to study a number 
of characteristics of the superconducting nonequilibrium 
state. ['I I t  was observed inc2'31 that the sample acquires 
resistance to direct current not jumpwise when the gap 
A vanishes (as in an equilibrium superconductor), but 
smoothly, starting with a certain critical value of the 
pump power. The mechanism of the resistance-blurred 
transition has been discussed in a number of ~ t u d i e s . ~ ~ ' ~ ~  
To explain the finite resistance, i t  was proposed that the 
superconductor can break up into regions of normal and 
superconducting phase, i. e., a certain analog of the 
mixed state in type-I1 superconductors. However, the 
causes of the transition of the system into the inhomo- 
geneous state, the structure, and even the very possi- 
bility of the existence of the inhomogeneous state have 
remained unclear. 

At the same time, the important role of the form of 
the distribution function of the nonequilibrium quasi- 
particles has been made ~ l e a r [ ~ ~ ~ '  and i t  has been shown 
that the energy distribution of the quasiparticles deviates 
considerably from equilibrium. 15' 1nC1' I was able to ob- 
tain the distribution function of the particles n, near the 
point of the phase transition and the dependence of the 
order parameter A on the pump power B. The depen- 
dence of Aon 6 turned out to be multiply valued, namely, 
two solutions (not counting A = 0) exist for A starting a t  
a critical power PC. The reason for the ambiguity is 
quite general in character and is connected with the in- 
fluence of the order parameters on the quasiparticle-en- 
ergy relaxation processes. The ambiguous A(b) depen- 
dence means, generally speaking, that the transition to 
the normal state can be of f irst  order (in agreement with 
the conclusion drawn inCB1), and a breakup into phases 
is possible. 

It i s  shown in the present paper that a superconductor 
with nonequilibrium particles becomes unstable to a 
transition to the normal state if the gap becomes 

with the gap A, in the presence of the pump). The in- 
stability is due to the decrease of the recombination rate 
of the quasiparticle with decreasing order parameter 
and ar ises  in the following manner. The decrease of the 
order parameter decreases the recombination rate, and 
consequently increases the number of quasiparticles, 
leading in turn to afurther decrease of the order parameter. 

This paper deals with spatially inhomogeneous states 
that ar ise  after the development of small perturbations 
of A and n with allowance for the nonlinear effects. 
These states a r e  described by nonlinear Ginzburg- 
Landau equations generalized to include the nonequilib- 
rium state. The main result is that a normal and a 
superconducting phase can coexist in a superconductor 
with nonequilibrium quasiparticles, the width of the 
separation boundary being equal to the larger of two 
lengths, the coherence length 5, or  the quasiparticle dif- 
fusion length L. A stationary coexistence of the phases, 
however, i s  possible only a t  one value of the pump power 
Po (or in a very narrow region near Po). At P#Po the 
phase separation boundary moves with a velocity propor- 
tional to the difference P -ti,. The boundary moves to- 
wards the normal phase if Bc < /3 < Po, and towards the 
superconducting phase a t  b >Po. 

Just a s  before, we consider the case when the non- 
equilibrium phonons produced upon recombination of the 
quasiparticles can be neglected. This is valid for thin 
films if the time of departure of the phonons from the 
film is r,,=4d/sd (d is the film thickness and sd is the 
speed of sound) i s  shorter than the time of reabsorption 
by the quasiparticlesL8' (for aluminum, e. g. , d <  4000 A). 

1. EQUATIONS FOR THE ORDER PARAMETER 
AND FOR THE QUASIPARTICLES I N  AN 
INHOMOGENEOUS NONEQUlLlBRlUM 
SUPERCONDUCTOR 

To investigate the inhomogeneous state of a supercon- 
ductor in a nonequilibrium state i t  is necessary to gen- 
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eialize the Eliashbergequations for the gap, i. e., to ob- 
tain equations of the Ginzburg-Landau type for a non- 
equilibrium superconductor in a region where the gap A 
is small in comparison with A, and varies weakly over 
the coherence length 5,. With the aid of the nonequilib- 
rium Gor'kov equations"e10J we can represent the ex- 
pression for A(r) in  the form of the infinite ser ies  

where K, a r e  the coefficients of the expansions of the 
Green's functions and of the distribution function n of the 
nonequilibrium particles with respect to A. 

I t  is known that if A is small and depends smoothly on 
r it  suffices to retain the linear term of the expansion of 
A in r - r,, so that the first  term in (1) yields 

1 #A 
A ( r )  K , ( R ) # R +  --j K , ( R ) R ~ ~ R .  

6 dr' 

In  the remaining terms of the ser ies  (I), we take A@,) 
outside the integral sign a t  the point r. Summing the 
ser ies  and gathering the results, we obtain the following 
equation for the order parameter: 

( E ' + l I  ( r )  1')": 
(2) 

where no(() is the quasiparticle distribution function at 
A=O. 

Generally speaking, Eq. (2) should contain also a term 
with a linear derivative, since n, can depend on r. In 
this paper we consider the case of spatially homogeneous 
pumping, and omit therefore the term with d ~ / d r .  

The Ginzburg-Landau equation is obtained from (2) by 
replacing the function %(r) by n, = (eelT + 1)-I and expan- 
sion in powers of A'. In the nonequilibrium case n,(r) 
satisfies the kinetic equationcu1 (see below), and the 
expansion of n, in  terms of A contains not only quadratic 
terms. This is precisely why the sum is retained in 
(2), so a s  to carry  out the expansion in A for concrete 
%(r) (seeC7]). 

I t  i s  interesting to note that Eq. (2) can be obtained by 
varying a certain functional 

The expression for the "potential energy" U can be ob- 
tained with the aid of the known statistical f ~ r r n u l a ~ ' ' ~  

dg' 
U ( A ( g ) ) =  j7(Hint), 

0 g  

where (Hi,,) is the mean value of the BCS interaction 
Hamiltonian. 
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Including in the usual manner the vector potential A 
in (2), we obtain the following system of equations for 

-- 
A and G: 

dn, an, a &  an, a& - +---- -+F = 
at 5 .  ap  a ,  ( a r  ) ($) . .+Q'  (6 

which together with Maxwell's equations and with the ex- 
pression for the current constitute a complete system 
for the nonequilibrium state of the superconductor. 
Here (an/at),, a r e  the integrals of the collisions with the 
impurities, phonons, and electrons; n(5) is a symmetri- 
cal distribution function, and Q is the pump source. We 
shall assume below that a spatially homogeneous sources 
generates quasiparticles in a wide energy interval w, 
and the potential A and the force F exerted on the quasi- 
particles by the external fields a r e  equal to zero. 

The collision integrals with the phonons, which plays 
the principal role in the energy relaxation, is of the 
formc". 71 

I 
' D  

(-$),=--+{(I-n) I di 'n'  

(8) 
A2 

- n  j ~ E ' ( I  - n') ( i -;;;I ( E - r o k + t - n j ~ E ,  ( i  +-$) ( r + ~ ~ ) ~ + ~  . 
0 n 1 

Here T is set  equal to zero, k is the exponent in the 
dependence of the square of the matrix element of the 
electron-phonon interaction on the wave vector, and w, 
is the Debye frequency. 

The equation for the gap contains the distribution func- 
tion n(5) integrated over the angles. Proceeding in the 
usual manner, we obtain from (6) for this function the 
equation (omitting the terms quadratic in A) 

where L' = V ~ T  frf/3c is the quasiparticle diffusion length, 
which we assume for simplicity to be independent of f ,  
while T and T, a r e  the relaxation times on the impurities 
and phonons, respectively. 

The coherence length f,, which enters in (5), depends 
on the form of the distribution function no([). For k = - 1 
we have 5, = v , / A , ~ ,  while for k = 1 the value of 5, was 
obtained numerically inc131 and turned out to be 0.  52v0/ 
Ao. 

The stationary spatially homogeneous solution of the 
system (5) and (6) was obtained earlier. The quasi- 
particle distribution function i s  represented in the form 
n = no + n,, where n, is a small correction proportional to 
A l n ( h , / ~ )  if k = - 1 o r  to A if k = 1. We present the equa- 
tions for the gap in dimensionless variables 

Af=AIAo. A=- 1 and J'=na,lj2aZ, ?i= 1, 
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henceforth A'= A" 

FIG. 1. 

According to (lo), the dependence of A on 6 becomes 
ambiguous a t  6>O (see Figs. l a  and 2a). Indeed, start-  
ing with 6 = 0 there exist two solutions A, and A, (be- 
sides A, =O); A3 corresponds to a solution that decreases 
with increasing 6, and 4 to an increasing solution. The 
two solutions coalesce at A,, and 6" satisfying the equa- 
tion 

The equation for the gap in the case k = 1 was obtained 
earlierL1' in an approximation linear in A. I t  is obvious, 
however, that the increasing solution must merge with 
the decreasing one. Therefore a second term with an 
unknown coefficient a approximating the A(6) dependence 
was added to (11). 

2. INSTABILITY OF NONEQUlLlBRlUM 
SUPERCONDUCTOR RELATIVE TO SPATIALLY 
INHOMOGENEOUS PERTURBATIONS 

We consider a superconductor with a pump power f i  
such that 6>0. We investigate the stability of the sys- 
tem (5)-(8) relative to homogeneous perturbations. As 
usual, we seek the solution in the form 

n(t )  =n+iieT'. A ( t )  =A+Ae". (13) 

The linearized system of equations for n(5) and is 

where the following notation was used: 

Here is an integralJinear operator acting on n. 
The equations for 6 and A a r e  analogous in form and in 
properties with the corresponding equations derived 
earl ier  for n, and A. "' 

Recognizing that the term g k { 8  leads to corrections 
quadratic in A', we can represent {in the linear approx- 
imation in the form 

Substituting ii in (15), we obtain an equation for c: 

The main contribution to the integrals is made by small 
5- A. Taking this circumstance into account, we get 
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Substituting in (19) the previously obtainedLT1 functions 
n=n,+n,, we get 

I t  is seen from (20) that if the gap becomes smaller than 
the value of A,,, which is a root of Eq. (12), then q',> 0 
and the system is unstable to a transition to the normal 
state o r  to a state1' with 4>4. The instability region 
coincide with the region where A(6) is a multiply valued 
function. The maximum decrement f-, is reached a t  
A = 0 and is equal to two. 

The physical meaning of the instability consists in the 
following. Let the gap in the state with A < A decrease 
somewhat as a result of the fluctuations. Then the re-  
combination probability decreases, and consequently the 
number of quasiparticles increases, and this leads in 
turn to further decrease of the gap, etc. The instability 
is thus due to the influence of the order parameter on 
the processes of the energy relaxation of the quasipar- 
ticles. I t  is interesting to note that when the system 
goes over into the normal state, an additional number 
6n of quasiparticles is released because of the decreased 
rate of recombination of the quasiparticles a t  the same 
source power. 

For the case k = 1 we can obtain fl only in the approxi- 
mation linear in A, i, e., the maximum value, equal to 
fl = 1. If we take the quadratic correction into account 
in accord with (11), we get 

3. INSTABILITY OF NONEQUlLlBRlUM 
SUPERCONDUCTOR RELATIVE TO 
INHOMOGENEOUS PERTURBATIONS 

We consider the instability of a system relative to 
spatially inhomogeneous perturbations of the type 

In this case the system of equations for 8, and n, takes 
the form 

Substituting (22) in (21), we obtain f: 

The first  term in the numerator of the expression for 
fi coincides with the decrement of the homogeneous 
state, the second term is connected with the motion of 
the quasiparticles under the influence of the concentra- 
tion gradient of the quasiparticles and the gradient of 
the order parameter; the last  term is due to diffusion 
of the order parameter. The diffusion of the order 
parameter makes a negative contribution to y':, leading 

to a dissolution of the instability. The contribution of 
the second term is determined by the sign of the expres- 
sion J,, which was calculated earlierc79143 for  different 
cases and i t  has been shown that J,>O. We can there- 
fore conclude that the decrement is maximal for homo- 
geneous perturbations (q = 0). 

I t  is of interest to estimate those values of q, a t  which 
the instability becomes stabilized, i. e., fk(q,) = 0. After 
simple calculations we obtain 

If r]<< 1, then $L2 = I JOI $ << 1. In the opposite limiting 
case r]>> 1 we have d L 2  = I JOI /J,. At A = 0 we have 
(q,L),, = 1. I t  will be shown below that in the region of 
physical interest we have I J,I < 1, so that in stable in- 
homogeneous configurations we can expect small gra- 
dients of the order parameter and of the quasiparticle 
distribution function, i. e., L d ~ / d r < <  A and ~ d n / d r < <  n. 

4. "INTERMEDIATE" STATE OF NONEQUlLlBRlUM 
SUPERCONDUCTORS IN  THE CASE L << to 

The growth of small perturbations of 6 and a t  
A<A,, is limited by nonlinear effects. One can expect 
the new state resulting from the instability development 
to be an inhomogeneous stationary state. This state is 
described by the nonlinear equations (5) and (9). The 
system is characterized by two lengths. We consider 
f i rs t  the simpler case when LC< to. Omitting in (9) the 
terms with L, we obtain n, accurate to A': 

After substituting n, in (5) we obtain an equation for the 
gap 

I t  is simplest to ascertain the character of the pos- 
sible distributions in the one-dimensional case (intro- 
ducing the dimensionless variable x' = xt,): 

dZ A d - = A A .  z '=x hereafter . 
dx'' a A  

Equation (28) is the equation of motion of a "particle" 
in a field U that depends on the "coordinate" A. Equa- 
tions of this type ar ise  in plasma theoryclS3 and for semi- 
conductor s with negative differential conductivity. L16*173 

In the analysis of Eqs. (26) and (28) we follow the paper 
of ~ o l k o v  and Kogan. L171 

The potential Uk(A) a t  different values of the pump 6 
is shown in Figs. l b  and 2b. In the interval of 6 from 
zero to 6,, the potential Uhas three extrema, A,, A,, 
and A,, corresponding to three possible homogeneous 
states a t  the given pump 6. We recall that the points 
A, and A, correspond to a stable equilibrium and A2 to 
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an unstable one. The potentials U(Al) and U(4) coincide 
(Fig. l b )  a t  a single value of the pump 6 = 6,, defined by 
the equation 

The form of the phase trajectories in  the ( d ~ / d x ,  A) 
plane is given by the f i rs t  integral of Eq. (28): 

where A, is the maximal o r  the minimal value of the 
gap. 

At O< 6< 6, the separatrix R represents a narrow 
layer with A# 0. Outside this layer we have A = 0. The 
layer width is of the order of the coherence length 5,61a. 
The trajectories close to R show the distribution in  the 
form of a ser ies  of such narrow layers (Figs. 2c and 
2d), while those close to A, correspond to the oscilla- 
tions of A near A, (singular point of the "center" type). 
At 6, < 6 < 6" the separatrix, passing now through 4, de- . 
scribes a narrow layer of the normal phase with a small 
value of A in the superconducting phase. 

Two stable phases, normal A, = 0 and superconducting 
A,, can coexist only a t  6 = 6,. This distribution corre- 
sponds to the trajectory R1 o r  I& on Fig. lc ,  passing 
through two singular points ("saddles") A, and A,. The 
width of the transition layer between the phases i s  of the 
order of 5,61i2. If 6 differs very little from 6,, then a 
solution exists in the form of a single layer with A =  0 
o r  A =  A, and with a width greatly exceeding 5,6;". 

Of greatest interest to us a r e  solutions in which the 
trajectory passes through the point A, =O. For such 
trajectories we have C = U(0) = 0, and the A(%) dependence 
is given by 

At k = 1, the transition layer has a simple form, Fig. 
Id (cf. C181): 

l (x) = 
360 

l+exp (-x6, ') 

This distribution of A (layer solution) is stable (seec1"). 
The question of the stability of other possible distribu- 
tions calls for an additional investigation. 

What will happen at 6# 6,? As can be expected from 
physical considerations, C191 and also from the analogy 
with the situation in semiconductors, c171 the phase bound- 
ary will move in this case with a velocity s that depends 
on the difference 6 - 6,. Indeed, a t  6> 6, a stationary 
wave travels and transforms the system from supercon- 
ducting to normal. At 6< 6,, on the contrary, the wave 
transforms the normal phase into a superconducting one. 
I t  can be easily verified that in both cases the final 
homogeneous states correspond to an absolute minimum 
of the potential @ = - U. 
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In  the considered limiting case  1, the motion of 
the boundary is connected with the spatial and temporal 
diffusion of the order parameter. To estimate the ve- 
locitysit  is therefore necessary to add to (28) a term 
r A 8 ~ / 8 t ,  where rA is the relaxation time of the order 
parameter. In a stationary wave A depends on the co- 
ordinate x and on the time t like A(x- st). The equation 
for A(%- st) differs from (28) by a term 

which the meaning of the friction force. Multiplying the 
modified equation by d ~ / d x  and integrating over the 
trajectory of the motion, we obtain the velocity of the 
boundary for small (6 - 6,)/6, 

I t  should be noted that measurement of the velocity of 
the boundaries makes i t  possible to determine directly 
the relaxation time of the order  parameter. 

In  the two- and three-dimensional cases, for distribu- 
tions with axial A(p) and spherical A(R) symmetries, 
Eq. (26) takes the form 

d l  I d l  d 
- - 8 --+-Ca=O, 

dp' p dp u l  (33) 

Equations (33) and (34) differ from (28) in the presence 
of a term that describes the friction. Obviously, if the 
radius p (or R) of the phase (say a normal phase in  a 
superconducting environment) is large, then the bound- 
a ry  can be regarded a s  almost plane, and we arrive at 
the already considered one-dimensional case. At a rel- 
atively small radius of the normal phase, the growth of 
this region begins a t  a pump value somewhat larger than 
6,. I t  is easily seen also that there exists a certain 
critical radius p,, such that the regions of the normal 
phase with p<p, will be unstable a t  all values of 6. The 
critical radius is approximately equal to p,,= tO6-ln 
x ln(l/6). 

5. "INTERMEDIATE" STATE OF NONEQUlLlBRlUM 
SUPERCONDUCTORS IN THE CASE L 

As shown in Sec. 2, the parameter qoL, which charac- 
terizes the scale of the inhomogeneity, is small also in 
this limiting case a t  6- 6,. We shall assume therefore 
that n and A vary slowly over a distance L, so  that the 
solution of (9) can be sought in the form 

With the aid of (35) we obtain the equation for A 



The difference between (36) and (28) l ies in the change 
of U, and in the addition of the term - ( d ~ / d x ) ~ .  Since 
this term is proportional to the square of d ~ / d x ,  i t  does 
not lead to "genuine friction. " 

The f i rs t  integral of (36) is 

(37) 
A layer solution passing through the singular points 
A, = 0 and A, is realized under the following conditions: 

which a r e  analogous to (29). In particular, (38) yields 
a t  do= O.21/a and k = 1 a value that coincides with that 
for 6, in the case T)<< 1. 

Thus, even in the case when the diffusion length of the 
quasiparticles is much larger than the coherence length, 
a stable layer solution exists only a t  6 = 6,. The ap- 
parent reason is that in the approximation in question 
the characteristic lengths over which the distribution 
function of the quasiparticles and the order parameter 
vary a re  approximately the same and equal to the diffu- 
sion length. Therefore the quasiparticles cannot diffuse 
to a large distance from the transition region and cannot 
ensure coexistence of two phase in a wide pump region. 
In turn, the fact that the A(x) distribution almost coin- 
cides with the spatial distribution n(x) follows from Eq. 
(5), which goes over at AT)> 1 into an equation that de- 
scribes the change of A in space (and time) only a s  a re-  
sult of the quasiparticle distribution. 

I t  should be noted that the situation considered differs 
substantially from that in type-ZZ superconductors in the 
presence of a magnetic field. In the latter the order 
parameters changes over a coherence length 5, much 
smaller than the penetration depth L of the magnetic 
field (the role of this depth is played in our case by the 
diffusion length). 

The phase-boundary velocity a t  6+ 6, is determined by 
the quadiparticle diffusion velocity and is of the order 
of 

where L- 1. 

The motion of the boundary a t  6> 6, is formally anal- 
ogous to the motion of the boundary of a combustion wave 
in gas mixtures. [lgl In fact, on the phase separation 
boundary, owing to the instability of the state with A < 4, 
a transition takes place to a normal phase, accompanied 
by a release of the excess quasiparticles (the analog of 
the heat of the reaction). The excess quasiparticles 
(which a r e  due to the decreased recombination rate a t  
A = 0) diffuse into the neighboring region, in which they 
decrease the gap to A < 4. In  this region, a transition 
takes place again to the normal phase, etc., i. e., a 
wave travels with velocity - L / T ~ .  

CONCLUSION 

The process of the transition of a superconductor to 
a normal state with increasing pump power depends on 
additional conditions. If i t  is assumed that the fluctua- 
tions of the order parameter a r e  small (or that there 
a r e  no regions of normal phase in the sample), then the 
system remains in a superconducting state up to 6,, and 
then goes jumpwise into the normal state. With decreas- 
ing pump, the system stays in the normal phase to 6 = 0. 
We thus have hysteresis. 

If we assume the existence of large fluctuations o r  
regions of the normal phase (these can be inhomogene- 
ities a s  well a s  regions of the normal phase near the 
illuminated surface of the sample), then a t  6> 6, the 
seeds of the normal phase begin to grow and gradually 
fill the sample. Since the condition of the equilibrium 
between the phases corresponds to a single value of the 
pump power E,, i t  is clear that the "intermediate" state 
of the nonequilibrium superconductors is nonstationary. 
Such a state can therefore be observed only under non- 
stationary conditions, by measuring the parameters 
during a time shorter than the time required to fill the 
sample with the normal phase. 

The concepts developed above make i t  possible, gen- 
erally speaking, to explain the presently existing experi- 
ments on the smooth growth of the resistance with in- 
creasing pump. [2*31 We recall that in these studies they 
measured the dc resistances of samples illuminated by 
short light pulses. Assuming that the pulse durations 
were of the order of the time required to fill the sample 
with the normal phase, then the observed resistance 
could be attributed to moving regions of the normal 
phase. Since the velocity of the boundary motion is pro- 
portional to the pump power, it follows that the volume 
occupied by the normal phase (and hence also the resis-  
tance) by the end of the pulse i s  proportional to the pump 
power, in agreement with experiment. 

I t  i s  obvious that to verify the agreement of the in- 
terpretation with the experimental data i t  is necessary 
to increase the pulse duration to a value exceeding the 
filling time. Then the stationary state should corre- 
spond to the normal value of the resistance a t  any 6> 6,. 

We note in conclusion that the question of the stability 
of the other possible distributions, e. g., the oscillatory 
dependence of the order parameter on the coordinate, 
the distribution in the form of alternating regions of nor- 
mal and superconducting phases, etc. 

The author is deeply grateful to A. F. Andreev, V. M. 
~ a l i t s k i i ,  V. L. Ginzburg, L. V. Keldysh, Yu. V. 
Kopaev, and A. I. Larkin for a discussion of the results  
and for useful remarks. 

"1t will be shown below (sec. 4 )  that at 6 >6, (bo i s  defined by 
Eq. (20)) the system goes over to the normal state, i. e. ,  6 
> 0 and A < 0 in (13). If 6 < 60, the transition is to a state with 
an order parameter A = A3 > 4 and accordingly ii < 0 and d > 0. 
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