
band IV-VJ compounds whose static dielectric constant 
is anomalously large a t  low temperatures. Thus, for 
example, soft TO modes were observed in PbTe, c51 

SnTe, [B1 ~ b , , , s ~ ~ e ' ~ l  and others. I t  should be noted 
that the explanation offered by Kawamura et al. for 
the existence of soft modes in the semiconductors, a s  
consequences of the interaction of the electrons with the 
soft photons, seems unsatisfactory from our  point of 
view. As follows from formulas (14) and (15) of the 
present paper, allowance for the polarization interaction 
in addition to the deformation interaction, makes the 
gap-renormalization effect illusory. 

In  conclusion, the authors thank D. I. ~hmel'nitsk; 
for constant interest  in the w o ~ k  and for valyable re-_  
marks, and A. M. Finkel'shtein and V. M. Edel'shtein 
for a useful discussion of the results. 
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Equations are derived for the description of the dynamics of a vortex lattice in a rotating superfluid 
system of the pulsar type. The 0bSe~ed time dependence of the angular velocity of the normal part of the 
system is attributed to interaction of the system with Onsager-Feynman vortices. 

PACS numbers: 67.90. +z 

1. The nonstationary rotation of He 11 has been under 
intensive experimental investigation in recent years 
(see, e. g., the review)'" in connection with a check on 
the premise that a pulsar is a superconducting system 
in which the interaction of the superfluid (neutron) com- 
ponent with the normal (proton) component is effected 
via Onsager-Feynman vortices. 

I t  i s  known (detailed references to the original sources 
a r e  contained, e. g., in the review)c11 that the time de- 
pendence of the angular velocity of pulsars has not yet 
found a satisfactory explanation. I t  was shown in ex- 
periment~"'~' that an analogous behavior of the angular 
velocity with time is observed also for rotating He 11. 
These experiments have shown convincingly that the 
nature of the time dependence of the angular velocity 
should be the same for He I1 a s  for pulsars. We shall 
not present here the arguments (advanced already inc1]) 
that lead to this conclusion. 

I t  i s  shown in the present paper that allowance for the 
motion of the vortex lattice and i t s  interaction with the 
normal component in a rotating superfluid liquid, under 
conditions when there is no equilibrium between the ac- 
tual angular velocity of the normal component and the 
number of vortices in the system, explains fully the ex- 

perimentally observed time dependence of the angular 
velocity. 

The application of our approach to the observed de- 
pendence of the angular velocity of a pulsar can explain 
the mechanisms of the radiative losses of the star, i t s  
structure (it permits measurements of the angular mo- 
menta of the superfluid and normal components and of 
the core) and yields quantitative information on the co- 
efficients of viscous-friction of the vortices against the 
normal component. 

We assume throughout that the normal component 
moves like a rigid body (i. e., i t  duplicates fully the 
rotation of the vessel  o r  of the core). For pulsars it is 
legitimate to disregard the drag waves in the normal 
component, inasmuch a s  in pulsars the normal (charged) 
component i s  frozen into the core (if the latter exists) 
by the ultrastrong magnetic field of the stars.  The anal- 
ysis  is carried out in the laboratory frame. 

We note also the following important feature of the 
employed terminology. The symbol v, denotes through- 
out the proper velocity of the superfluid-component vel- 
ocity. By this we mezn the velocity due to extraneous 
forces (usually connected with external sources of pres- 

181 Sov. Phys. JETP 46(1), July 1977 0038-5646/77/46Ol-0181$02.40 O 1978 American Institute of Physics 181 



sure  o r  temperature gradients, with the gravitational 
field, etc. ), which the superfluid component would have 
even if i t  contained no vortices. If there a r e  no such 
forces and a t  a certain instant of time v, is equal to zero, 
then i t  remains equal to zero subsequently, the onset of 
vortices notwithstanding. Thus, the proper velocity of 
the superfluid component is the difference between i t s  
total velocity and the combined (at this point) circulation 
velocity due to all the present Onsager - Feynman vorti- 
ces. This subdivision of the total velocity of an element 
of the superfluid component seems to us extremely illus- 
trative when it comes to separating the contribution of 
the vortices to the motion of the superfluid phase. 

2. Each vortex is acted upon by the following three 
forces: (a) The Magnus force exerted by the superfluid 
component and determined by the vortex velocity relative 
to the superfluid component: 

where v, is the instantaneous velocity of the vortex-axis 
element in the plane passing through this element per- 
pendicular to the circulation vector r o ( r o  = h/m).  (b) 
The force of interaction of this vortex with the remain- 
ing vortices, determined by the flow produced around the 
given vortex element by the circulation velocities of all 
the remaining vortices: 

where vc is the combined circulation velocity a t  the 
point of the axis of the given vortex element. (c) The 
force of friction of the vortex against the normal compo- 
nent, determined according to Hall and Vinen by the 
velocity of the vortex relative to the normal component: 

where vn is the local velocity of the normal component 
a t  the point of the axis of the given vortex element. 

The dynamics of a given vortex element is determined 
by the condition that the resultant force acting on the 
element be zero. Disregarding the possible pinning 
forces, we can obtain the equation of motion of a linear 
vortex by equating to zero the sum of the forces (1)-(3), 
i. e., 

When the system rotates uniformly, an equilibrium 
situation (without energy dissipation) corresponds to 
complete dragging of the vortices by the normal compo- 
nent, i. e., in this case 

We emphasize that, according to Feynman, the equi- 
librium situation, when the vortices have a uniform den- 
sity distribution 

corresponds to formation of vortices in an immobile 
superfluid component, when v, = 0. According to (4) we 
then obtain in this case 

Indeed, the resultant circulation velocity a t  the axis 
point of the given element of the vortex is determined 
by the total number N of vortices inside the orbit of this 
vortex, i. e. , 

from which i t  follows that 

i n  full agreement with (7). Thus, the equilibrium situa- 
tion corresponds to total dragging of the vortices by the 
normal component with cancellation of the forces (1) and 
(2) with the vortices produced in the immobile super- 
fluid component having the Feynman density (6). 

We note that we did not include in (4) any other forces 
except (1)-(3) (e. g., the forces of interaction of the vor- 
tex with the system boundary). I t  i s  easily seen that the 
Feynman equilibrium situation will be realized only when 
these forces a r e  proportional to either v, -vc o r  to 
v, -vn. But allowance for these forces is equivalent to 
a redefinition of the coefficients q and p.  Therefore (4) 
should be regarded a s  the exact equation of motion of the 
vortex. 

3. Assume now that, starting with the instant to = 0, 
the angular velocity of the vessel begins to change. 
Then the vortices begin to move relative to the normal 
component, since now the force (1) cannot cancel the 
force (2), because the angular velocity of the normal 
component has changed, while the number of vortices 
inside the orbit of a given vortex is unchanged. 

We denote the velocity of the given vortex element by 

where v, = d r / d t  and v, = rdq/dt .  Then Eq. (4) reduces 
to the system 

where w, is connected with the vortex density a t  the in- 
stant to = 0 by the relation (6). (The second equation of 
the system (9) shows, in particular, that the number of 
vortices in the system remains unchanged a t  pn = 0 in- 
dependently of the rotation of the vessel walls o r  of the 
core. 

Solving the system (9) with respect to r(t), we obtain 
for the i-th vortex the equation 
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where a = ~ V P , P , ~ ~ A ( V P ~ ) ~  + (p, - P,B)~]. I t  is seen there- 
fore that the ratio 

Replacing here  the summation by integration in ac- 
cordance with the scheme 

r ? ( t ) l r , ' ( o )  --0 ( t )  (11) 

is a universal function of the time, independent of the 
number of the vortex (a consequence of the hypothesis 
that the entire normal component rotates like a rigid 
body). The function O(t) is described by the equation 

we obtain 

where I, = npp41/2 is the moment of inertia of the super- 
fluid component. 

Thus, the equation of motion of the normal component 
is given by 

with the condition 8(0) = 1. 

I t  is easily seen here that the density of the vortices 
a t  the instant of time t is 

We arr ive  thus a t  the important conclusion that the 
angular momentum of the superfluid component is equal 
to 

i. e., dilatation o r  contraction of the vortex lattice takes 
place with conservation of the homogeneity of the vortex 
density. If w(t) is known, then Eq. (12) determines com- 
pletely the dynamics of the vortex lattice in the system. M. ( t )  = ~ , o , / ~ ( t )  =Ma ( 0 ) / 0 ( t ) .  (18) 

We, however, a r e  interested in the following problem: 
Assume that at the initial instant of time the number of 
vortices in the system corresponded, according to for- 
mula (6), to a frequency w,, and the actual angular ve- 
locity of the normal component was o(O)+ w,. I t  i s  re-  
quired to find the functions w(t) and O(t) in a f ree  system 
with friction (against an external medium, o r  with ra-  
diation losses, a s  is the case in pulsars). To this end 
i t  is necessary to derive an equation for w(t), which we 
now proceed to do. 

This can be verified also by indirect calculation. In- 
deed, i t  is well known (see, e. g., )['' the angular mo- 
mentum of one vortex about the system rotation axis is 
equal to 

where r is the distance between the vortex and the ro- 
tation axis and ,us is the mass of the entire superfluid 
component in a vessel of radius R. 4. The equation of motion of the normal component 

is, naturally, of the form 
Summing this expression over all the vortices, we 

get 

where I ,  is the moment of inertia of the normal part  of 
the system, &, is the moment of the friction forces 
against the normal component, and K,,, is the moment 
of the external friction forces, which we take in the 
form 

where N(t) is the total number of the vortices a t  the 
instant t. 

Taking into account (15) and the fact that N(t) =N(Q)/ 
8(t) and ~(O),u,~,/211=21,w,, we obtain formula (18). 
Going over next to the dimensionless quantities 

which corresponds, e. g., to the case of viscous friction 
against an external medium a t  low relative velocities. 
The moment of the friction forces K, can be easily cal- 
culated. The moment of the friction force of the i-th 
vortex is equal to Ki = r, x F,,, (per unit length of a vor- 
tex whose axis is located a t  a distance r, from the sys- 
tem rotation axis). Using expression (3) for F,, and the 
system (9), we readily see that 

~ ( t )  IZ ( t )  = - I ,  0 (0) p - - ,  q=- 
0 (0 )  ' I .  00 

we can rewrite (17) in the form 

and (12) in the form 

Multiplying this by the length I of the vortex and sum- 
ming over all the vortices, we obtain 

with initial conditions 62(0) = O(0) = 1. The system (20)- 
(21) solves our problem completely. The parameter q 
represents the degree of disequilibrium between the 
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number of the vortices and the rotation of the system at  
the initial instant of time. 

5. The system (20)-(21) is essentially nonlinear, but 
i t  is easy to obtain i t s  solution in the cases of greatest 
interest. 

First, we consider the case when there a r e  no extra- 
neous friction forces, i. e., y = 0. Then the total angu- 
l a r  momentum of the system is conserved and the solu- 
tion of the system (20)-(21) can be easily obtained: 

We see that immediately before the initial jump of the 
angular velocity of the normal component there is initi- 
ated a rapid (exponential) process of smoothing-out of 
the initial disequilibrium on account of the motion of the 
vortices (with a change, generally speaking, of the num- 
be r  of vortices in the system). The relaxation time of 
such a process is determined by the interaction between 
the vortices and the normal component, and is equal to 

Equilibrium sets  in after a time much longer than T,, 
when the number of the vortices in the system corre- 
sponds exactly, in accordance with the Feynman formula 
(6), to the angular velocity of the equilibrium rotation 

We consider now the case when y# 0 but y/a<< 1 and 
q = 1 + A ,  where I AI << 1. Then the solution of the system 
(20) and (21) in first  order in y/a and A is of the form 

We see that in this case the initial jump of the angular 
velocity of the normal part of the system is immediately 
followed by an exponential equalization of the initial dis- 
equilibrium, with a relaxation time (23); this process 
then goes over into a slow (linear in first-order approxi- 
mation) relaxation of the total angular momentum of the 
system on account of the extraneous friction forces; now 
characterized by a relaxation time l/y. This is pre- 
cisely the behavior of the angular velocity of pulsars 
which is observed by radioastronomores. [I1 

FIG. 1. Time dependence 
of the angular velocity of 
free rotation of a spherical 
vessel with He I1 at T = 1.46 
K after a jump Aw = 0.66 
rad/sec in the angular ve- 
locity at the instant t = 0. 

It is interesting that formula (25) for  Sl(t) describes, 
within the limits of the experimental er ror ,  the behavior 
of the angular velocity of He 11 in  experiment^[^*^' for  
both cylindrical and spherical vessel. With the kind 
permission of Dzh. and S. Tsakadze, we show in the 
figure their experimental data on the rotation of a spher- 
ical vessel with He IJ. The angular velocity of the ves- 
sel  prior to the instant t = 0 was 5.0 rad/sec, and jumped 
to 5.66 rad/sec a t  the instant t=O. The solid curve 
corresponds to formula (25) and is given by 

o ( t )  =3.66-3.47. 10-'t 
-0.226[1-esp (-1.31G looo. t )  ] 

The agreement i s  all the more surprising because the 
experimental accuracy was better than 0.2%, and for- 
mula (25) was derived for systems in which the normal 
component rotates a s  a unit. 

The reduction of the function Sl(t) in accordance with 
(20) and (21) for pulsars would yield considerable infor- 
mation both on the mechanism of the radiative damping 
and on the internal structure of these stars. 

In conclusion, I am grateful to S. Dzh. Tsakadze for 
stimulating interest in this work. 
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