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Density of electron levels in ferroelectric semiconductors 
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We consider the effect of the electron-phonon interaction on the electron density of states g(c) in 
polarized semiconductors with soft optical phonons. It is shown that for weakly doped serniwnductors the 
value of g depends strongly on r near the Fenni surface and has a minimum on this surface. g(0) 
becomes anomalously small near the ferroelectric transition point. 

PACS numbers: 71.20. +c, 71.38. + i  

INTRODUCTION 4ne' ~ , ( q )  o tz (q )  D,(q.o)=-ICI' 
K- 02-o, ' (q)  i i 6  ' 

The spec t ra  of the lattice vibrat ions of ce r ta in  polar 
degenerate semiconductors contain soft ( temperature-  
dependent) phonons. I n  the  long-wave region, the spec-  
t rum of such soft t ransverse  optical phonons is de te r -  
mined by the relation w;(q) = wt+ sq2, where  w, is a n  
anomalously smal l  gap (woe w,), and the dispersion s 
is of normal o r d e r  of magnitude. 

The  electron-phonon-interaction singular i t ies  typical 
of this  situation were  discussed i n  detail  by one of us. ['I 
T h e  polarization par t  of the interaction is described, as 
usual, by a Frdhlich Hamiltonian. T h e  t r a n s v e r s e  de-  
g r e e s  of f reedom make no contribution to the macro-  
scopic polarization field. T h e  corresponding deforma- 
tion potential is usually smal l  i n  comparison with the 
polarization potential. I n  the c a s e  of smal l  w, however, 
i t  is precisely the deformation contribution to the elec- 
t ron scat ter ing by the lattice which is fundamental. I n  
th i s  paper  we investigate the influence of this interaction 
o n  the electron level  density g(c) of a degenerate weakly 
doped semiconductor f o r  s t a t e s  near  the F e r m i  surface. 

' 2. CORRECTIONS TO THE VERTEX FUNCTION 

The  effective electron-electron interaction, which 
includes exchange of soft phonons a t  T =  0, is given byC" 

where co(q) is the s tat ic  p a r t  of the dielectr ic  constant 
of the lattice, and K is the reciprocal- la t t ice  vector. 
T h e  constant I CI < 1 is connected with the amplitude 
modulation of the Bloch functions. Using the Lyddane- 
Sachs-Teller relat ion f o r  the long-wave region, [I1 we  
represen t  the interaction (1) i n  the f o r m  

where  we  have introduced the dimensionless  electron-  
phonon coupling constant 

8 = t . ~ I C J ' ~ , o ' l x s  K", (3) 

E, is the dielectr ic  constant due to the polarizability of 
the bound electrons,  and w, is the frequency of the longi- 
tudinal optical phonons. 

L e t  u s  examine the cor rec t ion  that mus t  b e  introduced 
into the electron vertex function F as a resu l t  of the 
interaction (2) at T =  0. T h e  corresponding d iagram is 
shown i n  Fig. 1. The electron l ine cor responds  h e r e  to 
the ze ro-order  Green's function 
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FIG. 1. First correction to the vertex fudction. The dashed 
and solid lines correspond respectively to the functions Do 
and Go.  

After integrating with respect to the frequency w and 
with respect to the angles we obtain 

Here 7 = E - p / 2 m .  The external ends of the diagram on 
Fig. 1 correspond to an almost-real electron, since g 
is assumed to be small. 

Near the Fermi surface p -Po << Po the first  integral 
in the right-hand side of (4) diverges logarithmically in 
the region C2<< q<< Po, where 

In the other regions of the values of q all the integrals 
converge and yield negligibly small corrections of order 
&s/vk .  Ultimately we have 

The f i rs t  term takes into account the direct Coulomb 
interaction of the electrons and their interaction via ex- 
change of a longitudinal optical phonon. According to 
Gurevich et ~ 1 . ' ~ '  we have for a cubic crystal - 

In the frequency region w << w, which will henceforth be 
of importance to us we have 

Using fo r  D i  the expression (2), we obtain 

4ne2 ~ ~ - ( 1 ) ~ ~ ( q )  + ( ~ / K ) ' E ~ E ~  ICI2o,' 
D o ( q . o ) = -  

coq2 02- 0,' ( q )  

The renormalized interaction is 

The polarization operator in the Thomas-Fermi approxi- 
mation (w << vFq) is equal to 

where the reciprocal screening lengths i s  n = (4e2mfid 
n~ , ) "~ .  A s  a result we have 

(12) 
The long-wave spectrum of the soft phonons is now 

determined by the poles of the function (12): 

The qualitative form of the spectrum (13) is shown in 
Fig. 2. In the region q2<< E , ~ / E , ,  the dispersion s 
changes: 

An analogous expression is obtained also for the hole 
scattering p<P,. 

In the case of simultaneous proximity to the ferroelec- 
tric transition point (small w,), to the mass shell (small 
1 91 ), and to the Fermi surface (small 1 tpl = VF l P -POI ) 
the effective coupling a ln(p,/C2) is no longer weak. The 
problem is now to find the renormalized vertices and 
Green's functions in the principal logarithmic approxi- 
mation. 

3. RENORMALIZED FUNCTIONS 

I t  is necessary first  to consider the question of the 
screening of the phonon interaction by the f ree  ca r r i e r s  
in the case of a Fermi filling. In the "empty" lattice of 
an ionic crystal, the nonrenormalized interaction can be 
regarded a s  a sum of two terms 

D , ( q .  o) =D,'(q.  o) +D,'(q. o ) .  (7) 
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An apparent renormalization of the gap takes place in 
the region q2 >> E*H~/E,,: 

FIG. 2. Long-wave spectrum of soft phonons. Curve 1 corre- 
sponds to the renormalized spectrum (13) and curve 2 to the 
nonrenormalized spectrum. The awilliary curve 3 corre- 
sponds to the relation u2 = 0i+sq2. 
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I t  is convenient to represent the D function (12) in the 
form 

The logarithmic corrections to the vertex function a r e  
connected with second term in  formula (16) and corre- 
spond to the region qz>> c,x2/&,. AS to the f i rs t  term of 
(16), i t  does not lead to divergences and will no longer 
be written out. Thus, 

4n2- as >' - 
D (q. u) - 

0%-6;-sq2+i6 ' 

G (9, R) = (QIp)"q-I. (23) 
Let us  compare the results.(23) with the piezopolaron 

Green's function obtained by Edel'shtein, ['I There is no 
infrared divergence in this case. The vertex 9- ceases 
to depend on q already a t  I ql < max{wo, I t,I }. A branch 
point can occur only a t  the critical point for states along 
the Fermi surface. However, the ca r r i e r  scattering by 
impurities, which is discussed in the next section, is 
such that in this case the pole character of the G func- 
tions i s  preserved, and i t s  residue becomes renormal- 
ized. 

I t  is easy to verify that the screening does not enter 
among the cutoff parameters of (5). Indeed, 

4. STATE DENSITY 

and the cutoff parameter ~ ~ / s ~ " - ~ ~ / s ' / ~  certainly ex- 
ceeds ( ~ , x ~ / c , ) l / ~ .  

The method of finding the renormalized vertex 9- in 
the principal logarithmic approximation, for the case of 
weak coupling, is well known. "I The significant dia- 
grams contain interaction lines that enclose not more 
than one of all the elementary vertices of the diagram 
of Fig. 1. The momenta transferred along these lines 
a r e  q, << p, so that in any section of the diagram the 
electron momentum remains close to i t s  initial value. 
Taking the foregoing into account, the equation for the 
complete three-point diagram takes the form 

To establish the connection between the renormalized 
electron propagator G in the complete vertex T we use 
the scalar and vector Ward identities 

Relations (19) a re  formally of the same form a s  for the 
case  of a single electron without a Fermi background. ['I 

I t  is easy to verify that differentiation of the Fermi step 
actually makes no contribution to the logarithmic vertex. 
Therefore 

Taking (20) into account, the equation for the vertex 
(18) is rewritten in the form 

We proceed to calculate the density of states near the 
Fermi surface. As usual 

The energy c will be reckoned from the level of the 
chemical potential (the Fermi energy). In the absence 
of the interaction (2), the state density i s  constant in a 
wide energy range I c I << c, and is equal to go = mpo/*. 
Now, however, we have for I E I 5 wO 

and in the interval wo I E 1 << S"~PO << SF 

An approximate form of the state-density curve is shown 
in Fig. 3. Since g(0)<<go, the state density is anom- 
alously small in the region of the Fermi energies. 
Therefore, for example, the paramagnetic susceptibility 
X-g(0) of these substances should be anomalously small. 

In connection with the impurity character of the con- 
ductivity, the following should be noted. The electron 
mean f ree  path time T into the scattering by impurities 
is of the usual order of magnitude and i s  not connected 
with the critical behavior of the lattice. In the region 
of the concentrations and temperatures considered above 
we have T - 10'13 sec. The momenta of importance in  
the logarithmic integration should satisfy the relation 
q<< 1/vp7. The damping does not enter among the cut- 
off parameters if w, >, S ~ ' ~ / V ~ T -  1K. The las t  inequality 
always holds for ferroelectric transitions of f irst  order 
close to second order. 

The results  of this study can be applicable to narrow- 

Consequently, FIG. 3. Electron level density near the Fermi surface. 

1 80 Sov. Phys. JETP 46(1), July 1977 V. A. Malomed and V. L. Shneerson 180 



band IV-VJ compounds whose static dielectric constant 
is anomalously large a t  low temperatures. Thus, for 
example, soft TO modes were observed in PbTe, c51 

SnTe, [B1 ~ b , , , s ~ ~ e ' ~ l  and others. I t  should be noted 
that the explanation offered by Kawamura et al. for 
the existence of soft modes in the semiconductors, a s  
consequences of the interaction of the electrons with the 
soft photons, seems unsatisfactory from our  point of 
view. As follows from formulas (14) and (15) of the 
present paper, allowance for the polarization interaction 
in addition to the deformation interaction, makes the 
gap-renormalization effect illusory. 

In  conclusion, the authors thank D. I. ~hmel'nitsk; 
for constant interest  in the w o ~ k  and for valyable re-_  
marks, and A. M. Finkel'shtein and V. M. Edel'shtein 
for a useful discussion of the results. 
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Dynamics of Onsager-Feynman vortices in a rotating 
superfluid system of the pulsar type 
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Equations are derived for the description of the dynamics of a vortex lattice in a rotating superfluid 
system of the pulsar type. The 0bSe~ed time dependence of the angular velocity of the normal part of the 
system is attributed to interaction of the system with Onsager-Feynman vortices. 

PACS numbers: 67.90. +z 

1. The nonstationary rotation of He 11 has been under 
intensive experimental investigation in recent years 
(see, e. g., the review)'" in connection with a check on 
the premise that a pulsar is a superconducting system 
in which the interaction of the superfluid (neutron) com- 
ponent with the normal (proton) component is effected 
via Onsager-Feynman vortices. 

I t  i s  known (detailed references to the original sources 
a r e  contained, e. g., in the review)c11 that the time de- 
pendence of the angular velocity of pulsars has not yet 
found a satisfactory explanation. I t  was shown in ex- 
periment~"'~' that an analogous behavior of the angular 
velocity with time is observed also for rotating He 11. 
These experiments have shown convincingly that the 
nature of the time dependence of the angular velocity 
should be the same for He I1 a s  for pulsars. We shall 
not present here the arguments (advanced already inc1]) 
that lead to this conclusion. 

I t  i s  shown in the present paper that allowance for the 
motion of the vortex lattice and i t s  interaction with the 
normal component in a rotating superfluid liquid, under 
conditions when there is no equilibrium between the ac- 
tual angular velocity of the normal component and the 
number of vortices in the system, explains fully the ex- 

perimentally observed time dependence of the angular 
velocity. 

The application of our approach to the observed de- 
pendence of the angular velocity of a pulsar can explain 
the mechanisms of the radiative losses of the star, i t s  
structure (it permits measurements of the angular mo- 
menta of the superfluid and normal components and of 
the core) and yields quantitative information on the co- 
efficients of viscous-friction of the vortices against the 
normal component. 

We assume throughout that the normal component 
moves like a rigid body (i. e., i t  duplicates fully the 
rotation of the vessel  o r  of the core). For pulsars it is 
legitimate to disregard the drag waves in the normal 
component, inasmuch a s  in pulsars the normal (charged) 
component i s  frozen into the core (if the latter exists) 
by the ultrastrong magnetic field of the stars.  The anal- 
ysis  is carried out in the laboratory frame. 

We note also the following important feature of the 
employed terminology. The symbol v, denotes through- 
out the proper velocity of the superfluid-component vel- 
ocity. By this we mezn the velocity due to extraneous 
forces (usually connected with external sources of pres- 
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