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The boundary condition on the interface of a dielectric with a metal is investigated for the hydrodynamic 
variables ST (the rise of the phonon-gas temperature above the bath temperature To) and u (the phonon- 
gas drift velocity normal to the b interface). It follows from the kinetic equation in the boundary layer 
that the boundary condition takes the form (6 T -6 T ) / T ,  = - a ( u / s ) ,  where s is the speed of sound, 
6 is the rise of the metal temperature over the bath temperature, and the coefficient a can be expressed 
in terms of the coefficient of phonon reflection from the interface. 

PACS numbers: 73.40.N~ 

INTRODUCTION: FORMULATION OF PROBLEM 

Experiments performed during the 70's have shown 
that thermal pulses a re  highly effective means of investi- 
gating the properties of phonons and of the electron- 
phonon interaction. ['] Thermal pulses a r e  frequently 
excited and detected with the aid of metallic films sput- 
tered on dielectric o r  semiconductor crystals in which 
the pulses propagate. To excite a thermal pulse, the 
film is heated with current o r  by radiation (laser o r  
microwave), and the pulse i s  detected by measuring the 
change i t  produces in the film resistance. 

This raises the question of the "thermal resistance" 
of the metal-dielectric interface. I t  is significant that 
this resistance depends not only on the properties of the 
interface, but also on the propagation regime of the 
thermal pulse. A distinction is made between three 
thermal-pulse propagation regimes: ballistic, hydro- 
dynamic (the so-called second-sound regime), and dif- 
fusion (thermal conduction). The pulse propagation re-  
gime depends on the relation between three character- 
istic times, T,, T ~ ,  and L/S. The time 7, is deter- 
mined by the normal phonon-phonon collisions, in which 
the energy and momentum of the phonon system a r e  con- 
served (N-processes); after a time T,, the phonon gas, 
left to itself, goes over into a state of "thermodynamic 
equilibrium, " i. e., in a state described by a biased 
Planck distribution. The time 7, is determined by 
umklapp processes and by scatteringfrom static defects, 
in other words, by collisions in which the energy of the 
phonon system is conserved, but the momentum is not 
(R-processes). After a time T,, the phonon system re-  
laxes to a state with zero total momentum, i. e., to a 
state with an isotropic distribution function. In  pure 
crystals a t  low temperatures we have T, >> T,; we a r e  
interested only in this case. The third characteristic 
time L/S is the time of flight of the phonon from the 
source to the detector (L i s  the distance between them 
and s is the speed of sound). 

The ballistic regime is realized at L/s<< T,. In this 
regime all the phonons comprising the thermal pulse 
propagate independently; the thermal resistance of the 
interface i s  therefore determined simply by the coeffi- 
cient of transmission of an individual phonon (calculated, 
e. g., by the acoustic mismatch model), averaged in 

suitable manner over the propagation directions and over 
the polarizations. 

The hydrodynamic regime i s  realized a t  T, << L/S << 7,. 

The phonons propagation is described by a system of 
equation for  the phonon-gas temperature ~ ( r ,  t )  and the 
phonon-gas drift velocity u(r, t). The reflection of the 
thermal pulse is determined in this regime by the bound- 
ary  conditions imposed on T and u a t  the interface be- 
tween the dielectric and the metal. I t  is usually as- 
sumed that the metal can be characterized by a certain 
temperature T higher than the helium-bath temperature 
To. Although estimatest" show that there is no special 
basis for this assumption, we shall make use of it. I t  
should be assumed none the less  that the boundary condi- 
tion can be formulated in the form T =  T. The purpose 
of the present paper is to find the correct  boundary con- 
dition. To avoid misunderstandings, we emphasize from 
the very outset that we a r e  interested not in small cor- 
rections of order ST,/L, and that the boundary condition 
differs substantially from the condition T =  F. 

At small deviations from equilibrium T= To and u =  0 
we obtain for dT(r, t) = T(r, t) - To and u(r, t) ,  a s  is well 
known (see the reviewc2']), linear wave equations that de- 
scribe perturbations propagating a t  the speed of second 
sound. Knowledge of the boundary conditions for 6T and 
u allows us to solve the problem of the reflection of a 
second-sound pulse from a dielectric-metal interface, 
a s  well a s  the problem of exciting a second-sound pulse 
in a dielectric by a heat pulse in a metal. 

The diffusion regime i s  realized a t  L/s>> 7,. In this 
case the phonon propagation is described by the diffusion 
equation for the phonon-energy density. At small devia- 
tions from equilibrium we obtain the heat-conduction 
equation for 6T(r, t). In the diffusion regime, the ther- 
mal momenta a r e  more likely to spread than to propa- 
gate, and this regime is therefore less  interesting. We 
mention i t  only in order to emphasize that the boundary 
condition T = ? is valid only in the diffusion limit. 

As is customary in hydrodynamics, we obtain the 
boundary conditions by considering the Knudsen surface 
layer. C33 In this layer, whose thickness i s  of the order 
of the mean f ree  path I ,  =ST,, the collisions with the 
boundary a r e  just a s  frequent a s  the collisions between 
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the phonons, so that no local equilibrium, i. e., no 
biased Planck distribution of the phonons, is established. 
For this reason, the equations of hydrodynamics do not 
hold in the Knudsen layer. 

The procedure of finding the boundary conditions for 
the hydrodynamic variables T and u consists of the fol- 
lowing. We separate near the boundary a region 0 < z 
<z, ,  and z is the distance to the boundary (see Fig. 1). 
We solve in this region the kinetic equation for the pho- 
non distribution functionflr, t;q) with account taken only 
of N processes and of the interaction with the boundary. 
The characteristic spatial scale of this problem i s  EN. 
One should therefore expect at z>> IN the obtained dis- 
tribution function to be a biased Planck function with 
certain T and u. Assuming that this description be- 
comes matched to the hydrodynamic description a t  z 
-20 ,  we arrive a t  the conclusion that the connection ob- 
tained between T and u by solving the kinetic equation 
is in fact the sought boundary condition for  the hydro- 
dynamic equations. 

1. KINETIC EQUATION AND QUASIHYDRODYNAMIC 
VARIABLES 

Under the conditions of interest to us, the kinetic 
equation takes the form 

where v, is the group velocity of a phonon with momen- 
tum q, and Gf i s  the collision term-describing only N- 
processes. The explicit form of Sf is very complicated 
and depends on the concrete type of the normal colli- 
sions (three-phonon o r  four-phonon, etc. ). In  most 
cases the experiments do not yield so detailed a discrim- 
ination of the N-processes. We therefore approximate 
the collision term $in the same spirit a s  i n  plasma 
theory for collisions between particles. [41 

The employed approximation consists in the following. 
Owing to the normal collisions, any distribution f (q) 
relaxes to a certain biased Planck distribution 

and we obtained T and u from the condition that the total 
energy and momentum of the phonons a re  the same be- 
fore and after relaxation. We denote the energy and 
momentum of the distribution f a s  follows: 

The energy and momentum conservation in the relaxa- 
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tion means then that 

Equations (1.4) constitute the system for the determina- 
tion of T and u from the specified distribution f (q). 

I t  is natural to approximate 

where T is a certain relaxation time that can be identi- 
fied with 7,. I t  can be shown that in this approximation 
T cannot depend on q. In fact, the ra te  of change of the 
energy and momentum in N processes is equal to zero, 
i. e., 

I t  i s  obvious that under the approximation (1. 5) the con- 
ditions (1.6) will be satisfied for any function f (q)  only 
when T does not depend on q. 

If the distribution f depends on r and t, then the tem- 
perature T and the drift velocity u obtained from (1.4) 
also depend on r and t. We shall call these T(r, t) and 
u(r, t) quasihydrodynamic variables (the reason for this 
designation will be made clear below), 

Using (1. 5), we write down the kinetic equation in the 
form 

I t  i s  necessary to add to this equation the boundary con- 
dition in the interface between the dielectric and the 
metal. I t  is assumed henceforth that the phonons a r e  
reflected elastically and that the probability of reflection 
from the state q1 to the state q depends only on the direc- 
tions of these momenta, which a r e  specified by the unit 
vectors e' and e. Then the boundary condition on the 
distribution function takes the form 

Here r, i s  a point on the interface, n is a unit vector 
normal to this point and directed into the interior of the 
dielectric, r(e - e )  is the phonon reflection coefficient, 
and the sign (-) under the integral sign means that the 
integration is over the hemisphere on which v1 n<O. 
Next, f, is the distribution function of the phonons 
emitted from the metal; i t  is assumed specified and is 
completely determined by the temperature T(r,, t) of the 
metal: 

where fF(q) is an equilibrium distribution with tempera- 
ture F, and 
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Here ;(el- e) is the probability that a phonon incident on 
the interface from the metal in a direction e' will be 
emitted into the dielectric in the direction e. The sign 
(+) under the integral sign denotes integration over the 
hemisphere on which v' n> 0. 

From the detailed balancing principle we obtain for 
the scattering by the wall 

where t is the probability of the transition of the phonon 
from the dielectric to the metal. Using (1.11) and 
(1.12), we have 

We see now that the boundary condition is automatically 
satisfied by an equilibrium distribution f?(q) with the 
metal temperature. 

We shall show that in the approximation (1. 5) the 
kinetic equation (1.7) and the boundary condition (1.8) 
can be made into a closed system for the quasihydrody- 
namic variables T and u, o r  in other words that the sys- 
tem can be reduced to a system of two equations for 
T(r, t) and u(r, t). We consider for this purpose the 
right-hand side of (1.7) a s  a specified source; obviously, 
i t  is expressed in terms of T and u. The left-hand side 
of (1. 7) describes the dynamic motion of the phonons, 
which is accompanied by their annihilation, but without 
scattering. This particle motion follows the dynamic 
trajectories, and f can be easily expressed in terms of 
the specified s_ources. For trajectories arriving at the 
interface, r"Pf is the only source, and therefore the 
distribution of the phonons moving towards the interface, 
f (v, < O), can be easily expressed in  terms of the quasi- 
hydrodynamic variables. For trajectories emerging 
from interface, there is an additional source-the bound- 
ary itself, i. e., f (v, > 0) on the boundary. I t  is clear 
from (1.8), however, that this source is expressed in 
terms off (v,, < 0), i. e., in final analysis via T and u. 
Thus, all the sources at f (v, > 0) a re  expressed in terms 
of T and u. Consequently, the distribution of the pho- 
nons that move from the interface is also expressed in 
terms of the quasihydrodynamic variables. We now 
multiply f (v, > 0) and f (v, < 0) by w, and q, integrate each 
distribution over the corresponding half of the phase 
space, and add the resultant equations. Using (1.4), we 
make the system closed with respect to the quasihydro- 
dynamic variables. 

We can now explain the meaning of the term "quasi- 
hydrodynamic." As a result of the described procedure 
we have obtained a closed system of two equations for 
T(r, t) and u(r, t)-here is where the analogy with hydro- 
dynamics comes in. In  contrast to hydrodynamics, how- 
ever, this is a system not of differential but of integral 
equations; the corresponding nonlocality reflects the 
finite character of the mean f ree  path I,. This accounts 
for the prefix "quasi." 

2. THE KINETIC EQUATION IN THE KNUDSEN 
LAYER - 

We shall ca r ry  out explicitly the program described 
above for the particular case of a stationary problem 
with a flat interface. The solution of this problem suf- 
fices to determine the boundary conditions of the hydro- 
dynamic equations. We shall assume, in addition, that 
u 11 n 11 z in  the hydrodynamic equations. For simplicity 
we assume that there is only one phonon branch with an 
isotropic spectrum without dispersion, and that the re- 
flection is axially symmetric about z. I t  is then clear 
from symmetry considerations that the distribution func- 
tions f depend only on z, q, and cos 8, where 8 is the 
angle between q and z, and the quasihydrodynamic vari- 
ables T and u depend only on z, with ull z. The distance 
z will be measured in units of ST, and u= u, in units of 
s. 

The kinetic equation (1. 7) now takes the form 

For phonons traveling towards the interface we have 
from (2.1) 

dz' z-z 
j ( z :  q , ~ )  I ~ ~ , ,  = - JTexp [ - T ] ~ j ( z r ; q , x ) .  

For phonons traveling away from the boundary, 

The boundary condition (1.8) becomes 

If we substitute (2.2) a t  z = 0 in (2.4) and then (2.4) 
in (2.3), then f (x> 0) will be expressed in terms of T 
and u. The expression for f (x<O) in terms of T and u 
is obtained directly from (2.2). To make the equations 
closed in terms of the variables T and u, we multiply 
f (x> 0) and f (x< 0) by qx' (I = 0, I), integrate with re- 
spect to q and with respect to x, and add the results, 
using Eq. (1.4) for the left-hand sides. The equation 
with I = 0 corresponds then to conservation of the energy 
E ,  while I = 1 corresponds to conservation of the normal 
component of the momentum p. 

The integration of the second term of (2.3) gives r ise  
to the integral 

(2.7) 
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The result of the integration of the right-hand side of 
( 2 . 2 )  after replacing x  by - x  can be reduced to the inte- 
grals a,(- u l z ) .  I t  is easy to verify that the left-hand 
sides of the equations, i. e., c(T,  u )  and p(T ,  u) ,  can also 
be  expressed in terms of Q,,(ulO). 

Upon integration of the f i rs t  term in (23) ,  we obtain 
in lieu of Q,, more complicated integrals of the type 

The two terms in ( 2 . 4 )  a r e  expressed in terms of 9!,. 
with 1=0  and 1,  1'=1,  u=O and with 1 = 0  and 1  and 1 = O .  

Using the functions Q, and * we can write down a sys- 
tem of equations for the quasihydrodynamic variables in 
the form 

For the sake of brevity we have put here 

Expression ( 1 0 )  constitutes a system of two ( 1  = 0 , l )  
nonlinear integral equations for the determination of the 
two functions u ( z )  and T ( z ) .  Once these functions a r e  
obtained, we can use ( 2 . 2 )  and ( 2 . 3 )  to reconstruct the 
distribution function f ( z ;  q, x) .  As already mentioned, 
one should expect the functions T ( z ) ~ n d  u ( z )  to vary 
slowly a s  z- m.  Then we can take P f  outside the inte- 
gral  sign in ( 2 . 2 )  and ( 2 . 3 )  a s  z -  a. I~ntegrating with 
respect to z', we verify that f ( z  = m )  = P f ( z  = m ) .  This 
means that far  from the wall the distribution is of the 
Planck type and that the quasihydrodynamic variables 
u ( z )  and T ( z )  go over a s  z -  m into real hydrodynamic 
variables. 

The functions ( 2 . 8 )  have the following obvious proper- 
ties: 

The functions ( 2 . 9 )  have analogous properties. The 
value of the index I changes if 9 is integrated o r  differen- 
tiated with respect to z ,  and the value of 1' changes if the 
integration o r  differentiation is with respect to z ' .  

Using ( 2 . 1 1 )  and analogous relations for 9 ,  we can 
easily verify that the system ( 2 . 1 0 )  (at 1 = 0 , 1 )  i s  satis- 
fied by the functions 

T ( 2 )  =T: u (z) 4. ( 2 . 1 3 )  

a fact that corresponds to an equilibrium distribution 
with the same temperature a s  the metal. 

Differentiating ( 2 . 1 0 )  a t  1 = 1  with the aid of ( 2 . 1 2 )  and 
analogous relations for @, and then using ( 2 . 1 0 )  with 
1 = 0 ,  we readily verify the existence of the following in- 
tegral: 

3. SMALL DEVIATIONS FROM THERMODYNAMIC 
EQUILIBRIUM 

We consider the case when the deviations of the pho- 
non gas from equilibrium with the helium bath a r e  small. 
This means that u(z)<< 1  and 

where o(z )<<  1  and F<< 1. 

Expanding ( 2 . 8 )  and ( 2 . 9 )  in  powers of u, we get 

@l(ulz)=El+,(z)+4uE1+2(zj, ( 3 . 2 )  
YII. ( U  1 Z, 2') =Kli. (z, z') -4uK,1?+1 (2, 2'); ( 3 - 3 )  

E,(z) =@r-l(Olz), KlI.(z, z')=YlI,(O(z,~'), 
- .  

( 3 . 4 )  

E, a r e  integral-exponential functions. c51 I t  is easily 
seen that the functions E and K have the same proper- 
ties with respect to integration and differentiation a s  the 
functions and 9 .  

Retaining the terms of lowest order in (2.141, we have 

We now linearize ( 2 . 1 0 )  and use ( 3 . 5 ) .  At 1 = O  we ob- 
tain the following integral equation: 

At I = 1  we obtain one more equation: 

We seek for u ( z )  a solution satisfying ( 3 . 6 )  and ( 3 . 7 )  and 
having the form 

Using the rules for integration of E and K we readily see 
that for ~ a ( z )  we obtain the same equations a s  for u ( z ) ,  
but with 5 = 0 .  

We consider f irst  two cases, when the system ( 3 . 6 )  
and ( 3 . 7 )  admits of an analytic solution. From a con- 
sideration of these cases it becomes clear that the solu- 
tion of the equations for A o ( z )  has a s  z- a finite limit 
Au(m), which is obviously proportional to u, so that the 
following relation holds 
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where a is a number determined when the equations a r e  
solved. Relation (3.9) is the sought boundary condition. 

Kt,. (2 .2 ' )  =Et+r. ( 2+z f )  -S,+,. (2+z f ) ,  

where S, is a small quantity: 
Diffuse scattering 

In the case of diffuse scattering we have 

In the zeroth order, putting S, = 0, we get from (3.6) and 
(3.7) and the non-difference part of the kernel in (3.6) and 

(3.7) can be factored 

- 
f d;' Aa( z l )  [E,(Iz-z'I)sign(z-2') +E , ( z+z f )  ]=2uE, ( z ) .  (3.24) 
0 Equation (3.6) takes the following form: 

Putting z = 0 in (3.24), we get u = 0, which is an obvious 
result for total reflection. To solve now (3.23), we 
continue in even fashion the function Aa(z) into the re- 
gion z < 0. Now (3.23) with u = 0 takes the form 

(3.12) 
where 

This equation is solved by a Fourier transformation. 
The Fourier transform of the function El is of the form 
(2/k) tan'lk, so that the solutions of the homogeneous 
equation (3.25) a r e  determined by the zeroes of the quan- 
tity k - k" tanmlk. This quantity has only one double root 
k = 0. Therefore the general solution of the homogeneous 
equation (3.25) is 

This is the Milne inhomogeneous equation. I t s  solution 
can be expressed in terms of the Hopf function q(z)t": 

The first  term with the arbitrary constant A is in fact 
the solution of the homogeneous Milne equation. The 
function q(z) increases monotonically from q(0) = 1/a 
=O. 5773,. . . to q(m) =O.  7104.. . Substituting (3.14) in 
(3.13) a t  l = 1 and using the equality c61: 

Substituting this solution in (3.24) with u = O  we find that 
A = 0, and B remains indeterminate. 

Proceeding to the next order, we represent 

we get 

where cp(z) is small and tends to zero a s  z-m. We then 
have for p(z) the equation 

We determine A by using (3.7). Putting z = 0 in this 
equation and taking (3.11) into account, we get 

where 

Comparing (3.17) and (3.16) we have 

This equation is also solved via Fourier transformation; 
i t  suffices to continue in even fashion the unknown func- 
tion cp(z) and the inhomogeneity f (z) into the region z <0. 
For a solution of the inhomogeneous equation to exist, 
i t  is necessary that the Fourier transform off (z) have 
a zero at k = O  (this zero i s  automatically of order not 
lower than the second, since f (z) is even). In other 
words, we must have 

We can now obtain from (3.14) the value of Ao(m) and the 
coefficient a! in (3.9): 

Almost total specular reflection 

For this reflection we have 

where r(x) is close to unity. Then 
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From an examination of the two particular cases- 
diffuse reflection and almost total specular reflection- 
we see that the role of Eq. (3.7) reduces to a separa- 
tion of that solution of Eq. (6), which is bounded a t  in- 
finity, i. e., to a determination of the constant A in the 
form A=O. This is not surprising since, in using the 
integral (2.14), we have actually used one of the two 
equations of (2.10). Being interested only in the solu- 
tions Ao(z) with finite limit Ao(.o), we can consider only 
one equation (3.6) and obtain from i t  a stationary ex- 
pression for Ao(.o) (see the Appendix). This stationary 
expression (A. 17) with the simplest trial function leads 
to the following value of the coefficient of interest to us: 

where 

1 0  

K , , - K , , ,  (O,O)= J dz J d t '  r ( t ' .  s ) z ' - i ( - x ' ) " - L .  (3.33) 
0 -1 

We compare now the ensuing results with the cases when 
the solution is obtained directly. 

For diffuse scattering we obtain from (3.32) 

For a comparison with the exact result (3.19) we note 
that: 

i. e., the e r ro r  of the stationary expression is of the 
order of one per cent. 

In the case of almost total specular reflection, we can 
neglect the f i rs t  terms in the curly brackets of (3.32), 
and assume r(x)  = 1 in the calculation of K,, =K,,. We 
then obtain 

Noting that 

Here To is the temperature of the helium bath, 6T is the 
excess of the metal temperature over the helium bath, 
6T is the excess of the hydrodynamic temperature of the 
phonons over the temperature of the bath, u is the pro- 
jection of the hydrodynamic velocity of the phonon on the 
normal to the interface (directed into the interior of the 
dielectric), and s is the speed of sound. The coefficient 
a >O can be calculated from formula (3.32) if the prob- 
ability of the phonon reflection from the interface i s  
known. In the acoustic matching modelc71 we can obtain 
for the integrals Kt,. explicit expressions in terms of the 
acoustic characteristics of the metal and the dielectric; 
they a r e  very cumbersome, however, and will not be 
written out here. 

A boundary condition in the form (4.1) at 6 F = 0  was 
obtained from semi-quantitative considerations by 
Sussmann and Thellung. I t  is impossible, however, 
to obtain a value of a! with any degree of confidence with 
the aid of their arguments. 

I t  i s  seen from (3.19) and (3.31) that in the case of 
almost total reflection of the phonons, whether i t  be 
specular o r  diffuse, we have a - ( 1  - Y)-'>> 1. As Y- 1, 
the boundary condition (4.1) is transformed into u=O, 
a s  i t  should. At moderate and weak reflection we have 
a - 1. I t  must be emphasized that there a r e  now phonon- 
reflection conditions such that a<< 1. This means that 
in  the second-sound regime there is no situation in which 
the boundary condition 6T= 6 F  is valid. In other words, 
in a Knudsen layer of thickness 1, there is always con- 
centrated a temperature jump equal to ~ ~ a ! ( u / s ) .  This 
jump is larger the stronger the phonon reflection. 

With the aid of (4. I) ,  a t  6T=0, i t  is possible to find 
the reflection coefficient of second sound for normal 
incidence. I t  turns out to be 

If the f i rs t  sound is not reflected from the interface, 
then we obtain from (3.19) a! =q(.o) at  Y=O.  According 
to (4.2), the second sound is reflected none the less, 
with RE (0.1) (in terms of energy). 

We consider now the excitation of a thermal pulse. I t  
is usually a s ~ u m e d ~ ~ ~ ' ~ '  that the energy flux density from 
the metal into the dielectric is 

we see that the stationary a coincides with the "exact" 
one. These two examples give all grounds for hoping 
that the stationary expression (3.32) is accurate enough 
also in other cases. 

4. REFLECTION AND EXCITATION OF SECOND 
SOUND 

Returning to dimensional quantities, we write down 
the boundary condition on the interface between the di- 
electric and metal in the form 

where (in our notation, in dimensional units) 

Let us derive (4.3), to understand the conditions under 
which this relation is valid. Using (1.9) and (1.13) we 
can easily verify that the flux carried by the phonons 
from the metal into dielectric is 

ds J - "" '") f"" =Q . 

The substracted flux Q(To) can be understood in two 
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ways: either a s  the flux from the dielectric into the 
metal, o r  a s  the flux in  the dielectric, incident on the 
interface, minus the flux reflected from the interface. 
In either case the subtracted flux i s  produced by phonons 
incident on the interface from the dielectric. The as- 
sumption that this flux i s  determined by formula (4.4) 
with T =  To i s  equivalent to the assumption that the pho- 
nons incident on the interface from the dielectric a r e  in 
equilibrium. But in the hydrodynamic regime the in- 
jected phonons perturb the distributions of the phonons 
that move towards the interface, so  that the subtracted 
flux should be of a different form. 

With the aid of (4.1) i t  i s  easy to find the energy flux 
injected into the dielectric from the heated film, in the 
hydrodynamic regime: 

Assuming the difference between ?; and To in (4.3) to be 
small, we obtain the flux in the ballistic regime: 

In diffuse reflection, when there is an exact solution in 
the hydrodynamic regime, we get 

In the hydrodynamic regime, the injected phonons drag 
with them the equilibrium phonons and by the same token 
decrease the reverse flux from the dielectric into the 
metal. Relation (4.8) differs little from unity: i t  
rangesfrom 0.9658.... at ?-=Oat r = O  to 1 at  r=l. 
This circumstance, however, may be caused by the 
chosen approximation of the collision term. At almost 
total specular reflection, a s  seen from (3.36), we have 
Q ~ ~ ~ / Q , , ~ ~  = 1. Thus, this ratio depends on the details 
of the reflection, although perhaps not very strongly. 

In conclusion, we discuss two serious model-related 
assumptions made in this paper, viz., isotropy of the 
phonon spectrum and the T-approximation for the N-pro- 
cesses. The last  approximation i s  the most serious 
and may cast  doubts on the quantitative results  obtained 
for the coefficient cr in the boundary condition. I t  must 
be emphasized in this connection that in the r-approxi- 
mation CY does not depend on r, but is determined only 
by the coefficient of reflection of the phonon from the 
interface. This means that if we forgo the r-approxima- 
tion, then or will not depend on the total rate of the N- 
processes, but will depend only on the relative ra tes  of 
the N-processes for phonons with different momenta. 
On the other hand, this circumstance gives grounds for 
hoping that the behavior observed by us of or 'as a func- 
tion of the reflection coefficient has not only a qualita- 
tive but also a semiquantitative meaning. A comparison 
of the results of the exact solution with the variational 
estimates must not be taken, of course, a s  an estimate 
of the accuracy of the results  for or, but only a s  an esti- 
mate of the accuracy of the variational method within the 
framework of the assumed model. 

The author thanks V. Kazakovtsev for  pointing out the 
correct  formulation of the boundary condition in diffuse 
reflection. 

APPENDIX 

Assume the following equation to be given: 

(A. 1) 

The kernel G describes the motion in unbounded space, 
and the kernel R describes the reflection. As z-m, all 
the functions decrease rapidly enough; the difference 
between the kernels G and R is that R decreases even in 
the case when z and z' increase at a constant difference 
I z - 2'1. I t  i s  assumed that the following condition is 
satisfied 

(A. 2) 

This condition i s  necessary for  the existence of a solu- 
tion for which a limit a(-) exists. If we a r e  interested 
only in the limiting value o(m), then i t  can be calculated 
approximately with the aid of the stationary expression. 
To find the stationary expression i t  i s  necessary to rep- 
resent a(m) in the form of a linear functional of the solu- 
tion; we can then use the Schwinger variational prin- 
ciple. ["'I21 

We introduce 

- 
G ,  (z) = J dz' G,-,(z'), G o ( z ) = G ( z ) ,  (A. 3) 

and analogously fn(z). The kernel R will define func- 
tions &,,(z, z') in which the indices n and n' indicate the 
number of integrations with respect to z and z', re-  
spectively. We consider now the function 

1 - 
F ( ~ ) = - J  dz' o ( z l )  [ G z ( l z - z ' I ) + R , , ( z , z ' ) ] .  

2 
(A. 4) 

Differentiating, we get 

1 
F ' ( z ) =  - T J d z ' o ( ~ r )  [G,(I~-zll)sign(z-z')+~,,(z, z ' ) ] .  (A. 5) - 0 

From (A. 5) i t  i s  seen that 

F ' ( m )  =O. (A. 6) 

Differentiating (A. 5) once more and using (A. I) ,  we 
have 

Integrating (A. 7) twice with allowance for  (A. 6), we ob- 
tain 

or,  substituting z = 0 and z =m in (A. 4), 
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o (m) G3 (0) =fZ(0) + I .  

dz' o(zl) [G2(z1) +Rz.(O, z') 1 .  

The obtained relations yield the sought expression for 
~ ( 0 0 )  in the form of an integral of the solution. Follow- 
ing the known rules, [11*12' we construct a stationary ex- 
pression for the integral U: 

where 

We use the simplest approximation 

Then 

AIF'/~ [GJ (0) +Rzi(O, 0) I, - - .  

Az=fl(0), B='lp[G,(O)-Rti(0. 0) 1 

and 
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