
near the surface in  semimetals (antimony) is the radical 
difference between the reflection of the electrons (spec- 
ular) and the holes (diffuse) from the sample surface. [l3] 

The presence of band bending near the surface causes 
formula (7) to underestimate the dimensions of surface 
roughnesses. I n  this case formula (7) must be modified: 

q (0) =I-P (0) a sin 0, 

where P(0) is the probability that the electron will 
"reach" the boundary. Owing to tunneling, the function 
P(0)  cannot be represented in the form P(0) = O  at  
0<0, and P(0)= l  at 0,s 0sn/2.  The roughnesses of 
the investigated surfaces, estimated on the basis of 
(a), exceed by one order  the estimates obtained with 
formula (7), assuming that (8) is valid for arbitrary 0 
and that P( 0)s 1 at large 0. 

The diffuse reflection of normally incident electron 
from the binary plane and specular reflection from the 
trigonal plane may not be due to a difference between 
the scattering mechanisms, but only to the different 
dimensions of the surface roughnesses. It i s  known, 
for example, that different crystallographic planes 
can have different macroscopic roughnesses. 

"1n the calculations of U ( H )  the contact dimensions were as- 

sumed to be the same and the Fe rmi  surface was assumed to 
be cylindrical. 
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The order parameter depends strongly on the coordinates in the mixed state in superconductors. A kinetic 
equation is derived in this case which describes the excitation-energy distribution function. This function 
varies strongly in a comparatively weak electric field E. At low temperatures, the effective electron 
temperature is proportional to E ' I 5 .  If this temperature exceeds the energy gap, most of the energy of the 
stationary electric field should transform into energy of almost-monochromatic phonons. The boundary 
condition for the diffusion equation is obtained in the case of high impurity concentrations. 

PACS numbers: 74.20. - z 

INTRODUCTION 

The energy relaxation time in metals T , - O ~ / T ~  is 
large a t  low temperatures. A large change in the elec- 
tron energy distribution function therefore takes place 
in comparatively weak electric fields. In  a normal 
metal, such a change has no effect on the conductivity. 
In a superconductor, the current density and the value 
of the energy gap a r e  strongly dependent on the shape of 
the distribution function; therefore, departures from 

Ohm's law set  in  rather rapidly during motion of vor- 
tices. The significant change in  the electron distribu- 
tion function during motion of vortices can be observed 
from the spectrum of the emitted phonons. At suffi- 
ciently low temperatures and not too weak electric . 
fields, almost al l  the energy of the electric field should 
transform into energy of monochromatic phonons with a 
frequency equal to 2A. In  this case, the electron excita 
tions a r e  produced by the electric field a t  the center of 
the vortex, a r e  accelerated to energy A, and then leave 
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the region of the vortex and undergo annihilation with 
emission of a phonon. The usual kinetic equation de- 
scribing the coordinate and momentum distributions of 
the excitations is applicable only in  those cases in which 
both the path length and the size of the investigated re- 
gion a r e  large in comparison with v / ~ .  At least one of 
these conditions is not satisfied in  the vortex state. 
Therefore, the momentum and coordinate of an excita- 
tion do not have any meaning, but the excitation energy 
distribution function does have a meaning. The kinetic 
equation for this function is obtained below. 

1. KINETIC EQUATION FOR TWO DISTRIBUTION 
FUNCTIONS 

In obtaining the kinetic equation for the distribution 
functions, we use the Keldysh method. ''I In this method, 
the Gor'kov equations for the Green's function have the 
formE1 

- 8  1 - - - +  . ~ t  2m .  .  t .  t  t - t ,  (1) -1 
where A(r, t) is the vector potential, rp is the scalar 
potential, a = B / B ~  - ieA.i,. In  Eq. (I), the Green's func 
tion and the self-energy part of the & matrix have the 
form 

In  turn, the quantities G and GR** a re  (2x 2) matrices 
consisting of the usual Green's function g and the 
Gor'kov function F: 

The interaction of the electrons with phonons and im- 
purities is take? into account with the help of the self- 
energy part of Z. Assuming the interaction of the elec- 
trons with phonons and impurities to be weak, we obtain 
the following expression for the self-energy part of 5:  

2 , ( t .  t ' )  =S,"" ( t .  t') +Z,P2(t. t ') ,  
tnu EimP ( t .  t r )  =- d R p ~ p p , ~ p ,  ( t .  t ')  - 

.- - - -  
Ph1R.A) vgZ 

b P  ( t .  t , ) =  - J ~ o ~ , ( D ~ - ~ ,  
8 

dQP,{Dp-P,(t'-t)GPr ( t .  t') 

- (D;pl ( t l - t )  -D;--., ( t l - t )  ) (GpIR(t .  t r )  -Gp/  ( t .  t r )  ) 1, 

where umi is the scattering c ross  section of the electron 
by the impurity, 

5 =p2/2m - 1, v is the velocity on the Fermi surface, 
v = mp/2n2 is the density of states on the Fermi surface, 
7, is the time of flight of an electron with spin flip, n is 
the concentration of the impurities, g is the constant of 

electron-phonon interaction, and ~*,,( t  - t', R) is the 
phonon Green's function. 

In  the derivation of the expressio? (4) for 2, we used 
the fact that the Green's functions G have a sharp maxi- 
mum near the Fermi surface. The significant values 
of the parameter 5 always satisfy the condition 5<< p.  
In  this region, the scattering c ross  section from im- 
purities and the phonon Green's function a re  weakly de- 
pendent on 5. Therefore, the scattering c ross  section 
from impurities and the phonon Green's function in  the 
expression (4) depend only on the angles of the vector 
p, which l ies on the Fermi surface, and the electron 
Green's functions a r e  integrated over the energy vari- 
able 5.  As in  the static case, '3*41 i t  turns out to be 
possible to obtain equations (with quasiclassical accu- 
racy) for the Green's functions integrated over the en- 
ergy variable _5. Fo; this, we note that Eq. (I), which 

the^form G% = 1, can be written in the for-m 
GG" = 1. In the latter equation, the operator G" acts 
on the variables r' and t'. We subtract one equation 
from the other and transform to the momentum repre- 
sentation in  the c_oordinate difference r  =r'. Using the 
independence of C of the variable 5 ,  we integrate the 
resultant equation over 5. As  a result, we obtain an 
equation for the Green's function (5) integrated over the 
energy variable 5 C2* 51: 

I c)a , aa aa - 
-p-+ T,-+-- - ;T,  +H( t )G-&H( t f )  
In a R  Sit at 

where 

The Green's function G satisfies the normalization con- 
ditionc2] 

- 
d t ,  G p ( t .  t , )GP( t i .  t') =6^(t-t'). 

- = 
(8) 

In many problems, i t  suffices to express the Green's 
functions in terms of ~ ( t )  and A(t) with the help of 
the formulas of the static approximation. The correc- 
tions to them due to the alternating field a r e  usually 
small and can be found from perturbation theory. I n  the 
solution of Eqs. (6) for the Green's function G i t  is con- 
venient to make use of the normalization condition (8). 
This condition_allows us to express two matrix elements 
in  the matrix G in terms of two others; therefore, i t  is 
convenient to introduce two distribution functions: f and 
f,, with the help of which the Green's function can be 
represented in  the form 

The Green's function G, written down in  the form (9), 
satisfies the normalization condition (8) in the case of 
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arbitrary functions f and f,. In  slowly changing fields 
(w << A) the distribution functions f and f, a r e  fast  func- 
tions of the time difference and slow functions of the 
sum of the times. We transform to the Fourier repre- 
sentation in the time difference: 

We substitute Eq. (10) for the Green's function in  Eq. 
(6). In  addition, we take into account for the Green's 
function GRvA the equation that follows from the system 
(6): 

As a result, we obtain a se t  of equations for the func- 
tions f (P, E, r, t) and fl(P, E ,  r, t): 

+ I ,  +zzph(f ,)  + z l p h ( f )  =o, (13) 
where 

The function f, is usually small; therefore the second 
equation of (13) is written in  the linear approximation 
(terms proportional to Ef, a r e  omitted). In  the deriva- 
tion of the collision integrals from ePh, only terms 
proportional to D o r  DR - DA a r e  kept; these describe 
real  processes with absorption o r  emission of phonons. 
The exchange of virtual phonons, which is described by 
components of the type DR + D ~ ,  leads to renormaliza- 
tion of the order parameter A. 

If the order parameter A changes little over the 

distance which the electron traverses in  a time of the 
order  of A", then we can use the following local approx- 
imation for the Green's function G ~ , " :  

I n  this approximation, the quantity 2y = GR + GA is equal 
to zero for I E I > I A I . This quantity enters into the 
equation for fi; therefore, in  the case of small gradients, 
when the phonon collision term .is significant in  the 
equation for f,, the quantity G + GA must be described 
with account of the phonon collision term 

Near the transition temperature, account of the phonon 
collision term leads to the replacement of E by E k i/2q 
in formula (15) for GR*A; 

where s is the sound velocity in the normal metal, and 
g(3) is the Riemann zeta function. 

In the case of small gradients and currents, the 
Green's functions and, consequently, the kinetic equa- 
tion, have the same form at any concentration of the 
nonmagnetic impurities. The se t  of kinetic equations 
(13) tracsforms in  thit  case into the equitions obtained 
by Galaiko and Shumeiko. A! low concentrations of 
nonmagnetic impurities, when ZimD can be taken into ac- 
count in  the equations for GRsA by perturbation theory, 
the set  of equations (13) transforms into the ordinary 
kinetic equation for the quasiparticlesc71 a t  arbitrary 
current, but the gradient of the modulus of 1 A1 in this 
case  should be small. 

The collision term zbh, which describes the energy 
relaxation, is small  (of the order  T'/@:), however, ac- 
count of Ph is important, since without i t  there is de- 
generacy: in the static case, the arbitrary function f(c), 
which does not depend on the coordinates, satisfies the 
se t  of equations (13). The shape of the function f (s)  is 
determined from the condition that IPh vanish: 

f,=O, f (e)  =th ( e / 2 T ) .  

Since the dependence of the function f (E) on the energy 
is determined by the term IPh, nonlinear effects appear 
in  weak alternating fields. 

We represent the distribution function f in  the form 
of a sum of two components: a Large component (T), 
which does not depend on the angles of the vector p and 
is weakly dejendent on the coordinate, and a small 
component f, which does not have mean value ov t r  the 
angles o r  the coordinates. The functions f, and f can be 
found from the se t  of equations (13) in  the approximation 
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linear in the field. The equation for (J), which is non- 
linear in the field variable, is obtained by simple aver- 
aging of the f i rs t  equation of (13) over the angles of the 
vector p. The order parameter A, the current density 
j, and the charge density p a r e  expressed in terms of 
the Green's function G according to the formulasB1 

The Green's function G can be expressed with the help 
of Eq. (10) in  terms of the distribution functions f and 
fl. The formulas (18)' together with the kinetic equa- 
tions (13) and the Maxwell equations, allow us to con- 
sider the problem of superconductivity in  a low-fre- 
quency electromagnetic field of arbitrary amplitude. 

2. CONDUCTIVITY OF A PURE SUPERCONDUCTOR 
IN THE MIXED STATE 

In  an electric field E, the vortex structure moves witk 
velocity u, which is connected with the electric field by 
the relation 

Carrying out a gauge transformation with phase x de- 
fined by the equation 

we obtain the result that the order parameter A and the 
vector potential A in  such a situation change according 
to the law 

A transport current flows over the superconductor in  
such motion. For the determination of the value of this 
current, we use the method described in  Ref. 8. 

The motion of the vortex lattice leads to the appear- 
ance of corrections to the order parameter and the vec- 
tor potential, which can be found from Eqs. (18) and the 
Maxwell equations for the vector potential. In f i rs t  
order in the velocity, these equations have the formLa1 

where the corrections to the Green's functions F$ and 
g:$ are determined by the formulas (10) and (13). Here 
the time derivatives a r e  determined by the formulas 
(20). The mean current can-be separated in  the right 
side of Eq. (21), in  order that the correction to the vec- 
tor potential A"' not contain terms that increase with 
the coordinates. The mean current ( j )  is assumed to be 
small in order that the change in  the magnetic field pro- 
duced by i t  be  small over a &stance of the order of the 
size of the cell. The operator L is found from the static 
equations and is equal to the second variational deriva- 

tive of the f ree  energy with respect to A and A. I n  the 
case of lattice displacements and gauge transformations, 
the f ree  energy does not change; therefore the result  of 
the action of the operator on the column (e B P ,  
e B+A*, [ ~ x e ] ) i s  equal to zero. Here e is the displace- 
ment vector of the lattice. We multiply Eq. (21) from 
the left by the row ([BX 8+A*], [BX 8-41, B H) and aver- 
age over the volume of the cell. As a result, the left 
side of Eq. (21) vanishes and we obtain the following ex- 
pression for  the transport current (j): 

The angular brackets i n  (22) denote averaging over the 
cell. 

We now consider superconductors with a large mean 
f ree  path .$<< I<< .$&,/A for  the electrons. We find the 
contribution to the conductivity, which is proportional to 
the free path length. Such a contribution comes only 
from corrections to the distribution function f. The cor- 
rections to the Green's functions GR*" and the distribu- 
tion function fl remain finite in  the limit a s  I- and 
therefore will not be taken into account. As observed 
above, i t  is convenient to represent the distribution func- 
tion f in the form of a sum of two components: 

where (f) does not depend on the angles of the vector p 
and on the coordinates. I n  the calculation of the con- 
ductivity in the approximation that is linear in the field, 
one must se t  (f) = tanh ( & / 2 ~ ) .  The se t  of equations (13) 
for the functions f and fi we shall solve by the classical 
trajectory method. Since fl<<f; i t  follows from the 
second equation of the se t  (13) that 

and the functionyis constant on the trajectory. Inte- 
grating the f i rs t  equation of the se t  (13) along the trajec- 
tory, we obtain 

Only a single component, proportional to f ;  remains i n  
Eq. (22) for  the mean current density in this approxima- 
tion: 

The expressions (25) and (26) allow us to find the con- 
ductivity of pure superconductors a t  any temperature and 
in any magnetic field if the solutions of the static prob- 
lem for the functions G R e A  and A a r e  known. In weak 
fields H<c H,, (the distance between the vortices is much 
greater than 5 )  at  low temperatures, the conductivity in  
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the approximation that is linear in  the field was found in  
Ref. 9: 

The formula (27) is valid in  order of magnitude even 
at T - T,. Near To, we can find the temperature depen- 
dence of the conductivity if we take i t  into account that 
in Eqs. (25) and (26) the values & - A  a r e  significant and 
the dimension 5 -v/A is important. With account of the 
observations made, we obtain for the conductivity the 
expression 

where a, is the conductivity of the normal metal and C, 
is a number of order unity. Equation (28) is applicable 
at temperatures that a r e  not too close to To, while the 
free path length of the electrons is greater than the size 
of the vortex (?A >> 1). Near the critical field Hc2, the 
conductivity is found in  Ref. 10: 

lny =O. 577 is the Euler constant. 

3. DEPENDENCE OF THE CONDUCTIVITY ON THE 
ELECTRIC FIELD 

At low temperatures, the dependence of (f) on & is 
determined not by the temperature but by the electric 
field in comparatively weak electric fields. The equa- 
tion for (f) is obtained by averaging the f i rs t  of Eqs. 
(13) over the coordinates and angles: 

In the derivation of Eq. (30), the equation (12) was em- 
ployed. With logarithmic accuracy, Eq. (25) for the dis- 
tribution function f can be solved a t  c << A. This solution 
has the form 

The Green's function G R e A  entering into Eq. (30) should 
be replaced by i t s  value in a static magnetic field, found 
in Ref. 11. As a result, Eq. (30) reduces to the form 

where 

At sufficiently large vortex velocities u, the values 
c >> T a r e  important. Here, Eq. (32) is nondimension- 
alized and i t s  solution is a function of the dimensioness 
parameter c ~ " ~ ,  in  particular, when this parameter is 
much greater than unity, we have 

I-<f>=A exp [ - (e /T')"' ] ,  

where 

jo is the critical pair-breaking current, and A is a con- 
stant of order unity. 

At low temperatures. the size of the vortex is pro- 
portional to T. ("] This is connected with the fact that 
the distribution function a t  small E depends on the ratio 
&/T. I n  a strong electric field, when T* >> T, the size 
of the vortex increases and becomes proportional to T*. 
In similar fashion, T should be replaced by T* under the 
logarithm in  the conductivity (Eq. (27)) in  the presence 
of a strong electric field. Thus, over a broad range of 
electric fields A > T* > T, T", the conductivity depends 
logarithmically on the value of the electric field. 

4. EMISSION OF MONOCHROMATIC PHONONS I N  
VORTEX MOTION 

A nonequilibrium energy distribution of the electrons 
is produced by vortex motion and causes emission of 
nonequilibrium phonons. Although the effective tempera- 
ture of the electrons T* << A, a broad spectrum of pho- 
nons with width w - T* is radiated. An interesting phe- 
nomenon appears when the effective temperature T* be- 
comes of the order of the gap width A. In  this case, the 
electrons, becoming heated inside the vortex, reach the 
energy & = A .  After this, they leave the region of the 
vortex and if the vortex density is low, the subsequent 
heating is greatly weakened. Accumulation of excita- 
tions with energy & near A takes place, and these excita- 
tions recombine with emission of a phonon of frequency 
close to 2A. The width and intensity of the radiation can 
be found from Eq. (30) for the distribution function. The 
left side of this equation is the diffusion equation. The 
diffusion coefficient for the energy is determined by the 
behavior of a order parameter A and the function G R v A  
near the vortex axis a t  distances of the order of U/A. 
Therefore, i t  depends weakly on the energy and in  order 
of magnitude can be replaced by i t s  value a t  & << A: 

At sufficiently low vortex density, the basic relaxation 
process in  Eq. (30) a t  & >A is the recombination of the 
excitations with emission of a phonon with energy close 
to 2A. Equation (30) for & > A  in  this case reduces to 
the form 

The solution of Eq. (34) is the Bessel function 
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where 

e-A p - z =  y4/3 = - , i z8r  ('I,) ~ ~ m ~ ~ =  

P 27n2"> (sp) 'D, A, 

A= ( I - f  ( A )  ) I'(?/,) 2"'/n'"r(V3). 

The boundary value of the distribution function f (A) 
is determined by the diffusion of the excitations inside 
the vortex. If T* >> A, then f (A)<< 1. If T* << A, then 
1 - f (A) is exponentially small. At T* - A, the order 
parameter inside the vortex changes greatly but the 
value of A a t  large distances changes very little. 

The frequency distribution of phonons takes near 
0 = 2A the form 

(37) 
aN. 2A3mp mpg2 jJ 
-=-- I . dede, 

at n(sp)- 2 ~ '  (E-A)'"(E,-A)' ,~ G ( E +  E I - ~ )  (1-fe) (1-I.,). 

The characteristic width of this distribution is of the 
order of p (Eq. (36)). At T* -A, this width is 

Thus, a t  low temperatures and infrequent vortices, all 
the energy of the electric field is transformed into the 
energy of almost monochromatic phonons with frequency 
o = 2A. 

5. SUPERCONDUCTORS WITH SHORT ELECTRON 
FREE PATH LENGTH 

In  superconductors with a short free path length, the 
kinetic equation for the distribution function transforms 
in the diffusion equation into a function that is indepen- 
dent of the angles of the vector p. This equation is eas- 
iest  to obtain by starcng from the general equationJ6) 
the Green's function G. I n  this case, the function G can 
be represented in the form 

where the functions 6 and Sl do not depend on the angles 
of the vector p. Using the normalization condi t ip  (8), 
we get the following expression for the function Gl 

where 

?=didr-ie~;,, GG 3 dt,G(t. t , )  ~ ( t , .  t') S - 

We substitute Eq. (39) for the function 6) i n  Eq. (6) 
and average over the angles of the vector p: 

d a~ ac; 
-D - { i e ~ ; , ~  (t-t') +Gb&) + 3, - + -7 ;, 

dr dt at 

D = v1,,/3 is the diffusion coefficient. The equations de- 
termining G~~ and G a r e  contained in Eq. (41). 

We express the Green's function G a s  before, with the 
aid of two distribution functions, in the form 

In  a slowly varying electromagnetic field, the equations 
fo r  the distribution functions f (E, t) and f,(&, t) have the 
form 

where j, = s ~ T , ( G ~ ~ G ~  - G ~ ~ G ~ ) .  

The coefficients of Eq. (44) a r e  written in the approx- 
imation linear in the electric field. In some cases, this 
approximation is sufficient for the solution of nonlinear 
problems. In problems where the linear response is 
sought, Eqs. (44) transform into the equations of Schmid 
and SchSn. Ci21 At temperatures close to T,, the size of 
the vortex is large t2  >> D / A  and we can use the local ap- 
proximation (15) for the Green's functions GRsA. In the 
region I E 1 > I A 1 the function fi = 0 and the equation for 
the distribution function f takes the form 

For the distribution function f in Eq. (45), it is neces- 
sary to derive the boundary condition on the boundary of 
the sample, where I & I  = I A1 . Integrating Eq. (44), we 
find that, in a narrow region near the boundary, the 
quantity 

is conserved. Under the barrier,  Eq. (46) vanishes. 
Consequently, 

In the collision integration the component corre-  
sponding to the departure of the particles from the state 
with energy E depends on f (6) and in the components cor- 
responding to the arrival  of particles, values E, - T a r e  
important. The distribution function f (&) differs from 
the equilibrium function in the energy range E - A. Near 
the transition temperature, when A << T, the distribu- 
tion function f (E,) in the collision integral zPh can be re -  
placed by i t s  equilibrium value. In this case, 

where rs is determined by the formula (17). 

In superconductors with a small f ree  path length, the 
expression for the transport current (22) takes the form 
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At temperatures close to the transition temperature, 
the expression (48) for the transport current is con- 
siderably simplified. In this case, we can use the ex- 
pressions (15) for the Green's functions G * * ~ .  These 
a r e  valid in magnetic fields not too close to the critical 
field H,,. As a result, we obtain 

de c j ) = Z (  J - ( . z - i ~ ~ ~ ) - ~ l ~ f ~ ~  - 
4nB2 ,$I> 

2n """I) ill- . 

In the approximation linear in the electric field, we 
can neglect the collision term zPh in Eq. (45) a t  tempera- 
tures not too close to T,, when 0tm2>> T,;'. For a single 
vortex, Eq. (45) is conveniently written in cylindrical 
coordinates (p, cp): 

The solution of this equation is of the form 

where the coefficient C is found from the condition of the 
vanishing of the derivative of the distribution function a t  
the point a t  which IAI = I & [  in the case I & I  <A,, o r  on 
the boundary of the cell a t  I c l >A,: 

where p, i s  found from the equation I & I  = I A(p, ) I .  

We substitute Eq. (51) for the distribution function in 
(48) and obtain 

o/o,,=j ( T ) H , ( T ) : B ;  
(53) 

In a number of the incorrect bound- 
ary condition f,,,=O is used. Such a boundary condition 
gives the value 2.1 for the numerical coefficient in Eq. 
(53). In Refs. 13 and 14, the values 1.1 and 2.85 were 
respectively obtained for this coefficient. 

The increase of the coefficient p(T) a s  the transition 
temperature is approached is due to the strong change 
in the distribution function of the excitations. This 
growth continues a s  long a s  the size of the vortex is not 
too great and the time of diffusion the excitations over 
the vortex core i s  less  than the energy relaxation time. 

At T, - T- 7i1, these times become equal. Upon further 
approach to Tc the departure of the distribution function 
from the equilibrium value decreases. In  this case, the 
f i rs t  term in Eq. (45) is small in comparison with I*" 
and the distribution function is of the form 

Substituting this value for the distribution function in 
Eq. (49), we obtain the following expression for the con- 
duc tivity a: 

For a single vortex we have 

As the transition temperature is approached, the 
"anomlous" contribution to the conductivity found above, 
a contribution that is connected with the change in the ex- 
citation distribution function, decreases. In  the region 
T, "A-' the contribution to the conductivity connected with 
the change in the Green's function becomes im- 
portant. 

CONCLUSION 

Because of the large energy relaxation time, nonlin- 
ea r  effects appear in comparatively weak electric fields, 
when the transport current is still much smaller than 
the critical pair-breaking current. A strong change in 
the excitation distribution function, which accompanies 
vortex motion, leads not only to a nonlinear volt-ampere 
characteristic, but also to emission of nonequilibrium 
phonons. In particular, in magnetic fields B<< He,, a t  
low temperatures, almost all the energy of the electric 
field can be transformed into the energy of nearly mono- 
chromatic phonons with frequency cd = 2A. For a quan- 
titative description of nonlinear effects a t  arbitrary 
temperatures and magnetic fields, i t  i s  necessary to 
solve the self-consistent problem: to compute the 
Green's functions G R o A  of the static problem for a given 
order parameter A(r). These functions a r e  substituted 
in the kinetic equations for f and f,. The values found 
for  the distribution function f and the Green's function 
G R o A  a r e  substituted in the equation that determines the 
order parameter A for self-consistency. 

In different limiting cases, for example in those con- 
sidered above, the dependence of the transport current 
on the temperature and the values of the electric and 
magnetic fields can be found analytically, apart  for the 
numerical coefficients. 
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Quasilocal vibrations produced in dilute V,,Pt, alloys 
under conditions of a strong restructuring of phonon 
spectrum of V 

G. F. Syrykh, G. M. Zemlyanov, N. A. Chernoplekov, and V. M. Koltygin 

I. V. Kurchatov Institute of Atomic Energy 
(Submitted January 19, 1977) 
Zh. Eksp. Teor. Fiz. 73, 313-317 (July 1977) 

Results are presented of the measurements of the spectra of inelastic incoherent scattering of neutrons by 
V,,Pt, alloys (x = 5 and 7 at.%). In the low-frequency regions of the spectra, quasilocal vibrations 
(QLV) are observed and are connected with introduction of the heavy impurity Pt atoms into the V. The 
energy position of the QLV is shifted in the region of higher values in comparison with those expected in 
isotopic-substitution model. Introduction of the Pt atoms leads also to a shift of the entire spectrum 
towards higher frequencies. The shift of the QLV and of the entire spectrum depends on the concentration 
of the impurity atoms. The energy position of the QLV can be satisfactorily explained within the 
framework of isotopic substitution using a renormalii spectrum of the original lattice. 

PACS numbers: 63.20.Pw, 61.12.F~ 

INTRODUCTION T h e  introduction of a new parameter[41 T determined 
by m e a n s  of a bes t  f i t  of the experimental  r e s u l t s  to the 

Of g r e a t  significance i n  the understanding of the physi- 
calculation data  yields information concerning a cer ta in  

cal proper t i es  of real c rys ta l s ,  is the investigation of effective change of the local force constants. 
alloys with sufficiently smal l  contents of impuri ty  atoms,  
when the impuri ty  a t o m s  c a n  be regarded as isolated. However, i n  the study of al loys of non-isoelectronic 

I n  th i s  case the theoretical interpretat ion of the experi-  e lements  one o b s e r v e s  not only the formation of impuri ty  

mental data  becomes a rea t lv  s i m ~ l i f i e d .  s ta tes ,  but also a noticeable deformation of the en t i re  

Even the f i r s t  investigations of a number of dilute al- 
loys, c a r r i e d  out both with the a id  of the neutron-scat- 
ter ing method and by measuring the low-temperature 
heat  capacity, C1'31 have shown that i n  all cases new vi- 
brational s t a t e s  are produced, due to the introduction of 
the impurity atoms.  Depending on the value of the m a s s -  
difference p a r a m e t e r  & =1- M,/M,, (M,, and MI are re- 
spectively the  m a s s e s  of the  mat r ix  and impurity atoms,  ) 
the introduction of impuri ty  a t o m s  leads  to formation of 

spectrum of the initial lattice, which manifests  itself in  
a shift  of the spectrum towards higher energies .  T h e  
deformation is l a r g e r  the g r e a t e r  the difference between 
the electronic  p roper t i es  of the alloyed elements  and the 
higher  the concentration of the impuri ty  atoms.  Thus,  
introduction of the p a r a m e t e r  T, which takes  into ac- 
count the change of the local f o r c e  constants,  does  not 
explain the influence of the deformation of the en t i re  
spectrum on  the formation of the QLV. 

e i ther  quasilocal vibrat ions (QLV) or  local vibrat ions F r o m  among the vanadium-base al loys investigated 

(LV). I t  tu rns  out h e r e  that the energy position of the by u s ,  [5p61 the s t rongest  res t ruc tur ing  of the initial 

observed additional s ingular i t ies  in  the s p e c t r a  cannot spec t rum should b e  expected f o r  a l loys with platinum 

b e  explained i n  mos t  cases within the f ramework  of the impurity. I n  addition, i n  d i sordered  solid solutions of 

s implest  model of isotopic substitution. V with P t  there  is no noticeable change of the la t t ice  
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