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The effect of a magnetic field on the low-temperature behavior of the generalized susceptibilities of a one- 
dimensional electron system which describe singlet k s )  and triplet k,) superconducting fluctuations and 
also fluctuations of the dielectric (x,,) and antiferromagnetic k D w )  types is investigated. The l i i t ing  
case wo>T (2wo is the magnitude of the b a n  splitting) is considered. It is shown that in this limit 
there is a displacement of the positions of the singularities in the functions &k) and ,y,,(q): the latter 
may exhibit singular behavior as T+O at a total momentum (4 -20,,/vF and at a momentum transfer 
IqI z2pF* 2w,,/vF (pF and vF are the Fermi momentum and velocity). Therefore, a phase transition to 
an inhomogeneous superconducting state or to a Peierls state with two density waves may occur in a quasi- 
one-dimensional crystal located in a sufficiently strong magnetic field. The asymptotically exact form of 
the susceptibility components which are singular as T-+O is found in the case when the coupling constant 
at small distances g, 2 0  or when the strong field condition g, ln(A/oo)<l (A is the cutoff parameter) is 
satisfied for any sign of g,. The effect of a magnetic field on the low temperature behavior of the impurity 
part of the electrical resistivity of a quasi-one-dimensional conductor is discussed. 

PACS numbers: 75.30.Cr, 75.30.K~ 

1. INTRODUCTION ties with respect to the total momentum and momentum 

The generalized susceptibilities of a one-dimensional 
system of interacting electrons in the absence of any 
magnetic field have been calculated in  a whole ser ies  of 
articles. "'I The effect of a magnetic field on the low 
temperature dynamical instabilities of a one-dimen- 
sional system of weakly interacting electrons1) is in- 
vestigated in  the present article. The formulation of 
such a problem makes sense because in  real  quasi-one- 
dimensional conductors, in  view of the small  probability 
of tunneling skips of the electrons from filament to fila- 
ment over a wide range of field strengths, one can ne- 
glect the field's influence on the orbital motion and r e -  
gard i t  a s  having an effect only on the electron spins. 
(The appropriate quantitative cri teria a r e  given by 
Dzyaloshinskii and Kats. L51) 

transfer in  generalized susceptibilities of different sym- 
metry if i t  is taken into consideration that i n  the limit 
w, >> T of interest  to us the separation of the electron 
sub-bands corresponding to the two projections of the 
spin along the direction of the magnetic field appreciably 
exceeds the temperature broadening of the Fermi dis- 
tribution functions near the limiting momenta i pg, 
where pg =pF - uwO/vp and a=* 1 is an index labelling the 
sub-band. The function xTS(k) characterizes the super- 
conducting correlations of the electrons of a single sub- 
band having momenta near pg and -p> so  that k-0, and 
xsDw(q) characterizes the correlatibns between an elec- 
tron in one sub-band and a hole in  another for which 
q - pg + piu = 2pF. For superconducting correlations of 
the electrons in  different sub-bands (xSs(k)) k-pg -p; 
= - 2uw,/v, and the Peier ls  fluctuations of the density 

The generalized susceptibilities describing singlet (x cD w(d)) in  each sub-band a r e  characterized by theiE 
(xss) and triplet (xTS) superconducting fluctuations and own "diameter": q -  2pg = 2 4  - 2uwo/vF. 
also fluctuations of the dielectric ( k D W )  and antiferro- 
magnetic (xSDw) types a r e  evaluated below by the method 
of parquet summation in  the limiting case w,>> T 
(w, = ~ L H ,  j~ denotes the Bohr magneton). The distin- 
guishing features of this case is that logarithmic singu- 
larities with respect to the temperature ar ise  in  the 
electron-electron and electron-hole channels depending 
on the spin structure of the channel, these singularities 
appearing not only for total momentum k = O  and momen- 
tum transfer q =* pF a s  in  the absence of a magnetic 
field, L1*81 but also for k =* 2wo/v, and I q I = 2pF i 2wo/vF 

The parquet vertex part: I',,,,,(p,p, I $8,) were 
evaluated by Dzyaloshinskii and ~ a t s ' ~ '  for a one-dimen- 
sional electron system in the region wo>> T with the 
following ordering of the momenta: p, - - p, - - p, - p, 
"pF, that is, for 1 k I vF- I q - 2pF 1 vF 5 T. I n  this con- 
nection pole singularities appeared in  the vertex func- 
tions r,,, and r,,, at a finite temperature. c51 As  is in- 
dicated below, for evaluation of the generalized suscep- 
tibilities i t  is necessary to know the vertex parts rug,,, 
in the region w, >> T for 

(pF is the limiting momentum in  zero field and vF is the P I - P I - P F ~ ,  P ~ - P J - - P ~ " .  o'=*o, 

Fermi velocity). In  this connection i t  is found that the 
response functions xTS(k) and xSDw(q) exhibit singular which corresponds to the two possibilities: 
behavior a s  T- 0 if k = 0 and q =i 2pF, that is, just a s  for 
the case H=O, but the functions xSs(k) and xcDw(k) only I k 1 v ~ - 2 ~ ~ ,  Iq -2p f  IuF-T,  

exhibit singular behavior for k = 2wdvF and I q I = 2PF 
k 2w,/q. o r  

One can easily establish the positions of the singulari- lk l u r - T .  l q - 2 p , l ~ ~ - z ~ ~ ,  
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I t  is found that in these regions r only depends on the 
logarithmic field variable h =ln (A/w,) (A i s  the cutoff 
parameter) coinciding with its value for H= o~~~~~ after 
the formal replacement of T by w,. 

If the interaction of the electrons at small distances is 
repulsive (g, 2 0) o r  if H i s  so large that the condition 
I gl I h<< 1 is satisfied for arbitrary sign of the constant 
g,, the behavior of r (h)  turns out to be nonsingular. In  
this case the weak coupling regime is realized, when the 
parqudt approximation used in the present work leads to 
asymptotically exact results for the generalized suscep- 
tibilities. In this connection the singular parts of the 
latter quantities take the form of power functions TY, 
where the exponent y is proportional to a definite vertex 
part and is small. In the concluding sections of this 
article we discuss the phase diagram for the possible 
states of a one-dimensional system for T= 0, H# 0 and 
also investigate the effect of a magnetic field on the low 
temperature behavior of the impurity part of the elec- 
trical resistivity of a quasi-one-dimensional conductor 
in regard to objects of the type (sN), C7*83 and HMTSF- 
TCNQ, which possess metallic conductivity down to 
temperatures of the order of 1 OK. 

2. PARQUET ELEMENTS 

In the presence of a magnetic field the electron spec- 
trum near the Fermi energy has the form 

In  the following diagrams the electron Green's function 
will be depicted by a solid line if #-pi and by a dashed 
line if p- -p;. 

The basic elements of the parquet-representing the 
graphs for the second-order vertex part-are shown in 
Fig. 1. They represent the diagrams of the zero-order 
approximation for the generalized susceptibilities, 
where 

For Ik I and Iq-2PFI <<P, we have 

E..(k-p) - - E . ( P )  - [ k ~ s +  (0-0') mol, 

E., (p-q) =-E.(p) + I  (q-2pr) up+ ( o f  a') me]. (1) 

Changing from an integration over p to an integration 
with respect to t;,(p) and taking Eq. (1) into considera- 
tion, we obtain 

S,, (k. om) - In 
A 

max{lku,+(o-a')w~I, loml,T) ' (2) 

w h e r e w , = 2 r n n ~ , ~ ~ ~ ~ a n d h > > ~ ,  Iw,l, I k l q ,  Iq-2P,l 
v ~ ,  W ~ -  

In the parquet diagrams of higher order, the singu- 
larities of type (2) and (3) begin to interfere. For w,< T 
the magnetic field falls off everywhere with logarithmic 
accuracy, and we arrive at the results for the case 
H= 0. C1'S1 However, in the limit w, >> T of interest to 
us, the difference between the positions of the singulari- 
ties in the elements So,. and Nu,. for o = o', and o = - o', be- 
comes substantial. In Sec. 3 below an analysis i s  made 
of the scheme of parquet summation for the function xSs 
which one can then easily adapt to the evaluation of x,,,, 
xTS, and x,,, (see Sec. 4). 

3. THE GENERALIZED SUSCEPTIBILITY Xss 

We shall regard xSs as a function of T and w, for 
w, = 0 and small values of k ( I  k I << p,) in the region 
w, >:- T. In the parquet approximation one can represent 
xss(k) -XLos)(k) in the form of an infinite sequence of dia- 
grams of the form shown in Fig. 2, where the vertical 
"brick" is the vertex part which is irreducible in the 
superconducting channel. Let us  introduce the notation 

In Fig. 2 the i-th intersection with respect to a pair of 
parallel lines corresponds to integration with respect to 
the logarithmic variable y, within limits from 0 to x,,. 
For 1 k I v, - T<< w, and xu= h all of the intersections a re  
suppressed by the field and xSs does not depend on T. 
The singularity in xSs(k) as T- 0 may arise only for 
kv,-i 20,. For the sake of definiteness we shall as- 
sume that I kv, - 2wo I -  T<< w, (due to the obvious sym- 
metry, the case 1 kv, + 2w01 - T leads to the same result 
for xss). Then x+= h, x,= x>> h, and the i-th intersec- 
tion in Fig. 2 will correspond to logarithmic integration 
over the region 0 < y, .: x if ui = - 1 and over the region 
O<y,<hif o ,=+l .  

Thus, for k v , ~  2wo the function xSs depends on two 
logarithmic variables: x and h. I t  can be evaluated by 
Sudakov's methodL1ll which is based oru isolation of the 
intersection having a maximal value of the logarithmic 
integration variable y and summing over all such inter- 
sections. In  this connection the distinguishing feature 
of the problem under consideration consists in the fact 
that, as a consequence of the inequality x>  h, two re- 
gions of integration arise at each Sudakov intersection, 
namely O<y<hfor  u = i l  and h < y < x f o r  a=-1.  Inac-  
cordance with this, xSs(x, h) turns out to be the sum of 
two terms: 

(1) 
XSS ( x .  h)  = x s s  (5. h)  + X2 ( h )  . 
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where 

FIG. 3. 

Here A,,,, are the total parquet amplitudes of the inter- 
action with a weak generalized field, producing a pair of 
electrons with momenta near pi  and -pT, [" and more- 
over in Eq. (5) i t  is taken into consideration that the 
quantities A,,,, only depend on y in the region y < h. We 
are interested in the singular part of the susceptibility 
XY; and to obtain this part i t  is sufficient to evaluate 
A,@, h )  for X >  h. 

In accordance with the existence of two regions of 
variation of the variable y, we obtain the following sys- 
tem of parquet equations: 

The vertex part r2= r,+, (pIp21 p d 4 )  appearing in Eq. 
( 6 )  is taken with the following ordering of the momenta. 
P 1 - P 4 - P ; ,  Pz"Ps"-G,  that is, for 

For such an ordering of the momenta, in the region 
x> h  the vertex I', generally depends on two variables: 
x  and h. In Eq. ( 7 )  the vertices I', and r, = I',,(P1&l 
Pd4) (here P, - - P, - P i ,  P4 - - P, - G depend only on the 
single variable y, owing to the restriction y < h, and 
coincide with their values at H = O .  Therefore ~ , , ( h )  
coincides with the corresponding expression for A,@) 
obtained in Refs. 1  and 2  after the formal substitution 
x-  h: 

where the small dimensionless coupling constants g, and 
g, correspond to scattering with large (- 2pF) and small 
momentum transfer. 

Now i t  is necessary to determine the vertex part 
I',(x, h )  in the region x> h. The parquet epuation for I', 

is shown in Flg. 3. One can easily verify that on the 
right hand side of this equation the contributions of the 
second and fourth diagrams mutually cancel and as  a 
result 

where I': = -g , ,  From Eq. ( 9 )  it follows that r , ( x ,  h) 
= I',(h) for x> h, that is, i t  only depends on the field. 
Noting that Eq. ( 9 )  for r , ( h )  coincides with the equation 
for r , ( x )  when H = O ,  let us utilize the result of Dzyalosh- 
inskiy and   ark in^']: 

The solution of Eq. ( 6 )  has the form 

and after the substitution of (11)  into Eq. ( 4 )  we obtain 
the final answer for the singular part of the generalized 
susceptibility x,,: 

~ 2 '  (T. ma) = IA-+(h)Ia 

4. THE GENERALIZED SUSCEPTIBILITIES Xcow, XTSI 
AND XSD w 

A situation completely analogous to the case con- 
sidered in Sec. 3 arises in connection with the evalua- 
tion of the singular part of xCDw(q) .  In actual fact 
xcDw(q) - x!k,Jq) takes the form of the collection of dia- 
grams shown in Flg. 4 where the i-th electron-hole in- 
tersection corresponds to a logarithmic integration 
within the limits from zero to a,,, where 

The singularity in x,,(q) with respect to the tempera- 
ture arises for q - 2 p F - * 2 w , / v F .  Choosing I ( q - 2 p F ) v ,  
- 2w,1 - T we have: z+ r: h, z ,  r: x  >> h, and all subsequent 
calculations repeat the calculation of x,,(k) in Sec. 3. 

The singular part of the susceptibility is given by 

(1'  
X C D ~ V  ( z .  h )  = j In-- (x, h )  IZdy, 

h 

where the amplitude 

, . . Pn ,En 9 "n 

FIG. 4. 

-...-*- 
Pt~-G'.~n.~n 
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and moreover"v31 

FIG. 5. 

The vertex part rl a r,,(plP2 1 p3p4) is taken for P1 - p4 
" pi ,  p2"4-  -4 which corresponds to 

The weak coupling regime is realized for gl > 0; I', 
and r, a r e  small due to the smallness of the bare cou- 
pling constants gi and g2 and the singular parts of all 
response functions x have power-law asymptotic forms 
II* with a small exponent y. I n  the limit of a weak 
field Gg,h>> 1) 

Constructing a parquet equation for r1 analogous to the 
one shown in Fig. 3 one can easily verify that for x> h 
the vertex I',(x, h) =r,(h) whereL1] 

From Eq. (14) we obtain the following result: 

and we arrive at the case H=O when the ground state of 
a one-dimensional system turns out to be of the type 
CDW o r  SDW if g4 < 0 and of the type SS o r  TS if 
g4>  0. "*=I 

The response function xT, is represented by a set  of 
diagrams analogous to those shown in Fig, 2, the only 
difference being that all of the lines joining the "bricks" 
correspond to the same projection of the spin. There- 
fore in x,,(k) the logarithmic singularities in the tem- 
perature arise for I k I vF - T<< w, and all intersections 
with regard to a pair of lines a r e  equivalent. The func- 
tion xCDW(q) is represented by graphs of the type shown 
in  Fig. 4 in which all of the solid lines correspond to the 
index a, and all of the dashed lines correspond to the 
index - o. The singularity in  xmW(q) exists for I q - 2pF I - 2pF l v, - T. 

As follows from Eqs. (10) and (16), for  gl > 0 the ver- 
tex function rl(h) increases with increasing field, but 
r2(h) decreases. In  this connection the domain of the 
states TS and SDW enlarges but the domain of the states 
SS and CDW shrinks. 

For I gl 1 h<< 1 the expressions for all x a r e  valid for  
any sign of gl. I n  this limit of a very strong field 

Let us present the final results for  the singular parts 
of XTS and X s ~ w :  

For simplicity, the phase diagrams describing the pos- 
sible symmetry of the ground state of the system in the 
case Igll h<< 1 is represented by two diagrams in Fig. 5. 

Formulas (22) can also be obtained in the model of 
Luther and ~ m e r ~ " ~ ]  if the constant U, describing the 
interaction between electrons with opposite spins a t  
small distances is set  equal to zero. Such processes 
a re  frozen out in strong fields. I t  is well known that for  
U, = 0 the Hamiltonian of Luther and E meryc121 reduces 
to two Hamiltonians of the Tomonaga-Luttinger type, 
describing collective excitations of density and spin with 
gapless spectra. The absence of a gap also indicates 
the weak coupling regime (22), which is realized in the 
limit of a strong field I g1 I h<< 1. 

5. THE PHASE DIAGRAM 
6. DISCUSSION OF THE RESULTS. IMPURITY 
ELECTRICAL RESISTIVITY 

Expressions (12) and (17) - (19) obtained in Secs. 3 
and 4 for  the generalized susceptibilities a r e  valid over 
the entire low temperature region T<< w,; however, they 
have a restricted range of applicability with regard to 
the magnitude of the field if gl < 0. I n  the latter case 
singularities appear in the vertex parts Fl and r, and 
in the amplitudes A, n, and a for 

As was shown above, in  a magnetic field H>> ~ / p  
there is a displacement of the positions of the singulari- 
ties in the one-dimensional response functions x,,(k) 
and xcDw(q). Owing to this property a phase transition 
into an inhomogeneous superconducting ~ t a t e ~ l ~ * ' ~ '  o r  
into a Peierls dielectric state with two density waves is 
possible in  principle in a quasi-one-dimensional metal 
placed in a sufficiently strong magnetic field. I t  is well 
known, however, C181 that the majority of quasi-one-di- 
mensional metallic systems undergo dielectric transi- 
tions a t  rather high temperatures: T, - 60 to 250 OK. 

H - H , a = ( h l p )  exp (-l/ 1 g, I), 

characterizing the onset of the strong coupling regime 
(H s&,). Therefore, for gl < 0 one can use formulas 
(12) and (17) - (19) in the region of fields H>> H,,. 
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In such systems the realization of the condition H L ~ , / p  
presents substantial experimental difficulties. 

Meanwhile substances exist whose metallic properties 
a r e  retained down to T- 1 OK and in which the strong 
field condition pH>> T may consequently be realized. 
The crystals (SN),C7*81 and HMTSF-TCNQ'~' a r e  such 
objects. Owing to the characteristics of their crystal- 
line structure, the transverse effects i n  these systems 
a r e  markedly weakened. This allows one to use the re- 
sults for a purely one-dimensional model in  order to de- 
scribe their low temperature properties. 

In crystals of (SN), and HMTSF-TCNQ a minimum of 
the resistivity is observed in the temperature range 30 
to 50 OK with i t s  subsequent increase upon a further 
lowering of the temperature, reminiscent of the Kondo 
effect in nonmagnetic metals containing magnetic im- 
purities. Such a behavior of the resistivity in  the indi- 
cated systems may be caused by the scattering of elec- 
trons on nonmagnetic impurity atoms, enhanced by one- 
dimensional correlations of the dielectric type. L17*181 

As is shown in  Refs. 17 and 18, in  the Born approxima- 
tion the electron's transport relaxation time, determined 
by impurity scattering processes involving a change of 
the momentum by 2#,, is given by the formula2' 

where l/rO =2cI u12/v, is the scattering probability in  the 
absence of any interaction between the electrons ( C  is 
the impurity concentration, u is the bare amplitude of 
the electron-impurity interaction), and n(x) is the elec- 
tron-hole amplitude evaluated in  the parquet approxima- 
t i ~ n [ ' * ~ ~  (see Eq. (15) with the replacement of h by x). 

As follows from formula (23), in the absence of a mag- 
netic field the impurity resistivity may increase with a 
lowering of the temperature in  two cases: (a) for g, > 0, 
g, > 0 and (b) for g, < 0. Case (a) corresponds to the 
weak coupling regime in which the resistivity slowly in- 
creases due to the smallness of the coupling constants 
g, and g,. The strong coupling regime in  which a more 
rapid increase of the resistivity occurs is realized in 
case (b). In  the temperature range T> Tco (Tco = pHco) 
we have 

The nature of the temperature dependence of the re-  
sistivity in (SN), and HMTSF-TCNQ~~*" apparently fa- 
vors case (b). Then i t  is reasonable to assume that the 
temperature of the parquet instability T, is below the 
temperature of the resistivity minimum T,, (precisely 
such a situation is realized in  Kondo systems where the 
Kondo temperature T,<< T,,,). In addition the smallness 
of T, may be one of the reasons for  the absence of a di- 
electric transition in  the indicated systems even in the 
region of low temperatures. The strong field condition 
pH>> Tco may be realized for values of Tco S 10 OK and i t  
is of interest to clarify the nature of the effect of such 
a field on the temperature dependence of the impurity 
resistivity. 

In a field H>> ~ / p  the relaxation time of an electron 

with spin projection 1/2 is determined by scattering 
processes involving a change of the momentum by 2pi. 
Constructing the parquet equation for the effective am- 
plitude of impurity scattering in  the region x>  h, we 
obtain: 

1 A -'A A - d a  a -r,m) 
=-(1+.1n-) To 0 0  ( )  (j) . 

I t  follows from formula (25) that a t  g,<O the applica- 
tion of a strong field H> H, will lead to a suppression of 
the temperature dependence (24). In  such fields the re- 
sistivity will vary according to the law 

and depending on the sign of l?,(h), pi, will either slow- 
ly increase ( r , (h)<  0) o r  slowly decrease (r,(h)>O) a s  
the temperature is lowered. I n  the last  case a weak 
maximum may be observed i n  the temperature depen- 
dence of the resistivity below T,,,. The conclusion about 
the suppression of the rapid increase in the resistivity 
by a magnetic field, reflecting the shift from the weak 
coupling regime to the strong coupling regime in fields 
H>Hco, is of interest  from the point of view of i t s  ex- 
perimental verification. 

In  conclusion the authors express their gratitude to 
E. I .  Kats and G. A. Kharadze for their interest in the 
work and for  helpful discussions. 

"1t is assumed everywhere below that in the absence of a mag- 
netic field the band is  not half filled and umklapp processes'i' 
do not play a role. 

"one can use formulas (23) and (25) for estimates of the im- 
purity resistivity if WT >>I and TT >>l where W is the energy 
of the electrons' transverse motion (W<<E,). The first of 
these conditions removes the question of Mott localization of 
the electrons in a single dimension and the second allows one 
to consider the single-impurity problem, neglecting the influ- 
ence of the impurities on the nature of the one-dimensional 
correlations between the electrons. 
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Angular dependence of the coefficient of specular reflection, 
of bismuth electron from the binary plane 

V. S. ~ s o i  and N. P. Tsoi 
Institute of Solid State Physics, USSR Academy of Sciences 
(Submitted February 4, 1977) 
Zh. Eksp. Teor. Fiz. 73, 289-298 (July 1977) 

We report further development of the method of determining the angular dependence of the coefficient q 
of specular reflection of electrons (V. S. Tsoi, Sov. Phys. JETP 41, 927, 1975) on the basis of focusing 
the electrons with a transverse homogeneous magnetic field (V. S. Tsoi, JETP Len. 19, 70, 1974). The 
angular dependence of q is determined for the reflection of the conduction electron of bismuth from a 
plane perpendicular to C,. 

PACS numbers: 72.15.Qm 

INTRODUCTION Current is passed through the emitter and the voltage U 
on the collector is measured a s  a function of the applied A method for determining the angular dependence of 
magnetic field H. the specular reflection coefficient q was developed inc'' 

on the basis of electron focusing (EF) in  metals by a 
transverse uniform magnetic field. Also investigated 
was the dependence of q of bismuth electrons on the in- 
cidence angle 0 in the case of reflection from the tri- 
gonal plane (plane perpendicular to G), and i t  was es-  
tablished that electron reflection from a perfect surface 
is practically specular (q= 0.8 at normal incidence). 
Even though an insignificant deviation (- 5%) from the 
optimally chosen q(0) dependence leads to a noticeable 
discrepancy with the experimental data, the small  range 
of variation of q(0.8-1.0) does not make i t  possible to 
establish with high accuracy the analytic form of the 
q(0) dependence. The absence of a theoretical calcula- 

The samples were single-crystal bismuth disks of 
10 mm diam and 2 mm thickness, with a specified crys- 
tallographic orientation, grown in a polished dismount- 
able quartz mold. The sample was cut from the seed 
crystal i n  such a way that a stub 5-10 mm long was left 
on the disk. The measurements were made on samples 
with two crystallographic orientations: 1) C3 ( 1  n and 2) 
G ( 1  n (n is the normal to the sample surface). 

The construction of the measuring head is shown in  
Fig. 1. Sample 1 was placed on a copper disk 2, which 
was mounted on a rotating copper table 3 placed on 
needle supports 4. The sample was glued to the &sk 

tion of q(0) for arbitrary 0 permits a large leeway in  the 
choice of the analytic form of q(0). 

In  this communication we develop further the method 
ofc1' for the measurement of q(0) and measure the func- g 

tion q(0) for bismuth electrons reflected from the binary * 
plane (plane perpendicular to G), from which normally 8 
incident electrons a r e  reflected practically diffusely FIG 1 Diagram of measurement 
(q= 0.13). head. 

f 

EXPERIMENT 

The experimental setup for the observation of the E F  
is the following. TWO pinpoints a r e  placed on a single- 
crystal metallic sample--an emitter and a collector. 
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