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The van der Waals interaction between two macroscopic bodies (metals or dielectrics) is calculated. 
Nonlocality effects due to spatial dispersion of the permittivity or to inhomogeneity of the fluctuation field 
at characteristic distances of the order of the electron mean free path (anomalous skin effect) are taken 
into account. A similar analysis is carried out for cholesteric liquid crystals. A relation is found between 
the cholesteric-helix pitch and the molecular optical activity. 
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I. INTRODUCTION 

In recent years, numerous attempts have been made 
to generalize the macroscopic theory of van der  Waals 
forcesL1] to include a system with nonlocal dielectric 
properties (see, for example, the work of Chan and 
~ichmond"'; there is also a detailed bibliography on this 
subject in the review of Barash and ~ i n z b u r g ~ ~ ] ) .  How- 
ever, in most cases, these generalizations were carried 
out with a patent exaggeration of the accuracy, o r  else 
the final formulas were used outside the range of appli- 
cability of the initial expansions of the permittivity ten- 
sor  (for more detail, see  below). In order  to make this 
clear, we briefly recall the method of calculation of the 
van der Waals contribution to the f ree  energy of a mac- 
roscopic body. 

The radiation Green's function in a medium satisfies 
the Dyson equation (see Fig. 1, where the shaded loop 
is the polarization operator II,, and the thin dashed line 
is the radiation Green's function in a vacuum). Upon 
complete neglect of the nonlocality, the polarization 
operator is expressed directly in terms of the permit- 
tivity ciA. In this approximation, al l  diagrams of the 
type shown in Fig. 2 a r e  assumed to be unimportant. 
The smallness of these nonlocal contributions to the 
radiation Green's function is determined by the ratio 
of the characteristic interatomic distance a to the char- 
acteristic electromagnetic wavelength A. However, ac- 
count of nonlocality due to spatial dispersion corre- 
sponds to account of corrections -a/X (in a gyrotropic 
medium) o r  (a/X)2 (in a nongyrotropic one) in  the per- 
mittivity tensor. Therefore the simple replacement of 
Hi ,(r1, r2)m &ir(ri) 6 (rl - r2)  by the corresponding non- 
local function (with account of spatial dispersion) 
&,,(rl, r2)  is a patent exaggeration of the accuracy. This 
replacement does not take into account some of the 
terms of order (a/X)2. Thus, the problem of the calcu- 
lation of the van der Waals contribution to the f ree  en- 
ergy of systems with nonlocal dielectric properties re-  
quires a concrete consideration of each given system. 
In  certain cases, for example, collionless plasma, Is] 

the simple substitution mentioned above is legitimate. 

geneous system, but only in the force of interaction of 
two macroscopic bodies (the s t r e s s  tensor). The basic 
physical characteristic by which the van der Waals 
force is determined in  this case is the reflection coeffi- 
cient of electromagnetic waves from the surface of the 
body. Knowing the reflection coefficient, for example 
from optical experiments, we can in principle calculate 
the van der  Waals force of the interaction. 

One more circumstance should be noted. The effects 
of spatial dispersion a r e  always small. Therefore, the 
consideration of physical problems with account of non- 
locality i s  valid only when we a r e  talking about new phe- 
nomena, which would not exist without account, for ex- 
ample, of spatial dispersion, and not about the calcula- 
tion of small corrections to the usual formulas. In the 
present work, the new effect, absent in local systems, 
is the possibility of a nonmonotonic dependence of the 
force on the characteristic parameters of the problem 
(the distance between the bodies or the magnetic field). 

In the third part  of the work, we consider the interac- 
tion between metallic plates located in a vacuum o r  an 
arbitrary nondispersive medium. The reflection coeffi- 
cient is determined by the surface impedance of the 
plates. In  the presence of an external magnetic field, 
the value of the impedance, together with the value of the 
van der Waals force, depends on the field in nonmono- 
tonic fashion. These corrections a r e  important only a t  
distances that a r e  large in comparison with the charac- 
teristic wavelength in the spectrum of the bodies, d>> A,, 
(for more detail, see Ref. 1). At small distances, i t  is 
necessary to take into account the dependence of the sur- 
face impedance on the components of the wave vector in 
a direction q parallel to the surface. This range d<< X, 
corresponds to large wave vectors q>> K1. Here the 
expansion of the permittivity in powers of q, used, for 
example, by Chan and Richmond, becomes invalid. 
At q>> $I, the problem can be analyzed only by using a 
model. We shall discuss this question very briefly. 

In the fourth part, we consider the interaction between 
two dielectric plates separated by a vacuum. With al- 

Another example - cholesteric liquid crystals -will be 
considered in the second section of the present work. 

Much further progress can be made if we a r e  inter- --+--*---+... 
ested not in the total van der  Waals energy of an inhomo- FIG. 1. 
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lowance for spatial dispersion, the reflection coefficient 
is determined with the help of additional boundary con- 
ditions. [" We shall assume for concreteness that there 
is only a single dipole resonance, near which the spatial 
dispersion is significant (in the presence of several 
resonances, the corresponding contributions should be 
simply summed). The contribution to the force due to 
spatial dispersion exists only in a narrow range of dis- 
tances (corresponding to the frequency width of the di- 
pole resonance). The possibility of nonmonotonic de- 
pendence of the force on the distance is connected with 
this fact. 

The final section of the work is devoted to estimates 
and means of experimental observation of the considered 
effects. 

2. HELIX PITCH IN  CHOLESTERIC LIQUID 
CRYSTALS 

As is well known, [51 the appearance of a helix in the 
phenomenological theory of cholesteric liquid crystals, 
i. e., a component Qon, curl  n that is linear in the gra- 
dient of the director n, is connected with the absence of 
a center of inversion, i. e., molecular optical activity. 
I t  is natural to attempt to obtain a relation between these 
quantities. Dzyaloshinskii, Dmitriev and the authorc8' 
have shown that the van der Waals forces make a sig- 
nificant contribution to the elastic modulus of a nematic 
liquid crystal. I t  should therefore be expected that the 
van der Waals contribution will correctly determine 
also the value of the linear component Qo. 

I t  is therefore necessary to calculate the van der 
Waals energy with account of spatial dispersion. The 
difficulty mentioned in the Introduction does not allow us  
to carry  out such calculations in  general form. How- 
ever, the case of cholesteric liquid crystals (and of 
gyrotropic media in general has certain singularities 
that facilitate the problem. Namely, if we calculate the 
correction to the radiation Green's function by perturba- 
tion theory in a/A, then by virtue of symmetry condi- 
tions the first  correction (of the type of the diagram 
shown in Fig. 2) will be of order Therefore, if 
we a r e  interested only in components of order a/A, then 
we can make the already mentioned simple substitution 
in the formula for II,,. 

Thus we have the following equation for the Green's 
function of the electric field with account of spatial dis- 
persion: 

02j E , ~  (r. r-r")D,,(r", r')d3f' + rot,, rotmlD,,(r. r') =4n026 (r-r') 6,,., 

(1 

The written-out argument of the permittivity takes into 
account both the inhomogeneity of the state and the spa- 
tial dispersion. I t  is convenient to separate the com- 
ponents that a r e  inhomogeneous in the orientations of the 
director: 

where 

Nvnr(r) =nm (r)nl(r).  

Assuming that the anisotropic components E;, a r e  small  
in comparison with cfl, we can calculate Dik by pertur- 
bation theory. Then, a s  before, Is' we can find also the 
van der Waals energy i n  the necessary approximation. 
But, this calls  for knowledge of the explicit forms of 
~ ! ~ ( r  - rl ') and &;,(r - r"). 

For a gyrotropic medium, a s  is known, [ I3  components 
with f i rs t  derivatives of the field with respect to the co- 
ordinates a r e  taken into account in the permittivity ten- 
sor. Transforming to Fourier components we can 
write 

The Onsager relations require only the antisymmetry of 
y,,, in the f i rs t  two indices. To specify things more 
concretely, i t  is convenient to introduce the dual tensor 
of second rank: 

(e,, is a completely antisymmetric unit tensor). Both 
the characteristic optical activity, i. e., the interaction 
of the molecular electric and magnetic dipoles, and the 
interaction of the electric quadrupole and dipole make 
contributions to the value of g,,. 

We begin with consideration of the gas approximation: 
a weak solution of optically active molecules. The sym- 
metry of the corresponding molecular quantities can 
easily be determined in each specific case (see Ref. 7). 
For example, for molecules of symmetry C,, 

where the subscripts refer to the molecular system of 
coordinates. We note also, for comparison, the sym- 
metry S,: 

After this, the molecular tensors g,, should be averaged 
over the orientation of the molecules. Thus, for a cho- 
lesteric liquid crystal, i t  is simply necessary to trans- 
form to the laboratory system of coordinates by means 
of the corresponding Euler angles (a, P, y), such that 
( cosu ) = 0 (absence of biaxiality), P = qoz (cholesteric 
order, go =pitch of the helix), Y =n/2. Thus, we obtain 
in the symmetry C, 

where 

go=&. ga=g!l-gl. 
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FIG. 3 

Similar averaging for the symmetry S4 gives gt,=O. 
Of course, i t  should be kept in  mind that all the conclu- 
sions reached above apply only to weak solutions of op- 
tically active molecules in a nongyrotropic medium. 
However, i t  is clear from symmetry considerations that 
formula (8) will be valid in any gyrotropic uniaxial me- 
dium (the quantities go and ga i n  the general case must 
be simply regarded a s  certain phenomenological param- 
eters). So far  a s  the assertion that g i , = O  for the sym- 
metry of the type S4 is concerned, i t  is applicable only 
to dilute solutions and can change when account is taken 
of the interaction. 

Thus, we shall use the relation (8). With account of 
(4) and (5), we have 

The subsequent analysis basically duplicates the calcu- 
lations made previouslycs'; therefore, we shall give only 
the fundamental results. 

The Green's function of zeroth order in the inhomo- 
geneity, accurate to a/A, is of the form 

The van der Waals energy in this approximation is 

Substituting (10) in (11) and limiting ourselves only to 
the linear term, we obtain 

I t  should be noted that in obtaining (12), we discard 
quantities -&,, which a r e  known to be smaller, and also 
terms that reduce to the surface energy, for example, 

The pitch of the helix qo is obtained from (12) by divi- 
sion by the Frank modulus K2,. If we use the expression 
found previouslyCB1 for the van der Waals contribution to 
Kz2, we then have 

We also note that, a s  usual, al l  the quantities in (12) and 

(13) a r e  calculated a t  an imaginary value of the fre- 
quenc y. 

3. VAN DER WAALS INTERACTION BETWEEN 
METALS 

We shall consider in this section only the simplest 
case of two identical metallic plates, separated by a 
vacuum gap of thickness d .  The geometry of the prob- 
lem is shown in  Fig. 3. As Barash and Ginzburg 
pointed out, the problem reduces to the determination 
of the dispersion law for surface electromagnetic waves 
in such a layered system. Let At be the amplitudes of 
waves propagating in  the positive and negative directions 
of the z axis. The index a denotes the polarization of 
the wave and takes on two values, corresponding to 
orientation of the electric field in  the wave perpendicu- 
l a r  (a = 1) and parallel (a = 2) to the plane of incidence 
(xz). Introducing the reflection coefficient R,, we ob- 
viously have for plane waves into which the field is re- 
solved (k is the component of the wave vector in the 
direction perpendicular to the surface, w is the fre- 
quency of the wave. We have chosen the x axis along 
the wave vector q), 

for  the upper plate and 

for the lower plate. 

By virtue of the identity of the plates and the com- 
plete homogeneity of the surface in the horizontal direc- 
tion, .we obtain hence the dispersion law of the surface 
waves: 

Using (14), we can determine (according to the argu- 
ment (phase) principle of complex variable theory) the 
part  of the energy which depends on the distance be- 
tween the plates, and, along with this, the van der 
Waals force. The calculations a r e  in complete analogy 
with those of Barash and Ginzburg, "I and we therefore 
write out the result immediately: 

This  formula can easily be generalized to the case in 
which the dielectric properties a r e  anisotropic (the cor- 
responding calculations can be found in Ref. 6). 

As is well known, in the case of metallic plates, the 
electromagnetic wave outside the plates is entirely de- 
termined by the surface impedance t(w). Here, 

The region of large distances d>> X, corresponds in the 
integrals (15) to the relation w >> q. Therefore, in  this 

1 1 1  Sov. Phys. JETP &(I), July 1977 E. I. Kats 1 1  1 



region, 4= &= (1 - l ; )  (1 + 5)". Since 5<< 1 in good con- 
ductors, we can expand (16) in powers of the impedance 
and limit ourselves to the linear components. We thus 
obtain the additional van der Waals force relative to  
ideally conducting plates (5 = 0): 

The nonlocality manifests itself in the conditions of 
the anomalous skin effect. The expression for the sur-  
face impedance under these conditions is well known 
(see, for example, the book of ~brikosov'"). In the iso- 
tropic case, for specular reflection of the electrons from 
the surface 

(A is the f ree  path length of the electrons, uo is the 
static conductivity; we use the system ti= c = 1 through- 
out). Substituting (18) in (17), we find 

where the constant is determined by the integral over 
the frequencies and does not depend on any of the physi- 
cal  parameters of the system. The basic local contribu- 
tion a t  d>> A,, is equal to 

Therefore AF<< Fo (at d -  cm, we have AFIF, - lo-'). 
However the nonlocal contribution AF can be separated 
on the basis of i t s  characteristic dependence on the ap- 
plied external magnetic field H. The corresponding 
formulas a r e  well known, and we shall not give them 
here. We only make note of the possibility of nonmono- 
tonic dependence on Hand on the distance between the 
plates. 

At d<< A,,, i t  is necessary to take into account the de- 
pendence of the impedance on the wave vector q, since 
q>> w in this region. A more general consideration is 
not possible here, since the nonlocal effects depend on 
the specific form of the permittivity. Moreover, a t  
q>> w, the expansion of the permittivity in  powers of q 
is invalid. Therefore, the consideration of the region 
of small distances d<< X, must of necessity be based on 
a model. For a semi-infinite f ree  electron gas i t  is 
easy to obtain 

where Q' = q2 + k2, C, and E, a r e  the longitudinal and 
transverse components of the permittivity tensor: 

In the absence of spatial dispersion, E ,  and &, do not de- 
pend on Q and we get the usual relation from (21) (at 
w >> q) for a nonmagnetic medium 1- ~ ' l ' ~ .  As has al- 

ready been noted, for the calculation of the van der  
Waals force in this case i t  is necessary to specify con- 
cretely the dependence of &, and &, on the wave vector 
Q. However, such a model-based analysis is outside 
the scope of this paper. 

4. VAN DER WAALS INTERACTION BETWEEN 
DIELECTRICS 

In the case of a dielectric, the reflection coefficient 
cannot be expressed merely in terms of the surface 
impedance. Therefore, i t  is necessary to use the gen- 
era l  formula for the van der  Waals force (15) and deter- 
mine the reflection coefficient separately. 

There exist several approaches to the problem of the 
calculation of R,. I t  is possible, for  example, to deter- 
mine the permittivity ~ ( q ,  w, z, z') of a semiinfinite sys- 
tem from a simultaneous solution of the equation of mo- 
tion for the polarization and the inhomogeneous Maxwell 
equations. Instead of this, we can use with the same 
accuracy, the permittivity of an unbounded system 
&(Q, w) but write additional boundary conditions corre- 
sponding to the possibility of the appearance of new 
waves in the vicinity of the resonance w,. 

Far from the resonance, we obtain the usual Fresnel 
formulas and the usual expression for the van der Waals 
force a t  large distances d>> A,,: Fo =const d-'. The 
general expression for F with account of spatial disper- 
sion is very complicated (it is obtained by substitution 
of R, and 4 i n  our formula (15)), and we shall not write 
i t  out. Actually, however, the spatial dispersion is im- 
portant only in the immediate vicinity of resonance and 
therefore only those frequencies in the vicinity of r e -  
sonance and therefore only those frequencies in the 
vicinity of resonance enter in the increment A F  to the 
force. Corresponding to this circumstance, the incre- 
ment connected with spatial dispersion differs from zero 
only in a narrow region of distances d -  l /w ,  >> A,,. I t  
turns out here that 

cos 8- (n:-sin2 8)'" 4nr 
AR,=ARz = 

cos 8 f  (n:-sinz8)'" nz(l-n,') ' 

AR,, A& a r e  the increments to the Fresnel formulas 
due to spatial dispersion in the vicinity of resonance; 
q, n, a r e  the indices of refraction of the two normal 
waves (see Ref. 4); I' is a coefficient determining the 
additional boundary condition; cos 8 = (1 - q2/w2)lf2. 

Substituting (23) in  (1 5) and expanding in terms of 
AR, and A&, we obtain the formula 

which is valid only in the vicinity of resonance. Here 
we shall not touch a t  all on the region of small distances, 
since in this case, the basic contribution to the integrals 
(15) is made by large wave vectors, for which the expan- 
sion of c i ,  is invalid. 

I t  is easy to carry  out a similar analysis for gyro- 
tropic crystals. We note that the gyrotropy coefficient 
enters in the answers in  the second degree, which is in 
agreement with the general resultsL4' that the effect of 
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gyrotropy appears in the linear approximation only in 
polarization characteristics. 

5. CONCLUSION 

The effects considered in the present work a r e  small. 
Moreover, they appear a t  d>> A,,, when the basic local 
part  of the van der Waals force is already small. There- 
fore, the only possibility of observation of the results  
a r e  qualitative singularities associated with the nonmono- 
tonic dependences. We note here  that, in addition to the 
nonmonotonic sources mentioned (the external magnetic 
field in metals and the presence of an isolated resonance 
in dielectrics), other reasons a r e  possible. For ex- 
ample, in multilayered coatings in  the vicinity of reso- 
nance, an oscillating dependence of the reflection coef- 
ficient of electromagnetic waves on the coating thickness 
is possible. 14' Numerous oscillating size effects can 
occur in metals in a magnetic field. 

We now discuss the possibility of experimental obser- 
vation of the effects that have been proposed. Contem- 
porary precision measurements of the force of interac- 
tion between two platescg1 allow us to detefmine the 
van der Waals force a t  distances - 5x 103 A. On the 
other hand, effects associated with the anomalous skin 
effect appear a t  frequencies o 2 1015 sec". Corre- 
spondingly, a t  distances of lo2 - lo3 A, the nonlocal 
correction (19) has a value within the limits of experi- 
mental accuracy. Of course, the complicated problem 
of the technical realization of the conditions of the anom- 
alous skin effect (low temperatures) still remains. Pe r -  
haps, therefore, a more suitable object for observation 
of the considered effects would be helium films on a 
solid surface. As is well known, the size-dependent 
"van der Waals" part of the chemical potential of the 
film (per unit volume) is identical with the force of inter- 
action between the surfaces. Equating the chemical 
potential of the film to the chemical potential of the 
vapor that is in  equilibrium with the film a t  the given 
pressure, we can determine the equilibrium thickness 
of the film. The nonlocal effects will appear in the non- 
monotonic dependence of the film thickness on the ex- 
ternal parameters. Moreover, the nonmonotonic de- 
pendence F(d) can leadc'' to instability of the film in a 
certain thickness range o r  to the presence of a finite 
wetting angle (but very small in contrast with the usual 
case of nonwettability). The corresponding effects ap- 
pear, however, in the range of thicknesses a 200 A and 
a r e  a t  the borderline of modern experimental accuracy. 

Formally, the case of dielectrics is very favorable 
for experimental test, since AF contains the distance 
raised to a lower power than Fo. However, for the 
presence of a nonmonotonic dependence, the coefficient 
of the additional boundary condition should have a suf- 
ficient value r / w ,  2 1. Unfortunately, a t  the present 
time, there a re  no experimental data on the value of r. 
A more detailed theoretical discussion of the quantity 
r can be carried out only within the framework of a 
microscopic model, which takes us outside the scope of 
the present research. The problem of the value and 
possibilities of measurement of r is considered by 
Arganovich and Ginzburg. 14] 

We also note that a general account of nonlocality due 
to the anomalous skin effect in a medium filling the in- 
termediate space between the interacting bodies is pos- 
sible. We consider, fo r  example, the interaction of two 
identical metals, divided by liquid layers of another 
metal. As was shown, "I in the local approximation, the 
van de r  Waals force changes from the law a t  
d<< A,, to the law F-d'5 (at d>> A,,), which is connected 
with the normal skin effect. However, in this same re- 
gion d>> %, the anomalous skin effect can also be sub- 
stantial. Using the expression (6) and the general theory 
of van der Waals forces, ['I we have in  this region 
F- d*. 

Thus, a general analysis is possible for  the given 
case because the difficulty mentioned in the Introduction 
refers  only to the nonlocality associated with the small- 
ness of a/X, while under the conditions of the anomalous 
skin effect the nonlocality is determined by the ratio of 
the characteristic inhomogeneity of the electric field and 
the f ree  path length of the electrons. The transition 
from the law d'5 to the law d" takes place at distances 
determined only by the static conductivity of the liquid- 
metal layer. 

So fa r  a s  the formula for the pitch of the cholesteric 
helix is concerned, direct calculation of q,, according to 
(12), for example, is difficult. However, the quantity 
go can in principle be determined by optical methods. 
For example, go shifts the frequencies a t  which selec- 
tive reflection of light in cholesteric liquid crystals 
takes place. A rough estimate (E ,  - 0.1, go - lo+, 
K2,- lo'= erg/cm) gives go- lo5 cm", which agrees with 
the experimentally observed periods of the cholesteric 
liquid crystals. 

The author thanks I. E. ~ z ~ a l o s h i n s k i i  for  useful 
discussion of the research and also D. E. Khmel'nitsk; 
who called his attention to a number of questions con- 
sidered in the second part. 
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