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It is shown that spatially localized plasma waves that do not increase with time are produced in a spatially 
inhomogeneous plasma in the vicinity of the region where a pump wave decays into two plasmons. A 
theory of the stationary fluctuations of these spatially localized waves is formulated. The fluctuations are 
shown to undergo a critical growth when the instability threshold is approached. A collision integral that 
takes into account the influence of the localized plasma waves is obtained. 

PACS numbers: 52.35.-g 

A number of recent s t ~ d i e s ~ ' - ~ '  have demonstrated a 
qualitative peculiarity of parametric resonance in a 
spatially inhomogeneous plasma, namely, it was shown 
that instabilities localized in a finite region of the in- 
homogeneous plasma can develop in the plasma. I t  must 
be assumed at the same time that the appearance of 
spatially localized plasma perturbations under the in- 
fluence of a pump field is a rather common phenomenon 
that can take place in a stable plasma. 

In this paper we investigate the conditions under which 
such waves a r e  spatially localized in the case of an in- 
homogeneous plasma in which a pump wave decays into 
two high-frequency electron waves, henceforth dubbed 
plasmons. 

In Sec. 1 we consider the dispersion properties of the 
plasmons and the region of their localization. It is 
shown that plashon localization is possible at a pump- 
wave amplitude lower than the threshold obtained ints1 
for plasma instability relative to two-plasmon decay. 

In Sec. 2, following the method ~ f ' ~ ' ~ ' ,  we formulate 
a theory for stationary fluctuations of plasmons local- 
ized in a parametrically stable plasma." As a conse- 
quence of the developed theory, we determine in Secs. 
3 and 4 the energy of the thermal fluctuations of the 
plasmons and obtain the collision integral of a non-uni- 
form plasma with allowance for its dynamic polariza- 
tion. 

1. In a non-uniform plasma, the electron Langmuir 
perturbations (plasmons) that a r e  parametrically ex- 
cited by a pump wave 

' d 
E. ( z ,  t) = E0 ( m o t  - J ko (z) d z )  , Bz (z. t) =-c J dt' - Ev (2, t') 

- m 
az 

(1) 

are localized on the profile in the vicinity of a point x, 
at which the plasma density is equal to one-quarter the 
critical density, i. e. , wLe(x,,) = wO/2, where w,, is the 
electron Langmuir frequency. The dimension of the 
localization region is determined by the amplitude Eo of 
the pump wave. Under conditions when the plasma is 
not uniform along the xaxis, this region is bounded by 
the branch points x, of the plasmon wave vector; the 
formula for  these points is 

Here r~ is the Debye radius of the electron, rE = eE,,/ 
mu, is the amplitude of the electron oscillations in the 
electric field of the pump wave, 7 is the plasmon damp- 
ing decrement, and k ,  is the projection of the plasmon 
wave vector on the y axis (it will be assumed for sim- 
plicity that the vector k lies in the xy plane). It is as- 
sumed that the plasma density profile depends linearly 
on the coordinate x, with a characteristic inhomogeneity 
length L,, i. e., 
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In addition, since the localization region of the plasma 
perturbations is small in comparison with LN, the vari- 
ation of the wave vector ko(x) inside the localization re- 
gion will be neglected. Therefore, both in formula (2) 
and everywhere below we shall take ko(x) a t  the point x 
= x,. 

Action of the pump wave (1) on the plasma excites the 
parametrically coupled plasmons with frequencies w 
and w, - W. In formula (2) we assume for the plasmon 
frequency the value w = wd2 + 6 w + iy(6 w << w,), where 
the correction 6w and the imaginary part of the frequen- 
cy y are  determined by the dispersion equation (seecs1) 

Here cp(q) = K(q) + q-'[~(q)-~(q)], where K and E a re  com- 
plete elliptic integrals of the first  and second kind of 
the argument 

Let cp = cpl + iq,, where p1 and pz a re  real functions. 
We then get from (3) 

It follows from (4) that the imaginary part of the func- 
tion q(q) is due to the difference 6 ~ / w , - ~ k , k , r ~ .  US- 
ing, for example, the expansions of the functions K(q) 
and E(q) in powers of q, we can represent the functions 
q, in the form 

( p z = [ 6 ~ / o o - ~ / r k , k ~ r ~ " @  (Re q. Im q) ,  

where +(Req, Imq) is a certain known analytic function 
of Reg and Imq. For examples, under conditions when 
I ql << 1, 

whereas at I ql = 1 we have 

Substituting the function q2 in (5) we find that the latter 
has a solution such that the non-uniformity of the plasma 
does not influence the correction 6 w, which is then given 
by 

For this solution we have accordingly q, = 0. 

The equation y= 0 defines the limiting value of the 
pump amplitude, above which perturbation with a given 
wave number k, can build up in the plasma: 

This equation was obtained incs1, where it was shown 
that the excitation of the instability due to the two-plas- 
mon decay has a threshold in a non-uniform plasma. 

The dimension Ax= Re(x+-x,) of the localization region 
is given according to (2) by 

When the dispersion equation (3) is taken into account, 
this expression becomes 

To determine the conditions under which the plasmons 
are  localized, we turn to formula (6). Assuming that 
ko%w0> I y +  $4, we can rewrite this formula in the form 

(2n+l )n  
y=-v+korEoo exp - 

ly+v1 
{ 1 + 4 - ) I .  [ 41k,ILNkorE wokorE 

From this we get in the zeroth approximation in the pa- 
rameter l y + 71 w;l'k:ri1 << l 

y=-v+ korEoo exp{- (2n+1) n/4 I k, I ~ , k , r , ) .  (11) 

Formula (11) is valid i f  

rE<ro-- (2n+I) ni4 1 k,(L,k,. 

It follows from (10) that 7 + y > 0 at small values of the 
amplitude. Therefore, according to (6) ,  

Thus, the difference under the radical sign in (9) is 
positive, i. e. , localization is possible. Accordingly at  
low pump-wave field intensities, when YE << r,,, we have 
for the localization interval Ax 

The results described here a re  valid if (kt+ k:)ri < 1. 
This condition imposes a lower bound on the possible 
pump wave amplitudes. In fact, since the wave number 
k,(x) and the localization dimension a re  connected by the 
relation k,(x)Ax- n, it follows that k,(x) increases with 
decreasing x. Therefore the inequality k,rD < 1 leads to 
nrD < Ax. Hence, taking (13) into account, we obtain the 
following lower bound of the pump-wave amplitude: 

It follows from (13) that the localization interval Ax(k,) 
increases with decreasing wave number k,. The maxi- 
mum value of Ax is therefore reached & the minimal 
value k, = k,,,. The value of k,,, is determined from 
the conditions of applicability of geometric optics 
(seec3'): k,,,,,, = ( 2 k o ~ E ~ N ) " .  At these values of k,,, we 
have ro = (lr/2)(2n+l)rE and consequently, the condition 
rE<< ro for the validity of (13) is satisfied. At this val- 
ue k,,, formula (13) yields the maximum dimension of 
the localization interval (Ax),, = 2k0r&, . 

2. To develop a theory for fluctuations in a non-uni- 
form plasma acted upon by the pump wave (I), we use 
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the method of microscopic phase densities. C516' We then 
have for the perturbations 6N(r, p, t) and 6q(r, t )  of the 
microscopic phase density and of the electric field po- 
tential, respectively, the following system of self-con- 
sistent equations2': 

~ 6 c p = - 4 n e j  dp 6N ( I ,  p, t ) ,  (16) 

where No(x) is the plasma density in the ground state 
and q0 is the potential of the electric field due to the 
plasma charge inhomogeneity in the ground state. 

We take the Fourier transform with respect to the 
variable rL perpendicular to the x axis: 

and introduce new functions, which correspond to a 
transition to a local coordinate system that oscillates 
together with the plasma electrons: 

( k ,  x, t )  =6cp(k,  x, t ) e X P { i k Y ~  J dt' dl" E. ( z ,  t") ), 
-' -cs 

I 1' 

=6N (k,, z, p, t )  exp { ikv  j dtn dtt1 Ev ( x ,  tf') ) . 
-' -- 

where e and rn are the charge and mass of the electron. 

For a monochromatic time dependence of the pump 
wave, it is expedient to expand the functions @ and cp in 
Fourier series 

+ ' 
Y ( k ,  x, p, t )  = C e-'""dYY,(k, x, p, t ) .  

"--' 
- - -- - 

Since we are interested in conditions under which the 
pump wave can break up into two plasmons, we retain, 
followingC"l, only the terms n = 0 and n = - 1 in the sums 
of (17). Then, taking the Laplace transform with re- 
spect to time (A > 0) 

we obtain for the amplitudes a. and the following 
system of equations from (15) and (16): 

where Qo(kL, x, p, 0) and x, p, 0) are  the initial val- 
ues of the harmonics of the perturbation of the micro- 
scopic phase density, and 

where k = (kL, - id/&), and F,(p) i s  the distribution func- 
tion of the eleztrons in the ground state. The action of 
the operator L(- id/dx) on the function that follows it in 
(18) and (19) is defined by the rule 

i h  (r) = 5 dg eiqrL ( q )  h ( q )  , 

where h(q) i s  the Fourier component of the function h(r). 

The system of equations (18) and (19) differs from 
that investigated ints1 in that i t  possesses right-hand 
sides that take into account the initial perturbations of 
the microscopic phase density. We eliminate the ampli- 
tude from (18) and (19), and obtain as a result for 
the amplitude a. the equation 

In the derivation of (21) we made use of the circumstance 
that inside the localization region, as shown incs3, the 
projection k,(x) of the wave vector on the x axis differs 
little from kL. We have therefore made in (20) the sub- 
stitution &, - &,. 

In addition to (21), we use also the homogeneous equa- 
tion 

d'G 2kLz [1 -4  
k:ko'r,c' -- dZG - + kLLG=0. 

dz' kLZe , (a )e , (a -w)  1 
The solutions of this equation comprise an orthonormal 
system of functions (G,(x)} corresponding to localized 
plasma perturbations. The classical asymptotic form 
of these functions is 

where 

- - k,'kozra' 
k,, = & { l p + l +  l p - l ) .  p=1-4 

1 2  kL2e ( a )  e (a-COO) ' 

with w = wd2 + 6 w + iy, where 6w and y are respectively 
the correction to the frequency and the d damping decre- 
ment, defined by formulas (7) and (6). 

To construct a theory of the fluctuations of localized 
plasma perturbations, we expand the amplitudes 
X (k,, x, w) and the initial perturbations iPo, X, p, 0) 
in series in the system of functions {G,,(x)): 
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We then obtain for the coefficient @k'(kL, k,, w), in ac- 
cord with (21), the expression 

where 
Dm(@) =E (a) -4k..'k,'k,-'k,LrBze-' (o-oo) , k.=k., (z)&+kI. (23) 

The formula for the coefficient @$'(k,, k,, w) is obtained 
in similar fashion and is 

02' ( k ,  k., o )  . . 

- 4nei --- "'"' { j d p  Y !:) (k,, kzn, p, 0 )  
k,'D,(o) ~ ( o - o ~ )  a-oG-knv+iA 

+ 2 
k,"k, I 

k.'~ (o-oo) "" lap a-k,,v+iA 
Y:" (k,, k...p,o) 1. (24) 

To calculate the equal-time correlation function (cp 
X (kL, x, t)cp(k:, x', t')), we introduce a spectral function 
(dx)rp (xl))tL, ,, defined by 

We assume that the functions (@,(x)@,.(x'))~,,,~,, which 
are the coefficients of the expansion 

depend only on the difference t- t'. This means that to 
calculate the spectral functions we can follow the ap- 
proach ofCS1, where use was made of the stationary- 
theory formula 

(2n)'6(k,-k,') (D. ( x )  @,- (t')) r,.. = lim 2A(D, (k,, x, o) Q,.'(k,', z', o )  ). 
A-0 

For the expansion of the perturbation potential in the 
functions Gn(x) we obtain accordingly 

According to the formula 

the equal-time correlations of the perturbations of the 
microscopic phase densities are connected with the sin- 
gle-particle distribution function f @) and with the corre- 
lation function g(r, r', p, p', t, t'). In the coordinate sys- 
tem that oscillates together with the electrons, formula 
(26) takes the form 

(Y ( k ,  x, P,  t )  Y ' ( k l r l  x', p', 1 ) )  =(2n)'6 (k,-k,') 
(27) 

x [6 (x-xf)6(p-p')F(z, P, t )  +G(k,, k,', 2, x', p, p', t ,  t )  1, 

where 
. . 

g(k,, k,', x, xP,p, pr, t, t ' )  = exp { -ik" J dtf j dtfJ Ev (x, t") -- -- 1 

Using formula (17), and also the expansion 

= C G I " , ~ )  (L,, k r f ,  x, X I ,  p, pr, t, t f )  exp {-inmot-irnoot3), 
a,." 

we get according to (27) 

i aFe 
= (2n) '6 (k,-k,') {T kor&(z-xr ) 6 (p-pr)pq - 

~ P Z  

+G(',-') (k,. k,', x, x'. p, p', 0 )  } , 
(Y- ,  (k,, x, p, 0 )  Yo ' ( kL1 ,  z', p'. 0 )  ) 

+ C G'"'") (k,, kLr,x, X I ,  p, pf, 0) 1. 
To find the spectral functions (@j"'@y')tL,,, we sub- 

stitute in (25) the expressions (22) and (24) for the coef- 
ficients of the expansion of the plasmon amplitudes, and 
use the results (28) of the averaging over the statistical 
ensemble. Recognizing that the terms containing the 
correlation functions G' "V~ '  vanish in the limit as  A - 0, 
and also using the formula 

A 
lim = n6,,6 (o-k,v) 
a,o (a-k,v+iA) (o-k,v-id) 

and neglecting the small terms 1 6 01 /w, << 1, we obtain 

where 

From the form of the spectral functions (29) and (30) 
it follows that near the frequencies w' = o d 2  + 6w corre- 
sponding to the natural frequencies of the non-uniform 
plasma, these functions have maxima described by a 
Lorentz curve with half-width determined by the damp- 
ing decrement y,, of the plasmons. 
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With the aid of (29) and (30) we can write down the 
equal-time correlation function in the form 

(r+~ (k,, z ,  t)q' (k,', z' ,  t ')  ) = (2n)  =6 (k,-k,') G, ( 2 )  G.' (x') k,'rsz C 
j dp 6 (F - knv ) F~ ( p )  X-- 

IT- l  4(T+T") a 

It follows from this formula that, first, the correlation 
function differs substantially from zero only inside the 
region where the plasmons are localized. The reason 
is the spatial dependence of the function G,(x), accord- 
ing to which this function is an oscillating one inside the 
localization region, but decreases exponentially outside 
the localization region with increasing coordinate x. 
Second, the presence of the factor I y,l " indicates that 
a critical growth of the fluctuations is possible when the 
wave amplitude approaches the limit (8) of the instabil- 
ity to two-plasmon decay. 

3. The excited-plasmon energy per unit surface per- 
pendicular to the x axis is given by 

d x d o  dk, d w = JT knz {= [ w D ~ ~ ~ ( u .  k n )  I ( Q : " ~ Q : " ~ ) ~ ~ . ~  

where is the Hermitian part of the function D,. We 
recall that the function G,(x) oscillates inside the local- 
ization region, but decreases exponentially with increas- 
ing coordinate x outside this region. Therefore the inte- 
grand differs substantially .from zero only inside the 
plasmon-localization region. After integrating with re  - 
spect to x and with allowance for formula (29), we ob- 
tain for the spectral energy density W(kI) (i. e., W = J d  
x k, W(kI)) the following simple expression: 

It i s  assumed here that the distribution function Fob) is 
Maxwellian, and that 

~ = ' / , s ( n / 8 ) K o o  (k,rD) exp [-'I, (k,rD)'].  

It is seen from (31), in particular, that the dependence 
of the decrement y, on the pump wave amplitude makes 
possible, according to (6), a decrease of the denomina- 
tor of the n-th term in (31). The spectral density of the 
fluctuation energy the increases, a fact corresponding 
to critical fluctuations. These critical fluctuations arise 
whenever the pump wave amplitude approaches the value 
determined by formula (18) for the given number n. To 
obtain the total energy density of the localized waves we 
integrate formula (31) with respect to the wave number 
k,. We recognize here that the value of k, changes in 
the range 0 < k, < kLmPx, where k,, is determined from 
the condition that there be no strong Landau damping, 
i. e., k,,-rii. Bearing this in mind, we get 

where T, is the temperature of the plasma electrons and 

The summation over n in (32) is from n = 0 to n = G, 
where %, is defined by formula (14) and is equal to%, 
= k O ~ B ~ D ' l ~ N .  AS a result we obtain W =  Wo+ 6W, where 

and the term 6W i s  small in comparison with W, and 
is described in the limit %,>> 1 by the formulas 

The expression for Wo determines the level of the 
thermal fluctuations that arise in an inhomogeneous 
plasma in the profile region in which plasmon excitation 
is possible. The direct reason why Wo is proportional 
to the pump-wave amplitude is that the perturbation lo- 
calization is due to the pump wave. 

4. The collision integral J, which describes the re- 
laxation and transport processes in an inhomogeneous 
plasma situated in the field of the pump wave, can be 
written in the form 

where the coefficients D,, of diffusion and A, of system- 
atic friction are defined by the formulas 

1 

,,=" D,'(o.  k") 

t6 (o -oo-k ,v )  Im [ E . ( ~ - ~ . ) D . .  ~ ' ( o )  ( 0 .  k.) } I z .  (35) 

We recall that the x-dependence of the functions G,(x) 
with respect to which the plasmon amplitudes are ex- 
panded is such that these functions oscillate inside the 
plasmon localization region, and decrease exponentially 
with increasing x outside this region. Therefore the 
Aiffusion and systematic-friction coefficients (34) and 
(35) actually take place in the region of the plasmon lo- 
calization near the point corresponding to one-quarter 
of the critical density. '' 

It follows from (35) that the weak (i. e., korE < 1) field 
of the pump wave does not alter the systematic-friction 
coefficient. As to the diffusion coefficient (34), it can 
increase strongly because of the anomalous behavior of 
the spectral functions (29) when the pump wave ampli- 
tude approaches the plasma stability limit (8). Confin- 
ing ourselves therefore in (33) only to the contribution 
of the first term, we obtain the following equation for 
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the quasilinear relaxation of the distribution function 
Fo(x, 9): 

From this, in particular, we obtain the following law 
of conservation of the total energy density: 

P' :I d p Z ; ; ~ ( t , p ) + d ~ + C d p r j  a2 m a t  ~PPZ.(Z.P) 

= ~ j ~ ~ . ~ ~ ~ . ( ~ ) i ~ ~ ~ ( m : ~ ~ m : ~ ~ ) . ~ , .  Ime(a) 
, (4%)' 

+ (o-o~) (@I:) m?! ) tI,- ~m E (a-oa) 1. (36) 

where 

is the kinetic-energy flux density along the x axis. 

The expression in the right-hand side of (36) is the 
heat released in the plasma per unit time and in a unit 
volume. Since the growth of the fluctuations is due to 
the pump wave, we can state that the heat released in 
the plasma is essentially caused and determined by the 
pump wave. 

Let us estimate the diffusion coefficient. To this end, 
recognizing that w' = w0/2 + 8 w + iy,, we rewrite, accu- 
rate to 16wl /coo<< 1, formula (34) in the form 

Integrating with respect to kL we obtain, say, for the 
component D, (v, x) 

e'n k..' (2nf l)rD 1 
D.(~.  t ) = p  T k ? ~ e ( T ) ' ' z  7 [~ory -ko~E. th . l -"*  

"-0 
T D  

(37) 

(2n+1) 1% r ,  

where Y ~ , ~ ~ ~ s  the threshold of the two-plasmon decay, 
and is determined by the expressionc3' 

cp, in (38) stands for the function kor, defined in Sec. 1 
above. 

In contrast to the logarithmic singularity that takes 
place under conditions of parametric decay, [" formula 

(37) in the case of Duo-plasmon decay reveals a square- 
root singularity. (The function cpl under the logarithm 
sign in (37) is taken in the vicinity of the singular point 
at r, = YE,,. ) None the less, the collision integral due 
to the interaction of the particles with the plasmons is 
relatively large only in the immediate vicinity of the in- 
stability threshold, and goes over into the Landau colli- 
sion integral at 

Since the Coulomb logarithm is A - 10 for a real plasma, 
this region immediately adjacent to the threshold is nar- 
row. 

  he theory of fluctuations in a spatially uniform parametri- 
cally stable plasma was developed inC7-'". 

"The collisionless-fluctuation theory developed below is mean- 
ingful for allowance of effects due to plasmons whose d a m p  
ing decrement is determined by the Cerenkov effect on elec- 
trons. Such short-wave plasmons make the principal con- 
tribution to the energy density of the plasma fluctuations. 

"we have left out here effects due to the usual collisions and 
described by the Landau collision integral, a comparison with 
which is given below. 
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