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The dynamics of lattices (one-dimensional sequences) of solitons is investigated. It is shown that in the 
stable case the soliton motion is described by the Toda lattice equation. Approximate periodic and 
conditionally periodic solutions are constructed, corresponding to envelope waves for the initial sequence of 
the solitons. In the case of an unstable lattice made up of oscillating solitons, stochastization of the 
motion in the system was experimentally observed. It is shown that the effect is due to a nontrivial 
interaction of the oscillating solitons. 

PACS n u m h :  63.10. +a 

I t  was shown that in a preceding paper that the inter- 
action of solitary nonlinear waves-solitons-having 
close energies (velocities) is approximately described 
by the equations for classical particles. The same pa- 
per, with two solitons as an example, dealt with the 
possible types of their interaction, which are deter- 
mined to a considerable degree by the character of the 
field f a r  from the maxima. In this paper we regard 
solitons as classical particles and investigate the dy- 
namics of larger ensembles of solitons, particularly in- 
finite sequences (one-dimensional lattices) of solitons 
with nearly equal parameters. This approach makes it 
possible to solve the problem of the stability of the sta- 
tionary soliton lattices (periodic waves) and to obtain, 
in the stable case, a system of nonstationary solutions 
corresponding to modulation waves propagating along 
the lattice. We indicate in this connection that recently 
Its and Matveev, and also Dubrovin and Novikov, C21 have 
obtained fo r  the Korteweg-de Vries (KdV) equation ex- 
act solutions that are periodic and conditionally periodic 
analogs of multisoliton solutions (see the paper of Du- 
brovin et al. "' concerning similar solutions for the Toda 
lattice equation). In all probability the solutions ob- 
tained below belong to this class. At the same time, 
these approximate solutions are more universal in the 
sense that they are valid for equations which cannot be 
integrated exactly. 

A most interesting problem is that of the evolution of 
the wave motion in this case of an unstable soliton lat- 
tice. The presented results  of-experiments with lat- 
t ices made up of oscillating solitons show that instabil- 
ity can lead to complicated, including stochastic, mo- 
tions in the system. We note that at the present time 
there are several  known examples of nonlinear conser- 
vative systems in which stochastization evolved from 
regular initial conditions (see, e. g., C4'51). The dis- 
tinguishing feature of the process observed by us is that 
the stochastization takes place in a traveling wave. I t  
is important also that in this case the wave motion takes 
the form of a random sequence of pulses that are close 
in their parameters to oscillating solitons, and thus con- 
stitute an example of a strong wave turbulence. 

THEORY 

In the description of modulated nonlinear waves it is 
customary to use some variant of an  averaging meth- 
od. C6'71 A shortcoming of this approach is that in the 
first-order approximation one obtains for the param- 
e t e r s  (amplitudes, frequencies, wave numbers) of the 
initial waves a system of equations of the hydrodynamic 
type, which leads in the general case to  the appearance 
of physically inadmissible discontinuities, and conse- 
quently to the need for taking into account higher-order 
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approximations. In addition, it is impossible to describe 
within the framework of the averaging method the evolu- 
tion of the high-frequency perturbations (comparable 
with the period of the initial wave). The way out of the 
difficulties is simple for waves close to a sequence of 
solitons, if the investigated wave motion is regarded not 
as  a modulated periodic wave, but a s  an aggragate of 
individual "particles"-solitons-which interact with 
another. These processes can be described in the most 
general form when the interacting solitons have nearly 
equal velocities. The equations for the soliton veloci- 
ties, a s  shown inc1], then take the same form a s  the 
equations of motion for classical particles: 

where v, is the velocity of the n-th soliton in the se- 
quence, S,,, is the distance between the n-th and m-th 
solitons, and the function f (S) is determined by the 
asymptotic behavior of the field of an individual soliton 
far from its maximum; the sign and magnitude of the 
interaction coefficient a, can be obtained in each con- 
crete case with the aid of the asymptotic method for 
aperiodic waves. ['I 

We consider the simplest case, when the intervals 
S,,n+l between the nearest solitons differ little from a 
certain average value A,. Then, bearing in mind the 
rapid (usually exponential) decrease of the field of the 
individual soliton (- f (S)) we can confine ourselves tothe 
interaction between the nearest neighbors only, andthus 
reduce the system (1) to equations of the simplest chain 
of coupled nonlinear oscillators 

where S, is the coordinate of the *th soliton. Equation 
(2), together with the system (I), is valid if the inter- 
vals between the solitons (- A,) exceeds substantially 
their characteristic dimensions (- A,). Small deviations 
of S, - S,,, from A. can be large in units of A,, s o  that 
the form of the function f (S) becomes important. 

Most presently known solitons have an exponential 
asymptotic form f (S) =exp(- AoS). Let us  discuss the 
main consequences that follow from Eq. (2) in this case. 

First, the periodic sequence of solitons, which is a 
stationary solution of the initial field equations, is stable 
if a, > 0 and is unstable if a, < 0, a s  can be easily veri- 
fied by linearizing Eqs. (2) near Sn=nA,,. This fact is 
physically clear: the stable and unstable cases corre- 
spond respectively to lattices made up of mutually re-  
pelling and mutually attracting solitons. As expected, 
in the long-wave limit, when the difference operator in 
the right-hand side of (2) can be replaced by the differ- 
ential operator (aoa2/8n2), Eq. (2) leads to  Whitham's 
result, whereby Eq. (2) is hyperbolic in the stable 
case for small perturbations, and elliptic in the unstable 
case. At the same time, owing to the discrete charac- 
ter  of Eq. (2), short-wave perturbations a re  significant- 
ly affected by dispersion, which prevents singularities 
from appearing in the solution and ensures the existence 
of stationary waves. 

In the stable case, Eq. (2) is the known equation of the 
Toda lattice, and admits of solutions in the form of pe- 
riodic stationary waves (dependent on t = n - ~ t ) ' ~ ' :  

where K and E are  complete elliptic integrals with mod- 
ulus k; tl = exd-  0. 5&Ao)t, while IJ and k a re  
connected by the dispersion relation 

The solutions (3) contain also solitary waves-solitons: 

S,-S,-,=Ao+ho-' In [ I f  8' schZ(hl(n-v t , )  ) 1 ,  

a=sh A,, u=hl-' sh A,. 
(4) 

(With respect to the initial sequence of solitons, the 
solutions (3) and (4) can be called stationary envelope 
waves). The most important properties of the Toda lat- 
tice equation is its  complete integrability, which was 
proved by Manakov. 'lo] It follows therefore that the in- 
teraction of envelope solitons does not change their num- 
ber and the parameters Al (only phase shifts occur), and 
an arbitrary bounded perturbation breaks up into the 
asymptotically diverging solitons (4). Analogous prop- 
ert ies of lattices of mutually repelling solitons follow 
also from the exact solution obtained by Kuznetsov and 
Mikhafiovcl" in the case when the initial field equation 
is the KdV equation. 

The existence of periodic envelope waves (3) provides 
the key to the conception of a more extensive class of 
solutions. Indeed, the family of solutions (3) contains 
also some that a re  close to the sequence of envelope 
solitons (4). Since the envelope solitons a re  mutually 
repelling in this case, the Toda lattice equation is again 
valid for a sequence of such solitons. Repeating this 
reasoning, we arrive a t  a "hierarchy" of envelope waves 
of various orders, each of which constitutes an excita- 
tion of a soliton lattice of preceding order in the form 
(3). It is easy to write down an analytic expression for 
the envelope waves of M-th order: 

U ( X .  t )  = C U[x-uot-S",( t l )  I ,  

s , ~ - S , , - ~ = A ~ - ~ + ~ ~ ~ ~  ln{i+$,a sch2 (h,[nm-vmtm+l-S.,+, (tn+l) I )}. 
nm., 

(5) 
t,+l=(apTA,)'hexp{0.5LAm)tm, m=1.2 ..... M. 

Here u(x, t) is the variable of the initial field, U(5 = x 
- vot) is the stationary soliton of the initial field, v, and 
A, a re  the average velocity and average distance for the 
solitons of order m in the corresponding lattice, and 
L Y ~ ~ ( v , )  is the interaction coefficient for solitons of the 
Toda lattice. The quantities @, and X, in each order can 
be expressed in terms of v, + dSn,+l/dt in accordance 
with formula (4). 

Just  like the periodic and conditionally periodic ana- 
logs of multisoliton solutions obtained for the KdV equa- 
tion, t21 the solution (5) constitutes an M-periodic func- 
tion with periods that a r e  in general not multiples of one 
another. Unfortunately, in view of the complexity of the 
exact solutions obtained incz1, the question of a detailed 
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comparison with the approximate solutions (5) i s  still 
open. It can be definitely stated, however, that the solu- 
tions (5) correspond to only a part of the class of the 
exact solutions. From the condition for the applicability 
of Eqs. (2) in each order, dS,,+,/dt << u,, it is clear that 
by letting all M periods tend to infinity, it is possible to 
obtain from (5) for the initial field equations only multi- 
soliton solutions with close values of the velocities, 
whereas from the exact conditionally periodic solutions 
it is possible to obtain solutions with arbitrary velocity 
ratio. At the same time, for weakly modulated non- 
linear waves that are close to a sequence of solitons, 
the results are  more general, since they are  not con- 
nected with exact integrability of the field equations and 
furthermore admit of a graphic physical interpretation. 
The Toda-lattice equation plays here the same role as  
the nonlinear Schrtidinger equation for quasiharmonic 
waves. 

A greater variety is exhibited in the dynamics of lat- 
tices made up of solitons with nonmonotonic variation of 
the asymptotic fields. Typical examples of this kind 
are the oscillating soliton (for which f (S)- exp(- hi's) 
xcos($'S)), first obtained by ~ a w a h a r a " ~ ]  by numeri- 
cally integrating the generalized KdV equation: 

and subsequently observed by us and ~ s t r o v s k i r  in aline 
consisting of coupled nonlinear oscillators, ['I described 
by the equation 

We note that Eq. (6) is a continual analog of (7) and can 
be obtained from the latter by a finite-difference expan- 
sion, with 

It is clear that owing to the nonmonotonic character of 
the interaction potential, when the average distance be- 
tween solitons changes the lattice enters successively in 
stable and unstable zones. The boundary between the 
zones is determined obviously by the zeros of the func- 
tion f (S). At small but finite lattice vibrations in the 
stable zones it is possible to obtain for the soliton se- 
quence, just as above, solutions in the form of stationary 
envelope waves. The exact solution of the problem is 
unknown in this case, but iff (S) for oscillations that a re  
small in comparison with X1 and X, is approximated by 
the polynomial Y(S) - AS + we can use the solutions 
(3) and (4), which correspond to f-3 in the case of small 
deviations of the solitons in the lattice. I t  is important 
that in this case we obtain envelope solitons with an ex- 
ponential field profile in the asymptotic limit and it is 
possible to construct for them again a hierarchy of en- 
velope waves of various orders. 

If the distance between the solitons corresponds to an 
unstable zone, then small perturbations lead to lattice 
vibrations that capture the closest stable zones. The 
approximation used above no longer holds here. It is 
interesting, however, that if the amplitude of the oscil- 

lations is of the order of h, the potential energy of the 
interaction of the oscillating solitons duplicate qualita- 
tively the profile of the Leonard- Jones (LJ) potential: 
the relatively steep section corresponding to repulsion 
(at short distances between the solitons) is replaced by 
a gently sloping section corresponding to attraction at  
large distances, so  that on the whole a characteristic 
asymmetrical potential well is produced. Numerical 
experimentsc4' have revealed stochastization of the mo- 
tion of the pa t ic les  in a lattice with an W interaction 
potential. Bearing in mind the analogy between solitons 
and classical particles, we can expect stochastization 
of the motion also in a lattice made up of oscillating 
solitons. The experimental results reported below con- 
firm this assumption. 

In concluding this section, we discuss briefly the case 
of strong modulation of soliton lattices. It must be 
borne in mind here that solitons and classical particles 
differ in principle: a t  a large velocity difference, even 
for mutually repelling solitons, an instant sets in when 
their fields overlap completely, after which the solitons 
diverge, and as  a result the slow soliton is outdistanced 
by the fast one. We note that this process can also be 
described approximately. '" If we now have not one but 
a sequence of slow solitons, then it is clear that thefast 
soliton will alternately interact individually with each 
lattice soliton, its motion is not uniform, and the aver- 
age velocity changes by an amount proportional to the 
phase shift in each individual interaction. Thus, in the 
case of strong modulation, the motion of the lattice con- 
stitutes more readily propagation of a dislocation than 
oscillations of solitons relative to one another. If the 
fast soliton is also replaced by a sequence of such soli- 
tons, then we arrive a t  a particular case of a strong 
periodic modulation of the soliton lattice. Solutions of 
this kind were already discussed by ~ a k h a r o v ~ ~ ~ '  and 
~ a s l a v s k i ~ ~ ~ ' ' ;  here we wish to  indicate that disloca- 
tions represent the limiting type of motion into which 
the considered analog waves go over in the case of strong 
modulation. We emphasize also that cases of both 
strong and weak modulation of a sequence of solitons 
can be made to fit the approximate description. It must 
be borne in mind, however, that the solitons can inter- 
act inelastically. The radiation accompanying this in- 
t e r a ~ t i o n ~ ' ~ " ~ '  can lead either to a finite lifetime of the 
excitations of the soliton lattice, or to a rapid destruc- 
tion of the solitons, depending on the ratio of the radia- 
tion energy to the energy of the corresponding type of 
lattice motion. 

EXPERIMENT 

The experimental investigation of one-dimensional 
soliton lattices was carried out on transmission line con- 
sisting of nonlinear electromagnetic oscillators, de- 
scribed by Eq. (7), with a mutual inductance coupling 
between the neighboring elements. The use of this sys- 
tem is quite convenient, for by varying the coefficient 
of the mutual inductive coupling 6 it is possible to obtain 
in this system solitons with different fields in the asymp- 
totic resultc1' and thus investigate soliton solutions of 
various types. To produce soliton lattices, a line of 
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FIG. 3. Regions of stable (light gaps), unstable (shaded) and 

FIG. 1. Dislocation motion (a) and formation of an envelope 
soliton (b) in a stable soliton lattice. The numbers indicate 
the distance (the number of elements) traversed by the lattice 
along the line, while the numbers in the parentheses represent 
the distance (in terms of soliton-lattice cells) traversed by the 
dislocation and by the envelope soliton. 

160-280 elements was excited on one end by a source of 
periodic oscillations, and was matched on the other end, 
so that a traveling-wave regime was established in the 
system (the reflection level did not exceed 10% of the 
wave amplitude). The evolution of the lattice motion -- 
could be easily traced by observing the successive (from 
element to element) changes in the time dependence of 
the oscillations of the voltage on the nonlinear capaci- 
tance of the elements 

At 6 = 0 the solitons for the line (7) have an exponen- 
tial asymptotic form and a re  mutually repelling. [I1 In 
the experiments, a line of such oscillators was excited 
by a parametric generator of a sequence of pulsesc1" 
that were close to solitons in their parameters. In ad- 
dition, a supplementary source synchronized with af i rs t  
source produced different perturbations of the soliton 
lattice. The results of the two experiments a re  shown 
in Fig. 1. The first  corresponds to the case of dislo- 
cation propagation. The perturbation represents inthis 
case one lattice soliton magnified 3.5 times. It isknown 
that at so  large an amplitude ratio, one soliton outdis- 
tances the other. As seen from Fig. la, the evolution 
of the initial perturbation agrees with this process: the 
fast solitons absorb successively the lattice solitons and 
then emits them with the appropriate phase shift. The 
process is extremely localized-at each instant of time 
one lattice soliton interacts with a dislocation, and 
practically no dispersion of the soliton lattice appears. 

C 

FIG. 2. Evolution of sinusoidal wave a s  a function of its ini- 
tial period T: a) T =  3.75-onset of stationary lattice, b) T 
= 4.5-growth of oscillations in unstable lattice, c) T = 7-for- 
mation of complicated soliton lattice. 

stochastisized (black) soliton lattices a s  functions of their pe- 
riod T. The profile of the potential energy of the interaction 
of the oscillating solitons is  shown in the same T scale. 

With decreasing perturbation of the soliton amplitudes, 
the time of the soliton interaction increases and others 
can enter into the interaction even before the comple- 
tion of the collision of any particular pair. As a result, 
the process becomes essentially nonlocal, and we ar- 
rive in natural fashion to  the case of soliton oscillations 
in the lattice. A process of this type is shown in Fig. 
lb. The initial perturbation consists in this case of 
four lattice solitons that increase successively in ampli- 
tude. These solitons come initially closer together, 
since the velocity perturbation produces a displacement 
perturbation. Owing to the strong overlap of the field 
of the approaching solitons, a "pedestal" appears sub- 
sequently and duplicates the profile of the envelope of 
the cres ts  of the solitons. Some increase of the slope 
of the envelope front, which takes place initially, then 
ceases because of the dispersion of the soliton lattice, 
and at a distance n =  190 there is formed an envelope 
soliton, the stationarity of which can be verified by ob- 
serving the successive propagation of this wave. The 
envelope soliton profile, measured by determining the 
ratio of the amplitudes of the lattice solitons, agreed 
well with the theoretical value (4) (the differences did 
not exceed 12%). 

We note that to observe the envelope soliton of next 
order it would be necessary to have a line of electro- 
magnetic oscillators consisting of not less  than 10' ele- 
ments. This estimate follows from a comparison of the 
velocities of the lattice and the envelope solitons (Fig. 
lb). 

At 6 =O.  175, the solitons in the line (7) have an asymp- 
totic limit of alternating sign: f (S) = exp(- Ails) 
XCOS(X,"S). To obtain lattices of such solitons i t  was 
more convenient to use a harmonic source. As seen 

FIG. 4. Evolution of the profile (a) and of the spectrum (b) of 
a monochromatic wave at T = 5. 
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in systems described by the KdV equation, the evolution 
of a sinusoidal wave is always reversible. C18"9' 

FIG. 5. Appearance of a 
third soliton in a pair after 
the latter interacts with a 
single soliton. 

from Figs. 2a and 2b, even a t  a short distance from the 
start  of the line (n = 5) the initially sinusoidal wave is 
transformed into a sequence of oscillating solitons hav- 
ing the same period. By varying the frequency of the 
oscillations of the external source it is possible to ob- 
tain soliton lattices with arbitrary periods T, up to val- 
ues corresponding to the third stable zone reckoned 
from the maximum of the soliton (Fig. 3). At T > T4, 
the sinusoidal wave is split into complicated lattices 
consisting of individual solitons and groups of bound 
solitons (Fig. 2c). 

It can be seen from Fig. 3 that the regions of T where 
stable and unstable stationary lattices can exist do in- 
deed correspond to  zones of the mutual repulsion and 
attraction of the solitons. The propagation of a stable 
stationary lattice (T = 3.75 here and below in units of 
Eq. (7)) and the growth of the amplitude of the oscilla- 
tions in the unstable lattice (T = 4.5) a re  illustrated in 
Figs. 2a and 2b. 

The most remarkable feature of the unstable lattices 
is the possibility of their stochastization at excitation 
energies comparable with the depth of the potentialwell. 
The periods of the lattices occur then in the region of 
the edges of the potential wells (see Fig. 3). The very 
fact of stochastization, a s  already noted, agrees with 
the results of a numerical calculationcg' for a lattice 
with an LJ interaction potential. However, according 
to the numerical results ofCS', the critical excitation 
energy, above which stochastic oscillations were noted, 
was only 1 4 %  of the depth of the potential well per par- 
ticle. In our case this quantity is of the order of lo@. 
The apparent reason for the difference is that at excita- 
tion energies close to  critical, the stochastization time 
is very large and greatly exceeds the time required for 
the soliton to travel over a line of 160 elements. 

The development of stochastic motions in an unstable 
lattice is shown in Fig. 4. It is seen that a t  a distance 
n> 60 the spectrum of the wave motion becomes contin- 
uous and occupies practically the entire transparency 
band of the system. The very appearance of the contin- 
uous spectrum was in fact the criterion of the stochas- 
tization of the motion in the experiment." We note that 

The explanation of the stochastization must be sought 
in the elementary processes of the interaction of the os- 
cillating solitons, inasmuch as after the regular lattice 
is destroyed the wave motion constitutes a s  before a se- 
quence of solitons and of bound soliton groups, but now 
the sequence is random (see Fig. 4). To study the in- 
teraction processes, individual solitons and bound soli- 
ton pairs were applied to  the line from synchronized 
sources. The initial amplitudes and the intervals be- 
tween the solitons could be varied over a wide range. 
It was established in these experiments that, owing to 
the oscillatory structure of the field, bound states a re  
possible of two or more solitons coupled by the first  and 
second oscillations (counted from the maxima). In the 
case of solitons that diverge without limits after the in- 
teraction, o r  of groups of such solitons, we observed a 
redistribution of the number of solitons among the groups, 
production of new bound states, and also a redistribution 
of the energy among interacting formations whose com- 
position did not change. One of the variants of a non- 
trivial collision of solitons is shown in Fig. 5. 

Thus, considerable relative displacement of the soli- 
tons, which occur in a strongly excited lattice, can 
lead to the collisions described above and a s  a result to 
a scrambled character of the motion a s  a whole. Under 
optimal conditions, the stochastization of the motion de- 
veloped quite rapidly-within a time in which each soli- 
tons experienced on the average one or  two collisions 
(in analogy with the case of thermalization of the gas of 
particles). 

We indicate in conclusion that the excited lattices and 
stochastic ensembles of oscillating solitons, described 
above, can be realized for magnetosonic waves in a 
plasma, and also for capillary gravitational waves in 
shallow water, the propagation of which is described by 
the generalized KdV equation (7). C'21 

The authors a re  most grateful to A. V. Gaponov and 
L. A. ~ s t r o v s k i r  for a discussion of the work and for 
useful remarks. 
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It is shown that spatially localized plasma waves that do not increase with time are produced in a spatially 
inhomogeneous plasma in the vicinity of the region where a pump wave decays into two plasmons. A 
theory of the stationary fluctuations of these spatially localized waves is formulated. The fluctuations are 
shown to undergo a critical growth when the instability threshold is approached. A collision integral that 
takes into account the influence of the localized plasma waves is obtained. 

PACS numbers: 52.35.-g 

A number of recent s t ~ d i e s ~ ' - ~ '  have demonstrated a 
qualitative peculiarity of parametric resonance in a 
spatially inhomogeneous plasma, namely, it was shown 
that instabilities localized in a finite region of the in- 
homogeneous plasma can develop in the plasma. I t  must 
be assumed at the same time that the appearance of 
spatially localized plasma perturbations under the in- 
fluence of a pump field is a rather common phenomenon 
that can take place in a stable plasma. 

In this paper we investigate the conditions under which 
such waves a r e  spatially localized in the case of an in- 
homogeneous plasma in which a pump wave decays into 
two high-frequency electron waves, henceforth dubbed 
plasmons. 

In Sec. 1 we consider the dispersion properties of the 
plasmons and the region of their localization. It is 
shown that plashon localization is possible at a pump- 
wave amplitude lower than the threshold obtained ints1 
for plasma instability relative to two-plasmon decay. 

In Sec. 2, following the method ~ f ' ~ ' ~ ' ,  we formulate 
a theory for stationary fluctuations of plasmons local- 
ized in a parametrically stable plasma." As a conse- 
quence of the developed theory, we determine in Secs. 
3 and 4 the energy of the thermal fluctuations of the 
plasmons and obtain the collision integral of a non-uni- 
form plasma with allowance for its dynamic polariza- 
tion. 

1. In a non-uniform plasma, the electron Langmuir 
perturbations (plasmons) that a r e  parametrically ex- 
cited by a pump wave 
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are localized on the profile in the vicinity of a point x, 
at which the plasma density is equal to one-quarter the 
critical density, i. e. , wLe(x,,) = wO/2, where w,, is the 
electron Langmuir frequency. The dimension of the 
localization region is determined by the amplitude Eo of 
the pump wave. Under conditions when the plasma is 
not uniform along the xaxis, this region is bounded by 
the branch points x, of the plasmon wave vector; the 
formula for  these points is 

Here r~ is the Debye radius of the electron, rE = eE,,/ 
mu, is the amplitude of the electron oscillations in the 
electric field of the pump wave, 7 is the plasmon damp- 
ing decrement, and k ,  is the projection of the plasmon 
wave vector on the y axis (it will be assumed for sim- 
plicity that the vector k lies in the xy plane). It is as- 
sumed that the plasma density profile depends linearly 
on the coordinate x, with a characteristic inhomogeneity 
length L,, i. e., 

97 Sov. Phys. JETP 46( 1 ), July 1977 0038-564617714601-0097$02.40 O 1978 American Institute of Physics 97 


