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The conditions under which the problem of excitation of a molecule in the field of a resonance wave 
reduces to the problem of an effective anharmonic oscillator are found. Solutions to such a problem are 
found for the asymptotic case of a strong field. It is shown that the quasienergy vibrational-rotational 
levels become equidistant in this limit. The molecule distribution over the vibrational-rotational levels that 
arises under the action of an intense field is found under the assumption of adiabatic switching on of the 
interaction, an assumption which is valid for nanosecond and longer pulses. It is shown that the number, 
vo, of the most efficiently excitable level increases with increasing intensity, Fo, of the resonance wave 
like 17ii3. 
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1. INTRODUCTION 

Of late the problem of the resonance interaction of 
molecules with intense electromagnetic (EM) radiation 
of the infrared band has been attracting quite consider- 
able attention, which undoubtedly is connected primarily 
with the discovery of the phenomenon of collisionless 
dissociation of molecules of the type BC13, SiF,, SF,, 
etc. C1-5' According to the current viewpoint, this pro- 
cess can be conditionally divided into a number of stages. 
First, there occurs the excitation of several low-lying 
vibrational levels of the molecule, after which follow 
stages in which the excitation of many vibrational modes 
of the molecule and the subsequent transformation of the 
excitation energy into the energy of the electron detach- 
ment term. However, from the theoretical point of view 
even the investigation of the simplest first phase of the 
process can hardly be considered to have been accom- 
plished, since all the existing theoretical approaches 
either are  based on various model concepts, or have the 
character of qualitative estimations. In diatomic mol- 
ecules, which possess a single vibrational mode, the 
excitation process is confined to the first  phase. Owing 
to anharmonicity, a significant excitation of the vibra- 
tions of a diatomic molecule is possible only under those 
conditions when there occurs under the action of the EM 
field a considerable rearrangement of its quasienergy 
levels (the resonance Stark effectt6'). 

In the present paper we investigate the feasibility of 
an analytic description of the process of excitation of the 
vibrational-rotational degrees of freedom of a diatomic 
molecule under the action of an intense resonance EM 
field of the infrared band. As will be shown below, in 
the two cases corresponding to a high and a low rota- 
tional energy of the molecule, the quantum-mechanical 
equations of motion reduce to steady-state equations for 
some effective anharmonic oscillator located in a con- 
stant uniform electric field. The analytic solutions 
found for these equations in the asymptotic limit of a high 

sults similar to those obtained here describe the initial 
phase of the process of excitation in multiatomic mole- 
cules. 

2. GENERAL EQUATIONS 

The Hamiltonian describing the vibrational-rotational 
motion of a diatomic molecule interacting with an EM 
wave, F(t), has the form 

where H, is the Hamiltonian of the vibrational motion in 
the absence of an external wave, 3 is the angular-mo- 
mentum operator, d is the molecule's dipole moment 
operator averaged over the electron wave function and, 
in the case of the C term, directed along the axis of the 
molecule, B(Y) =+MY' (we set A = 1), M being the re- 
duced mass of the nuclei and Y, the internuclear dis- 
tance. The vibrational-rotational wave function, *, of 
the molecule can be expanded in terms of the products 
of the vibrational (9,) and rotational ~ , e i m '  ) functions 
of the free molecule, 'I1 which functions satisfy the equa- 
tions 

With allowance for the smallness of the parameter 
p / M  ( p  is the electron mass), we can, a s  usual, set 

where re is the equilibrium distance between the nuclei, 
Be is the rotational constant; we and xe we are respective- 
ly the vibrational frequency and the anharmonicity con- 
stant; v, J, m = O,1,2, . . . , m s J, m being the component 
of the angular momentum of the molecule along the z 
axis in the laboratory system of coordinates; and rp i s  
the azimuthal angle. 

resonance-field intensity contain information about the In the case of a linearly polarized monochromatic 
character of the quasienergy vibrational-rotational spec- wave 
tra of the molecule, and allow us to describe the mole- 
cule-excitation process. It may be surmised that re- F ( t )  =F, cos ot, dF,=d(r)F,  cos 8, 
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where 8 is the angle between the axis z II Fo and the axis 
of the molecule. Since the interaction energy in this 
case does not depend on the azimuthal angle cp, the ex- 
pansion of the wave function ?Ir can be represented in the 
form 

As is easy to verify, in the resonance approximation, 
which is valid for I w - wel << we, doFo<< @,(do= (cp,i d(r)l 
x rpJ = const), the coefficients C,, can be assumed to be 
independent of the time, and the constant E in this case 
has the meaning of quasienergy of the molecule in the 
periodic field. The equations for the C,,'s, which follow 
in the resonance approximation from the SchrlMinger 
equation i8?Ir/8t = kN, have the form 

where E,,=E,+ BJ(J+ 1). 

In the coordinate representation, with respect to the 
angular variable 8, the equations for the functions 

that are equivalent to the system (3), evidently have the 
form 

d,F, cos 0 =-- _ [v"3A.-,+ (u+l )"~A,+ , ] .  

In the general case, only a numerical solution of Eqs. 
(3) and (4) is, apparently, possible. An analytical solu- 
tion of these equations turns out to be possible only in 
the asymptotic cases of low and high rotational energy 
of the molecule. If the rotational energy is small in 
comparison with the energy responsible for the anhar- 
monicity xew,, then according to Ref. 6, Eq. (4) can be 
solved in the adiabatic approximation, which is equiva- 
lent to the neglect in this equation at the first stage of 
the operator 

The then resulting system of equations 

determines the correct vibrational functions of the mol- 
ecule in the external resonance field. The eigenvalues, 
E,(8), of the system (5), which depend parametrically 
on the angle 8, has the meaning of potential energy of 
the molecule in the field F(t). ''I 

It is convenient to consider the other limiting case, 
which corresponds to a high rotational energy, on the 
basis of the matrix equations (3). These equations re- 
late the probability amplitudes for finding the molecule 
in states with the quantum numbers (J, v) and (J+ 1, v 
i I), (J - 1, v* 1). The differences between the energies 
of the corresponding transitions are 

lu-+J-l.v+l: E1,-EJ-,, .+,+w=o-w.+2(v+l)z,o.+2JBe, (7) 
Jv-+J+l,v-l: El,-E,+, .-,-o=o,-o--2vx.w.-2(J+1)B,. 

- 

If the rotational quantum number is, on the average, 
large, i. e. , if J >> 1, then the resonance conditions for 
the two groups of transitions (6) and (7) differ consider- 
ably from each other. For a not too high intensity Fo, 
the frequency w can be chosen such that the conditions 
for resonance are fulfilled only for one of these groups 
of transitions. For example, if for all the levels sub- 
stantially perturbed by the field we have fulfilled the 
conditions 

then the group of transitions (7) are off-resonance tran- 
sitions, and the coefficients CJ+l,,,l and CJ-l,,+l in Eqs. 
(3) can be dropped: 

In this case if dlFo;,Z 21 xeoe - BeI , then both transitions 
in (6) are resonance transitions. 

The inequalities (8) can be assumed to be fulfilled for 
all (J, v) if the rotational quantum number J significantly 
exceeds the number of vibrational levels effectively 
perturbable by the external field, i. e. , if J >> v 2 1. 
This condition allows us to neglect the variation of J in 
the coefficients of Eqs. (9). (If, furthermore, the num- 
bers J and m are not too close, then J* m >> v. ) Setting 
C Jv = C J,,,v,v = q, we obtain, a s  a result, 

where J= Jo+  V, the number Jo (together with E and m) 
is one of the quantum numbers characterizing the wave 
function of the molecule in the external field. 

The limitation imposed on the intensity Fo by the sec- 
ond of the inequalities (8) assumes, when Jo >> v, the 
form 
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As will be shown below, the external field most efficient- 
ly excites the levels with numbers v -  [d,F,,/l xewe - ~ ~ 1 1 ~ ' ~  
and the condition Jo >> v yields 

The inequalities (12) and (13) a re  a quantitative formula- 
tion of the assumption that the rotational energy is high. 
Below it will be shown that, for certain molecules, even 
at not too high temperatures the corresponding limita- 
tions on the magnitude, Fo, of the intensity a re  not very 
rigid and allow us to  follow the transition to the asymp- 
totic case of high fields. 

ered before for 5 << 1, I a- 41 << 1 in the two-level ap- 
proximation and numerically for 5 >, 1. ''I Below we 
shall propose a procedure that allows us to find the an- 
alytic solutions of Eqs. (16) for large values of I & I , in- 
cluding the asymptotic case of strong fields, i. e., for 
5 >>I. In this case instead of the system (16) we shall 
consider the equivalent differential equation for thefunc- 
tion 

(0' 
cp .  ( x )  = (2"n'"v!) -'" exp (- x 2 / 2 )  H ,  ( x )  . 

In the case of the action on the molecule of a circular- the Hv(x) a re  Hermite polynomials and x is some auxil- 

ly polarized resonance wave, iary dimensionless variable. 

F(t) =F,(e,cos ot*ie, sin o t )  
Multiplying (16) by fp(,O'(x), and summing over v, we 

find 

(0, and e, a re  unit vectors along the x and y axes), the [ (x ' -dZldzZ)  2 + a ( 8 / d ~ Z - ~ : )  +E+ ~ : x ] + ( x )  -0. (18) 
expansions, (2) and (l l) ,  of the wave function a re  re- 
placed by If the function $(x) is normalized to unity, then the coef- 

ficients of the expansion (11) a re  defined a s  
y = e-zet+imm C c , , , ~ "  ( r ) X ,  ( 0 )  e-i"("+'""*i* 

1 . 0  

(14) 

0 ,  = i;. , , , (x)cp:o) ( x ) .  (19) 
and -= 

(15) 
3. QUASICLASSICAL SOLUTIONS 

The fourth-order equation (18) can hardly be solved in 
the general case. However, if one of the parameters & 

The matrix elements in Eqs. (3) get somewhat modi- and 5 is large, then the solution to the equation can be 
fied, which leads to  the substitution cos0 - sin0 in Eqs. 
(4) and (5) and to the substitution (5: - rn2)lf2 - JO * m in 

sought in the quasiclassical form: 

Eqs. (10). 

Thus, in both the case of low, and the case of high, 
rotational energies, the equations for the vibrational- 
rotational wave function of the molecule in the presence 
of a resonance EM wave reduce to a system of equations 
for some effective anharmonic oscillator located in an 
external uniform constant electric field. The effective 
oscillator frequency, equal to we - w in the case of slow 
rotations and we - w + 2JoB, in the case of high rotational 
energies, can be arbitrarily low under near-resonance 
conditions. Therefore, the effective anharmonicity in 
Eqs. (5) and (lo), which is determined by the constants 
xewe and xew, - Be, respectively, is strong. " 

Let us substitute this expression into (18) and, assum- 
ing the mean values of the "coordinate" x and the "mo- 
mentum" d/dx to be large, neglect in the zeroth order 
the higher derivatives of the function So(x) and retain in 
the equation for So(x) only the leading (fourth-order)- 
with respect to x and d/dx-terms together with the en- 
ergy & + 45x. Allowance for the neglected terms allows 
us to find the correction to So(x), which yields 

Let us write down Eqs. (5) and (10) in a more con- a dx i 

venient dimensionless form: s , ( x ) = ~ ~  - + I l n [ S , ' ( - e  S , ' (x)  a - 4 ~ x ) ' " I .  (20) 

[ E - u ( ~ G + ~ )  +(2u+l)Z]a,=-2"~[,u '12aaa,+ (u+ l)'"a,+,], (16) The reversal  points x, and x2(xl < x,), which define the 
boundaries of the classically accessible region for the 

where, for example, in the case of high rotational en- x motion, a re  solutions to the equation 
ergies 

x2= ( -z -45x)  %. (21) 
4 ( E  - Io2B.) + B .  2 (21,B. + o. - o )  

E = a =  
x.o,  - Be x .o ,  - B. In all the cases considered below the branch point, x3 

d,F, 'h = - &/45, of the function (- E - 45x)'I2 is located at a 
5 = I - -  . 

2 ( x  - ) 1.. considerable distance from the reversal point x,, i. e., 
x3 - x, >> 1, and therefore can be ignored in the deter- 

The determination of the quasienergy & and the coef- mination by the conventional method of the phase of the 
ficients a,, with the aid of Eqs. (16) in the general form function $(x) by bypassing the reversal  points in the 
is difficult. Cgl Equations of this type have been consid- complex x plane. ''I The quasiclassical solution to Eq. 
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(18) and the quantization conditions found with its aid 
have the form 

where C is a normalization constant. 

In the expounded derivation we did not consider two 
more solutions of the quasiclassical equations corre- 
sponding to the negative sign in front of the root (- & 

- 4 5 ~ ) " ~  in the formulas (20). This is connected with 
the fact that for these solutions there does not exist a 
region in which the motion with respect to the variable 
x is classical, i. e., where the action So(x) would be 
real. For this reason, each of the discarded solutions 
increases exponentially a s  x- 00 or x- - - and, conse- 
quently, cannot be normalized. 

The quantization conditions (23) in the case of weak 
fields, i. e., for 5 << 1 (but for I & I  >> 1) lead, a s  was to 
be expected, to asymptotic expressions for the energies 
of the high-lying levels of the anharmonic oscillator: 

Let us consider further the strong-field region, which 
is defined by the condition 5 >> 1, and which is the most 
interesting region. The function So(x), (20), can be real, 
and the classically accessible region (with respect to the 
variable x) is nonvanishing if the quantity & is not too 
large. The conditions for the appearance of a classi- 
cally accessible region of motion can be found from Eq. 
(21) together with the requirement that the derivatives of 
the functions x 2  and (-& - 45~)"' should be equal, which 
yields 

The x region of classical motion arises when the en- 
ergy (& < &,) is decreased in the vicinity of the point x 
= xo. Setting x = xo + y, & = e0 - A, and assuming that I y l 
<< l xol, A<<&, we obtain 

which allows us to find a set  of quasienergy levels near 
the threshold for the appearance of a region of classical 
motion: 

The condition co >> A and the quasiclassicality condi- 
tion lead respectively to the limitations on the value of 
the quantum number n: 

n < ~ " ~ .  n B l .  
-- - 

(28) 

The quasiclassical solution, $(x), to Eq. (18) in the re- 
gion x, + y <x < xo + y2 in the considered case assumes the 
form 

Equation (27) shows that for high EM-wave intensities, 
i. e., for 5 >> 1, the magnitude of the quasienergy of each 
of the levels increases like 5 4 ' 3 - ~ ~ ' 3 ;  the difference 
between neighboring levels (the transition frequency) in- 
creases like 5213 - ~ 2 0 " ;  the levels for large 5 and for 
fixed values of the quantum numbers J, m become equi- 
distant. These conclusions are  illustrated also by the 
results of numerical computations (see Fig. 2ofRef. 6). 

4. THE OSCILLATOR SOLUTIONS AND THE PROCESS 
OF MOLECULE EXCITATION 

The quasiclassical solutions (29) a re  not too conve- 
nient for the computation of the overlap integrals with 
the functions rpiO', (19). Also burdensome is the limita- 
tion n >> 1, since in the course of excitation the molecules 
can substantially populate the levels corresponding to 
small n. At the same time the appearance of the set  of 
equidistant levels (27) may be an indication of the fact 
that, for 5 >> 1, near the threshold for the appearance of 
a classically accessible region of motion (n << 52'3), Eq. 
(18) possesses solutions of the oscillator type. Treating 
in Eq. (18) the sum 

as a potential energy, we find that for 5 >> 1 a1 'I2 the .- - - - -  

equilibrium position coincides with the point x = xo 
= - 5 'I3, in the vicinity of which 

The substitution x = x, + y, & =so - A allows us, when 
5 >> 1, to separate in Eq. (18) the dominant and correc- 
tion terms if we take into account the fact that, accord- 
ing to the uncertainty relation for the states localized 
in the vicinity of the pointy = 0, d"/dyn- y-" near the thresh- 
old for the appearance of a region of classical motion. 
An elementary evaluation allows us to estimate the di- 
mension of the region of localization: y - 1, and shows 
that the dominant terms in Eq. (18) a re  the energy & 

+ U(x) and the term - 2~$~/dy ' -  t2l3, whereas xod/dy - xayd2/dy2 - 5'" and d'/dy4 - y2d2/dy2 - yd/dy -de/dy2 - 1. 
The corrections due to these terms, a s  well a s  those 
due to the anharmonicity of the function U(x), have rela- 
tive orders of smallness 5"" and ["IS. Equation (18) 
in the lowest order in 5"" assumes the form of anequa- 
tion for the harmonic oscillator: 

From this again follows the expression (27) for the qua- 
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sienergy values En, while for the function &(x) we have 
in place of (29) the expression 

The condition of applicability of these results is deter- 
mined by only the first  of the inequalities (28), and is 
connected with the possibility of a series expansion of 
the potential energy U(x) and the neglect of the terms 
discarded in Eq. (18). 

The found quasienergy solutions (27), (31) of Eq. (18) 
allow us to investigate the problem of the excitation of 
the vibrational-rotational motion of a molecule under the 
action of a resonance EM field pulse. Such a problem 
has been considered before without allowance for the ro- 
tations of the molecule on the basis of one or another 
model approach, clO-lll which, generally speaking, i s  not 
justified by the presence of a small parameter, a s  well 
a s  n u m e r i ~ a l l ~ ~ " ~  under the assumption that the inter- 
action is switched on instantaneously, an assumption 
which is usually not fulfilled. It follows from the analy- 
sis carried out in the present paper that the character- 
istic distance between the molecule's quasienergy levels, 
(27), is determined by the effective-anharmonicity pa- 
rameter x , ~ ,  - Be, or it exceeds this quantity when 5 
>> 1. Therefore, the interaction switching-on process 
should be considered to be adiabatic if the pulse dura- 
tion, T ,  satisfies the condition 

.rB I sew.-B, I -'-10-"- lo-" sec , 

which is fulfilled for nanosecond and longer laser pulses. 
The general criterion for adiabaticity is similar to the 
condition of applicability of the quasiclassical approxi- 
mation, and has the form 

(for all t), where EoS1 a re  the quasienergy values for the 
levels 0, 1, which depend parametrically on t through 
the slowly varying amplitude Fo(t). In the regions dlFo 
<< x,w, - Be and dlFo >> x,w, - Be we have respectively 

(formula (27)). If we assume that dFddt-  Ro(t)r-', then 
the adiabaticity condition in these cases assumes the 
form r(x, we - >> (dlFo)2 and r(x,w, - 
>> 1. The limitation on the rate of change of Fo(t) in the 
region dl Fo - x, we - Be is the most rigid, and is deter- 
mined by the given inequality, which can thus be re-  
garded a s  a sufficient condition for the switching on of 
the interaction to be adiabatic. 

The adiabaticity of the switching-on process and the 
condition of non-intersection of the termsc7' allow us to 
assert that, a s  the intensity I;, is increased, each of the 
levels E:: E EJO+V,V - W(V + 4) goes over into the level En, 
(27), corresponding to the initial values of the quantum 
numbers Jo, m if we stipulate that the number n numbers 
the levels E>t in their decreasing order. The relative 
arrangement of the levels E>O~,  depends on the magnitude, 

determined by the parameter 0, of the detuning of the 
resonance. Let us, for concreteness, consider the case 
(r< 4, when the frequency w is higher than the frequency 
of the f i rs t  vibrational transition, 

and the initially populated level eo is the uppermost 
level in the system of levels E:>. This means that the 
solution to Eq. (18) that ar ises  in the course of the adi- 
abatic switching on of the interaction is given by the 
function qo(x), (31), which allows us to find with the aid 
of the formula (19) the coefficients, 4, of the expansion 
of the'wave function in terms of the vibrational-rota- 
tional states of the free molecule: 

The distribution of the molecules over the vibrational 
levels, (32), generally speaking, differs significantly 
from the Poisson distribution, which ar ises  in the frame- 
work of the model-the so-called semiquantum-theo- 
ry. I 

The probability of excitation of the vibrational-rota- 
tional levels (v, Jo + v), (30), is maximum at v = vow 5'13, 
i. e., the field with intensity F,, most efficiently excites 
the vibrational level with the number 

On the other hand, for the most efficient excitation of 
the vkbrational level with the number v, it is necessary 
to use a field of intensity 

Formulas similar to the expression (32) can be obtained 
for another arrangement of the levels E'Zv. The condi- 
tion for an adiabatic switching on of the interaction is 
fulfilled at  all t if the level spacing for all the levels 
E'J"dv exceeds l / r .  This requirement is not fulfilled a t  
exact resonance in, for example, the ff = 4 case, when 
w = wl0 and dJ:o =. E$:~. However, we can also find in 
this case a distribution of the molecules over the levels 
that is of the type (32) if we take into account the fact 
that the initial phase of the excitation can be described 
in terms of a two-level system, '13' after which we can 
again use the concept of adiabatically slow growth of the 
interaction in a multilevel system. The solution to Eq. 
(18) arising a s  a result of such a process is determined 
by the superposition 2-112($0+ A), (31), which allows us 
also in this case to find with the aid of Eq. (19) a prob- 
ability distribution I avl ' that is qualitatively similar to 
the distribution (32). 

For the investigation of the frequency dependence of 
the excitation process and for a comparison with the 
classical description of the nonlinear oscillator in a 
resonance field, it is convenient to consider not the dis- 
tribution over the levels, but the mean-square deviation 
from the equilibrium configuration, which, in the state 
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characterized by the solution $,,(XI of Eq. (18), has the 
form 

If the interaction is switched on adiabatically and the 
molecule is initially at the level I??&, then, by defini- 
tion, the number n is connected in the following way 
with the frequency w: 

n= [ "'"'" - [+ - for a>2 
x.o.-B. 

n=O for aG2, 
- --- 

where the square brackets denote the integral part of 
the number. 

The formula (35) describes the discontinuous increase 
of the amplitude of the forced vibrations when the fre- 
quency is decreased. For a finite pulse duration 7, the 
region of the discontinuities is finite and has a width - l /r .  If we neglect the unevenness of the function n(w) 
by dropping the sign denoting the integral part in the 
formula (36), then the character of the dependence of 3 
on the intensity Fo and on the frequency w, a s  well a s  
the orders of magnitude of all the coefficients coincide 
with the corresponding classical results. '"I In this case 
it is necessary to take into account the fact that in the 
approximation under consideration the natural level 
width (damping) is neglected and that on account of the 
condition 5 >> I @I 'I2 the detuning w - wlo is small. 

Consequently, in the asymptotic limit of a strong res- 
onance field, the behavior of the quantum anharmonic 
oscillator is similar to the classical oscillator. The 
quantum-mechanical characteristics manifest themselves 
only in the stepwise dependence of b2 on w, the ampli- 
tude of the jumps being small in comparison with the 
first term in the formula (35) when 5 >> 1. 

5. CONCLUSIONS AND DISCUSSION 

Thus, for molecules with small and large rotational 
energies, the problem of the resonance excitation of the 
vibrational-rotational levels under the action of an in- 
tense EM wave reduces to the problem of an effective 
anharmonic oscillator in a constant electric field. The 
found asymptotic solutions of this problem allow us to 
follow the evolution of the vibrational-rotational spectra 
and the process of excitation of a molecule a s  the field 
is increased. The main spectral characteristic of mol- 
ecules in a strong resonance EM field is the equidis- 
tance of the levels described by Eq. (27). The laws 
governing the excitation process characterizable by Eqs. 
(32)-(34) allow us to establish a relation between the 
field intensity Fo and the most efficiently excitable vi- 
brational levels. 

The conditions of applicability of the assumption that 
the rotational energy is small compared to xewe and of 
the adiabatic approximation considered in Ref. 6 can be 
fulfilled on account of the numerical smallness of the 
constant Be in comparison with xewe (for many diatomic 
molecules xewe- IOB:'~~). However, under normal con- 
ditions (at room temperature) the fraction of such mol- 

ecules in a gas is quite small. At the same time the 
conditions of applicability of the assumption that the ro- 
tational energy is large, (13), a re  fulfilled simultaneous- 
ly with the condition of applicability of the asymptotic 
form for a strong field if 

where, at  a temperature T, Jo- (~T/B,) 'I~ for the ma- 
jority of molecules. One of the necessary conditions, 
GI2 >> 1, that follow from the inequalities (37) i s  well 
fulfilled even at room temperature for virtually all di- 
atomic molecules. As for the parameter X, its magni- 
tude under normal conditions cannot be too large. This 
circumstance i s  unimportant from the point of view of 
the investigation of the quasienergy spectra of mole- 
cules, an investigation which can be carried out at any 
temperature, owing to which we can always find that 
temperature range in which X>> 1. However, the in- 
vestigation of the process of excitation of a molecule 
under the action of a resonance EM field is, apparently, 
justified only when kT S; Ewe, since for kT >> Ewe a sub- 
stantial population of the high vibrational levels is real- 
ized even by heating the molecules. 

For many diatomic molecules X- 3 - 5 when kT-Ewe, 
which indicates the limited applicability of the widely 
used~~o-lz~ equivalent-anharmonic-oscillator approxima- 

tion (for (> h it is necessary to use the general equa- 
tions (3), exactly taking into account the dependence of 
the matrix elements on the rotational quantum number 
4. However, for a number of other molecules the re- 
gion of applicability of the obtained results can be fairly 
wide. Let us give as  an example the molecules InC1, 
which exist in the gaseous phase at T > T,, = 882 K, and 
which possess the following parameters: we = 317.4 
cm", Be =O. 117 cm-', and xewe = 1.01 cm". C151 The pa- 
rameter X, computed for 

is equal to 10.8 >> 1. For 5 = A, the fifth vibrational lev- 
e l  is most efficiently excited. The distribution then 
arising with the maximum at v = 5 differs significantly 
from the equilibrium distribution for T = T,, -- 2Ewe/k, 
which can, in principle, be experimentally detected. 
One of the possible schemes for verification is the in- 
vestigation of the dissociation of the molecules underthe 
action of a resonance wave and another field of frequency 
51: D - vowe < 51< D - (vo - l )we,  where D is the energy of 
dissociation of the molecule and vo is the number of the 
level under investigation. In the absence of a resonance 
field such a process i s  impossible, and the probability 
of dissociation of a molecule during its excitation is 
proportional to the probability of finding the molecule 
at levels with numbers v 2  VO. 

Notice, finally, that an elementary estimate yields X - (M/P)'/~ for Jo- (we/~,)'12, on account of which we can, 
apparently, expect a broadening of the region of applica- 
bility of the effective-anharmonic-oscillator approxima- 
tion when we go over to polyatomic molecules, at least 
for some vibrational modes. 
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')AU effect of partial rotational compensation of the anharmoni- 
city was noted in Ref. 8, where an attempt was made to de- 
scribe classically the excitation of diatomic molecules by a 
resonance field. 
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Primary ionization of noble gases by relativistic electrons 
V. S. Asoskov, V. V. Blazhenkov, V. M. Grishin, L. P. Kotenko, G. I .  Merzon, and 
L. S. Pervov 
P. N. Lebedev Physical Institute, USSR Academy of Sciences 
(Submitted February 6, 1977) 
Zh. Eksp. Teor. Fiz. 73, 146156 (July 1977) 

The specific primary ionization produced by -2-MeV relativistic electrons in the noble gases helium, 
neon, argon, krypton and xenon, and also in henogal, is measured with a low pressure wire spark 
chamber. It is shown that the results of the measurements of the specific primary ionization, carried out 
under the most favorable conditions, with a streamer chamber and with a low-pressure wire spark 
chamber, are in agreement with the theoretical predictions, in which the contribution of rapid secondary 
processes in the gas is taken into account. 

PACS numbers: 5 1.50. +v, 34.80.D~ 

1. INTRODUCTION 

While the specific primary ionization of gases under 
the action of nonrelativistic gases has been studied in 
sufficient detail, the primary ionization brought about 
by charged particles of high energy has been measured 
only for a small number of gases and in the restricted 
range of values of the Lorentz factor Y= ~ / r n c ~ .  C'-'21" 

The existing theoretical calculations of the primary 
ionization by relativistic particlesc's-'61 also call for 
verification. 

In addition, the data on the primary ionization is of 
interest for plasma physics, upper atmosphere physics, 
astrophysics and high energy physics. In the present 
work, we give the results of measurements of the spe- 
cific primary ionization of noble gases by relativistic 
electrons in the region of minimum ionization at r=4. 
The measurements were carried out by means of a 
spark chamber-a pulsed gas-discharge detector, wide- 
ly used in high energy physics for the determination of 
the coordinates of charged particles. A s  has been 

pointed out previously, C'7-'s1 the effectiveness of the 
spark chamber, i. e. , the probability of the generation 
in i t  of a spark discharge by the passage of a charged 
particle, should depend on the specific primary ioniza- 
tion. It can therefore be used for the measurement of 
the latter, similar to what was done in the low-efficien- 
cy Geiger-Miiller counters. In spite of the obviousness 
of this idea, attempts at i ts  realization have been under- 
taken only recently. C""21 

The spark chamber method has a potential advantage 
over the other methods of measurement of the primary 
ionization. Thus, for example, in contrast with the 
low-efficiency Geiger-Miiller counters, c"21 and also 
the Wilson ~ h a m b e r ~ ~ " ~  or the diffusion chamber, 
where the presence of impurities in the working gas is 
a condition for the normal operation of the apparatus, 
the spark chamber can be used with the pure gas. The 
spark chamber method is much simpler than that with 
the streamer chamber, C6-'01 where electron-optical am- 
plification of the light of the streamers is necessary, 
and, a s  will be shown below, it allows us  to make the 
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