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The use of the dipole moment, momentum, and nuclear force operators in calculating the intensity the 
bremsstrahlung of electrons on atoms and ions in the static approximation is analyzed. All three operators 
give the same value for the transition matrix element only if the disturbance of the bound electrons in the 
atom or ion by the incident electron is taken into account in the first order of perturbation theory. It is 
shown that in calculating the bremsstrahlung intensity in the static approximation the best results are 
obtained by using the dipole moment or momentum operator. The formal use of the nuclear force operator 
in static-approximation calculations does not give correct results for the emission of low-frequency 
bremsstrahlung photons. The limits of validity of the static approximation are discussed. 

PACS numbers: 34.80.D~ 

1. INTRODUCTION 

The bremsstrahlung (BS) emitted by an electron col- 
liding with an atom corresponds to a transition of the 
electron from one continuum state to another. Hence 
the calculation of the intensity of the BS is a fairly 
complicated problem, even when no account i s  taken 
of the disturbance of the atomic electrons by the inci- 
dent one. It is just this static approximation that is 
ordinarily to calculate the intensity of the BS 
emitted by high-energy (2 100 eV) electrons colliding 
with neutral atoms and by electrons of any energy col- 
liding with multiply charged ions. The basis of the 
static approximation is the weakness of the field as- 
sociated with the perturbation of the atomic electrons 
a s  compared with the static field of the atom at  the 
distances at which the BS is mainly emitted. That the 
field is only slightly disturbed at such distances i s  due 
to the tight binding of the electrons in the atom o r  the 
ion. Hence the static approximation is certainly not 
suitable for calculating the BS emitted by low -energy 
(5 100 eV) electrons in collisions with neutral o r  weak- 
ly ionized atoms, nor for calculating the emission of 
low-frequency BS photons by electrons of any energy 
in collisions with neutral atoms. This has previously 
been shown in a number of studiesc9-"' and has recently 
been pointed out again by Amus'ya et  a1. [12] 

Here we discuss the limits of validity of the static 
approximation, a s  well a s  the possibility of using the 
dipole-moment, momentum, and nuclear-force opera- 
tors  in calculating BS intensities in the static approxi- 
mation. 

2. BASIC FORMULAS OF THE STATIC 
APPROXIMATI ON 

In the nonrelativistic case, when u/c << 1 (c i s  the ve- 
locity of light), the intensity of the dipole emission of 
photons of frequency w = (u: -u2,)/2 (we a r e  using atomic 
units) incident to the scattering of an electron into the 
solid angle element dovz is given byc" 

where is the wave function (normalized to a plane 
wave) of the N bound electrons and the incident (N 
+1-st) electron before radiation, 0, i s  the velocity of 
the incident electron before radiation, and v, and \E, 
a r e  the velocity and wave function after radiation in- 
cident to scattering into the solid angle element dB,. 

In calculating the transition matrix element one can 
replace the dipole moment operator by either the mo- 
mentum operator o r  the nuclear-force ~perator"~ ' :  

where w =El  -E, and 2 is the nuclear charge. If ex- 
act wave functions a r e  used in the calculation, al l  three 
ways of writing the matrix element a re  equally correct  
and lead to the same result. If approximate wave func- 
tions a re  used, however, the results may turn out to be 
different. 

The wave function qoV in the static approximation has 
the form 

where a, i s  the ground-state wave function of the ion 
(for definiteness we shall speak henceforth of colli- 
sions with an ion) without allowance for the perturba- 
tion by the incident electron and F ,  is the wave func- 
tion of the incident electron in the static field of the ion: 

In what follows we shall assume that a,, the ground- 
state wave function of the ion, is spherically symmetric, 
and consequently, that ~,,(r,+,), the potential for the 
interaction of the incident electron with the ionic elec- 
trons a s  calculated in the static approximation, i s  also 
spherically symmetric. 
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Using the partial wave expansion of F, and the addition 
theorem fo r  Legendre polynomials, we transform Eq. 
(1) to the form 

where the matrix element M,,. i s  given by 

if the dipole-moment o r  momentum operator (2a), to- 
gether with the form of Eq. (4), is used in the calcula- 
tions, and by 

if the nuclear-force operator (2b) i s  used. The q~,(v, r )  
in Eqs. (7) a r e  solutions of the radial wave equations 
in the static field of the ion, having the asymptotic form 

where Zi =Z - N  is the charge of the ion. The matrix 
elements (7a) and (7b) differ by the matrix element for 
the force on the incident electron due to i ts  interaction 
with the bound electrons in the ion. In the case of an 
ion containing many electrons, therefore, matrix ele- 
ments (7a) and (7b) may differ greatly from one another. 

3. RESULTS OF THE CALCULATIONS 

Figure 1 shows the results of calculating the intensity 
of the BS emitted by electrons colliding with quintuply 
charged molybdenum and tungsten ions, using formulas 
(6), (?a), and (7b). The matrix elements (7a) and (7b) 
were obtained by numerical integration of the radial 
Schrijdinger equations, boundary conditions being im- 
posed near the origin of coordinates by expanding the 
functions cp,(v, r )  in powers of r. Exact Thomas-Fer- 
mi potentials for the ions concerned, obtained by nu- 
merical integration of the Thomas-Fermi equation, 
were used to take screening into account. The methods 
used in obtaining the Thomas-Fermi potentials and 
solving the radial SchrSdinger equations have been dis- 
cussed in more detail elsewhere. c ~ '  Angular momenta 
up to I c 7 were taken into account in the calculations 
for 2w/vf >0.25, and up to 1 6 9  for 2w/vf Q 0.25. The 
accuracy of the calculated curves was checked against 
numerical c a l c ~ l a t i o n s ~ " ~  of the BS intensity for a pure 
Coulomb field, using Sommerfeld's formula; the curves 
were found to be accurate within 4% in the region 2w/vf 
>0.25. Many angular momenta, up to 1s 4/2 ,  con- 
tribute to the emission of low-frequency BS photons, "] 
and the summation in (6) c:onverges slowly; in this case 
the accuracy of the calculations amounts to 1w0 when 
matrix elements (7a) a re  used and to 15% when matrix 
elements (7b) a r e  used. 

The results of relativistic numerical calculationsc31 
of the intensity of the BS from 1- and 2.5-keV electrons 
on neutral molybdenum and tungsten atoms, using the 
static approximation and operators corresponding in the 

FIG. 1. Ratio of the spectral intensity of the bremsstrahlung 
from electrons on quintuply charged molybdenum or tungsten 
ions to the corresponding intensity IK = 1 6 ~ ~ ~ / 3 ~ ~ v ~  on the 
bare nucleus in Kramer's approximation. The electron 
energies are given in atomic units near the corresponding 
curves. The ful l  curves were calculated with formulas (6) 
and (7a) using the dipole moment or momentum operator; the 
dashed curves were calculated with formulas (6) and (7b) using 
the nuclear force operator. The points represent calcula- 
tionsc3] of the spectral intensity of the bremsstrahlung from 
electrons on neutral molybdenum or tungsten atoms for inci- 
dent-electron energies of 92 (circles) and 36.8 (triangles) 
atomic units. 

nonrelativistic limit to formulas (6) and (7a), a r e  also 
shown in Fig. 1 for comparison. At incident electron 
energies of - 1 keV the emission takes place within the 
atom a t  nuclear distances of - l /v l  where the static po- 
tentials of the quintuply charged ions a r e  close to the 
potentials of the corresponding neutral atoms. Hence 
the BS intensity is nearly the same, whether the inci- 
dent electron strikes a quintuply charged ion o r  the cor- 
responding neutral atom (at these energies the rela- 
tivistic corrections a r e  still insignificant). The rela- 
tivistic calculationsc3] a r e  accurate within - 1w0. 

It will be seen that the results  of the calculations using 
either the dipole moment operator o r  the momentum 
operator differ considerably from the results obtained 
using the nuclear force operator. The greatest differ- 
ence is seen for low photon frequencies 2w/vi< 0.5. As 
was noted above, many angular momenta contribute to 
the emission of low-frequency photons. F o r  large angu- 
l a r  momenta satisfying the condition 

where R, is the radius of the ion, the,probability for 
finding the incident electron at distances Y,+~ < I /vl 
from the nucleus i s  exponentially small, s o  the contribu- 
tions to the matrix elements (7a) and (7b) come from 
large distances r,,, 2 l/vl >>Ri. At such distances the 
static field of the ion i s  simply the Coulomb field of 
the ionic charge: 

For  large angular momenta, therefore, matrix ele- 
ments (7a) a r e  smaller than matrix elements (7b) by a 
factor of ( z , / z )~ .  
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Let us  examine more carefully whether the large dif- 
ference between the results obtained with the dipole mo- 
ment and nuclear force operators indicates that the 
static approximation i s  inadequate for calculating BS 
intensities, o r  that the use of one of the operators is  
less justified. 

4. ALLOWANCE FOR PERTURBATION OF THE 
BOUND ELECTRONS 

In the case we a re  interested in, i. e. in collisions of 
high-energy electrons with neutral atoms and of elec- 
trons of any energy with multiply charged ions, the field 
associated with the disturbance of the bound electrons 
in the ions i s  weak a s  compared with the static field and 
can be treated by perturbation theory: 

where ~ ~ ~ ( r , , ~ )  i s  the potential (5) for the interaction of 
the incident electron with the  ionic electrons, calculated 
in the static approximation. The Hamiltonian H, is not 
symmetric with respect to the incident electron, so the 
use of this Hamiltonian in the zeroth approximation 
leads to an incorrect account of the exchange effects. 
However, the exchange effects a r e  not important in the 
case of high-energy electrons o r  multiply charged ions. 

The eigenfunctions of the Hamiltonian Ho have the 
form 

where the @,(rl, . . . , r,) a r e  the exact wave functions 
for the states of the ion and satisfy the equation 

while the F,(Y,+~) a r e  the continuum wave functions for 
the electron in the static field and satisfy Eq. (4). The 
perturbation matrix elements have the form 

I."",, ,,,=o. 
In the first order perturbation theory for a continuous 

spectrumc151 we obtain 

The summation over the excited states of the ion in- 
cludes an integration over the continuous spectrum. The 
energies of the excited states of the ion a r e  reckoned 
from the ground-state energy. Here the continuous- 
spectrum wave functions F,(r,+,) a re  normalized on the 
energy scale to a delta function. 

using wave functions (14), we obtain the dipole tran- 
sition matrix eltment (similar formulas will be found 
in papers by Buimistrov and ~rakh tenber2" '  and 
Amus'ya e t  a l .  '12'): 

Here D(Y,,~) is the dipole moment vector resulting from 
the perturbation of the ionic electrons by the incident 
electron. As we have assumed the ground state of the 
ion to be spherically symmetric, the direction of D is 
the same a s  that of r,,,; we can therefore use the par- 
tial wave expansion of the wave functions F,(Y,+~) to ob- 
tain formulas, analogous to formula (6), for the BS in- 
tensity with allowance for the perturbation of the ionic 
electrons. At large distances, when Y,+~ >>R,,  D i s  
simply the polarization dipole moment of the ion: D 
= - cy(w)r,+,/r :+,, where a(w) i s  the dynamic polariz - 
ability of the ion. Of course formula (1 6) is valid only 
when the deviation Iw -E, I from resonance consider- 
ably exceeds the natural line width. 

The matrix element of the momentum operator has the 
form 

Matrix elements (15) and (17) obviously satisfy relation 
(2a). 

The transition matrix element calculated with wave 
functions (14) using the nuclear-force operator has the 
form 

Now we shall show that the transition matrix elements 
(15) for the dipole moment operator and (18) for the nu- 
clear force operator a s  calculated with the perturbed 
wave functions (14) give the same value for the transi- 
tion probability, i. e . ,  satisfy relation (2). Taking Eq. 
(4) into account, we obtain the following expression for 
the matrix element (15) of the dipole moment operator: 

a2~rN+l+D(rN+1) ), .= (%+ V ~ + , U ~ ~ ( ~ + ~ ) + ~ ~ D ( ~ + A )  . 
r",1 I.l 

(20) 

On comparing Eq. (20) with Eqs, (18) and (19b), we see 
that for the proof it will be necessary to show that the 
sum in (19b) i s  equal to - i. e . ,  to the 
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force on the incident electron due to its interaction 
with the ionic electrons, a s  calculated in the static ap- 
proximation. 

Let us calculate the sum in expression (19b) by a 
method analogous to that used in proving the sum rule 
fo r  the oscillator strengths. [I3' We have the following 
relation between the momentum operator of an ionic 
electron and the operator for  the interaction of that 
ionic electron with the incident electron: 

The coordinates and momenta of different electrons 
commute, so from (21) we obtain 

On calculating the diagonal, matrix elements of the left- 
and right-hand sides of Eq. (22) and making use of the 
completeness of the set  of eigenfunctions of the ion, 
which satisfy Eq. (12), we find that 

From this we obtain 

Consequently, the matrix elements (15) of the dipole 
operator and (17) of the nuclear force operator satisfy 
relation (2). In calculating the sum (24) we have used 
only the explicit forms of the operators and the Hamil- 
tonian for the ionic electrons, together with the theorem 
that the eigenfunctions form a complete set; hence Eq. 
(14), like the sum rule for the oscillator strengths, is 
exact. Consequently, calculations in the first  order of 
perturbation theory also lead exactly to the correct re- 
lation between the matrix elements of the dipole mo- 
ment, momentum, and nuclear force operators. 

Another important consequence of formulas (181, (19), 
and (24) i s  the fact that when we take the perturbation of 
the bound electrons into account and use the nuclear 
force operator we again arrive at the force due to the 
static potential. This is most clearly evident in the 
case of low -frequency BS (with w << cl, where el i s  
the energy of the first  excited state of the ion) emitted 
by an electron colliding with an ion, for in this case 
the quantity f in formula (18) reduces at once to the 
force on the incident electron due to its interaction with 
the ionic electrons a s  calculated in the static approxima- 
tion (cf. (19a) and (24)). As we have said before, low- 
frequency photons a r e  primarily emitted at large dis- 
tances, and zi/r $+,, the force due to the static field in 
formula (19b) in this case, is considerably larger than 
the quantity w2~( rN+, )  = w ~ c Y ( o ) / ? ~ + ~  ( ~ ( 0 )  is the polariz- 
ability of the ion) at frequencies satisfying the condition 
w2 << zi/a)(0) (this condition i s  actually equivalent to the. 
condition w << cl). Again, therefore, we obtain formula 

(7a), not (7b). ' Thus, the formal use of the nuclear 
force operator within the limitations of the static ap- 
proximation in accordance with formula (7b) leads to 
entirely incorrect results for  the emission of low-fre- 
quency photons. 

It is evident from formulas (15)-(19) that allowance 
for  the perturbation of the bound electrons leads to the 
appearance of resonant frequencies in the BS process. 
The BS intensity r i ses  considerably at emission fre- 
quencies close to the energies of the excited states of the 
atom o r  ion. This has previously been repeatedly 
noted. C16s"s121 In the immediate vicinity of a resonance 
frequency, formulas (15)-(19) represent just the emis- 
sion of a photon from a state of the atom excited by the 
incident electron. The intensity of the radiation near 
a resonanceC161 i s  entirely determined by a single reso- 
nance term in the sum (16). Burmistrov and Trakhten- 
ber$ll' calculated the BS cross  section for an electron 
on a hydrogen atom in the Born approximation and 
showed that allowance for the polarizability leads to an 
appreciable change in the BS intensity at frequencies 
of the order  of the energy of the excited states but far 
from a resonance. 

At high incident-electron energies, the contribution 
of the atomic electrons to the BS intensity at frequen- 
cies of the order of the incident-electron energy will 
decrease with increasing nuclear charge of the target 
atom. The emission by the atomic electrons i s  as- 
sociated with the possibility of exciting one of the atom- 
ic electrons and is primarily a two-electron process; 
hence the intensity of the emission from the bound 
electrons does not change greatly when the nuclear 
charge of the target atom increases. However, the 
intensity of the direct radiation (associated with the 
vector rN+, in formula (15))rises rapidly. Indeed, let 
us calculate the contribution of the n-th excited state 
of the atom to the emission at frequencies w 2 E,. Tak- 
ing only one term of the sum into account in formulas 
(15) and (16) and using formula (11, we obtain1' 

Here the function F,(rN,,) i s  again normalized to a plane 
wave. When vg =TI: -2&,, expression (26) i s  simply the 
distorted-wave approximation to the cross  section for 
exctiation of the n-th atomic state. Calculating ex- 
pression (26) in the Born approximation, C151 

8n 
a,o=--d,?In 30, u , ,  

we obtain, for frequencies2' w Zc,, 

tlTY,, 64d, 'e,,.' 
-= In v,. 
do 9c'ui2 

In analogy with Kramer's approximation, '13' the in- 
tensity of the direct BS i s  
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where Zeff is the effective charge of the atom at the dis- 
tance that contributes most to the BS component of fre- 
quency w .  

The ratio of the contribution (27) of the n-th excited 
state to the BS intensity (28) a s  calculated in the static 
approximation i s  

It i s  evident from Eq. (29) that the emission from 
bound states cannot be neglected in calculating the BS 
intensity from an electron on a neutral atom ( d i , ~  1, 
E ,  5 1) at frequencies of the order of the ionization po- 
tential since in this case the emission comes from dis- 
tances T-,.,+~ 5 1 where Zeff 5 1 and (as has already been 
noted e l~ewhere~"* '~ ' )  the radiation from the atom is 
more intense than the direct radiation from the inci- 
dent electron. 

The emission from the bound electrons can be ne- 
glected at emission frequencies of the order of the in- 
cident-electron energy (w-  u:/2). According to the 
Pauli principle, the electrons in a many-electron atom 
a re  mostly in states of large principal quantum number, 
so the effective charge of the self-consistent field r ises  
rapidly on approaching the nucleus. Even at incident- 
electron velocities vl ;=. Z1I3 the effective charge of the 
atom at distances - l/vl, which contribute most to the 
BS, is Zeff - 2/2 in the Thomas-Fermi approxima- 
tion. C151 Hence the direct emission at frequencies w - ut/2 i s  considerably more intense than the atomic 
emission when Z >> 1. Relation (29) becomes even more 
favorable for the static approximation in the case of 
ions, sinze Zeff r i ses  a s  the charge of the ion is in- 
creased with the nuclear charge held constant. The 
contribution to the BS intensity from the discrete excited 
states of the atom is taken into account in formulas (25)- 
(29), and taking the continuous spectrum of excited 
states of the atom into account will apparently leave the 
qualitative conclusions unchanged. 

5. CONCLUSION 

For  arbitrary relations between the incident-electron 
energy, the emission frequency, the energies of the ex- 
cited states of the ion, the nuclear charge, and the num- 
ber of bound electrons, one must take the vector dipole 
moment (16) due to disturbance of the bound electrons 
into account in formula (25) in order to obtain accurate 
results in calculating the BS intensity. The static ap- 
proximation does not reproduce the "fine structure" of 
the BS spectrum associated with resonance enhance- 
ment of the BS at frequencies close to the energies of 
the excited states of the target atom o r  ion; it there- 
fore only gives the BS intensity on the average at fre- 
quencies of the order of the incident -electron energy 

for  collisions of high-energy electrons with atoms and 
ions and of electrons of any energy withmultiply charged 
ions. 

Investigation of the emission of low-energy photons 
in collisions of electrons with ions shows that in cal- 
culating the BS intensity in the one-electron static ap- 
proximation the best results will be obtained by using 
the dipole-moment o r  momentum operator, i .e . ,  by us- 
ing formulas (7a). The same situation obtains in cal- 
culating oscillator strengths o r  photoionization cross  
sections: when approximate wave functions a r e  employed 
the best results will be obtained, a s  a rule, when us- 
ing the dipole-moment o r  momentum operator, while 
using the nuclear force operator usually leads to un- 
satisfactory results. 
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