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Various aspects are considered of a new spectral method, free of Doppler broadening and proposed by 
Wieman, Hansch, et al. (Phys. Rev. Lett. 36, 1170, 1976; Opt. Comm. 18, 227, 1976). The method is 
based on registration of the signal of a test field passing through a crossed polaroid, with a definite choice 
of the polarization of the strong laser field that produces the nonlinear phenomena. It is noted in the cited 
papers that this "polarization" method is much more sensitive than earlier nonlinear spectroscopy 
methods. In the present paper it is shown theoretically that, in addition to sensitivity, the polarization 
method atTords unique possib'ities for the investigation of relaxation processes. It can be used to 
investigate the relaxation of the "polarization moment" of a quantum system (the total population of the 
levels, the orientation, the alignment) separately, something impossible with the earlier methods. An 
optimal experimental sequenF is recommended for the investigation of the relaxation characteristics. In 
the analysis of concrete cases it is noted that in practice the homogeneous saturation characteristic of 
longlived systems (molecules, atomic metastable formations) should not appear in experiments with crossed 
polaroids. This conclusion is most important for the problem of developing lasers with very high frequency 
stability. 

PACS numbers: 07.60.Fs, 42.65.Bp 

1. INTRODUCTION 
A new method of nonlinear spectroscopy has been re -  

cently proposed, Ci*23 based on the following known phe- 
nomenon. Polarizing laser radiation produces anisot- 
ropy when it interacts nonlinearly with the medium: a 
gas medium becomes uniaxial (if the radiation is linear- 
ly polarized) or  gyrotropic (in the case of circular po- 
larization), and is characterized by phenomena typical 
of anisotropic media, such a s  dichroism and birefrin- 
gence. In particular, a linearly polarized trial  wave 
passing through a medium becomes elliptically polar- 
ized and a t  the same time the axes of the ellipse rotate. 

The gist of the method ofCis2] consists of recording the 
signal of the trial wave passing f i rs t  through the medium 
and then through a polaroid crossed relative to the ini- 
tial polarization of the wave. The resultant signal is 
due only to the anisotropy induced by the strong field, 
and it is therefore patently of nonlinear origin. It was 
proposed in"'21 to use this "polarization" method for  
high-resolution spectroscopy in systems with Doppler- 
broadened lines. By registering only the nonlinear part  
of the signal, the influence of the Doppler broadening is 
eliminated. It was shown a t  the same that the 
polarization method is much more sensitive than the 
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earlier methods of nonlinear spectroscopy. With re-  
spect to the sensitivity, this method i s  apparently capa- 
ble of competing with another method whose experi- 
mental development has been initiated recently, and in 
which i t  is proposed to eliminate the influence of the 
Doppler broadening by using two-phonon processes with 
participation of photons that a re  close in frequencyc31 
(in a particular case-with participation of two photons 
with equal frequency'L41). 

In this paper we wish to call attention to the fact that 
the polarization is highly promising not only (and not so 
much) because of i ts  sensitivity but because of new 
unusual possibilities of investigating on i ts  basis the 
relaxation processes in a medium. The point is the 
following. The levels of real systems (atoms o r  mole- 
cules) a re  degenerate with respect to the direction of 
the angular momentum, and in an analysis of relaxation 
processes i t  is important to take into account the re-  
laxation produced in the sublevel system by the non- 
uniform population of the sublevels and the coherence 
between them. It i s  customary to characterize the dis- 
tribution over the sublevels by means of the "polar- 
ization moments, " such a s  the total population of the 
level, the orientation, the alignment, etc. C5*63 This 
representation is convenient from the point of view that 
in many cases polarization moments relax independently 
of one another. In ordinary methods of registration, 
relaxation characteristics of several polarization mo- 
ments appear in the nonlinear spectra, and this raises 
substantial difficulties in the reduction of the experi- 
mental data. 

It will be shown below that with the aid of the polar- 
ization method i t  i s  possible to investigate the relaxa- 
tion of the polarization moments separately. On this 
basis, the problem of developing the complete relaxa- 
tion picture i s  also simplified. 

The anisotropy effects referred to above become 
stronger if the strong-field frequency i s  close to one of 
the natural frequencies of the system, a s  will be as -  
sumed from now on. We consider here two character- 
istic situations: the tr ial  field is resonant with the 
same transition a s  the strong field (two-level system, 
Fig. la)  o r  i s  resonant with an adjacent transition 
(three-level system, Fig. lb). 

We make a minimum number of assumptions with re -  
spect to the character of the relaxation, in order to 
show that the possibilities of the method with respect to 
the separation of the individual relaxation characteris- 
tics a re  not limited to particular relaxation models. 
Under these conditions, we calculate the induced dipole 
moment a t  the frequency of the tr ial  field for a two-level 
level (Sec. 3) and three-level (Sec. 4) system. Section 
5 consists of an analysis of the results, a discussion of 
the organization of polarization experiments in which 
individual relaxation characteristics a r e  separated, 
and particular relaxation models a r e  analyzed. 

The theoretical description of systems with degener- 
ate levels usually entails cumbersome forms not only 
as  a result but of the equations themselves (see, 
e.g., C5'71). In Sec. 2 i s  proposed a compact matrix 

FIG. 1. Transitions between 
energy levels: a -two-level 
system; b-three-level sys- 

form of the equations for the elements of the density 
matrix and for the representation of the polarization 
moments. The matrix method of description is subse- 
quently used extensively since it i s  the most convenient 
from the methodological point of view. 

2. GENERAL EQUATIONS FOR DEGENERATE 
SYSTEMS 

The equations for the elements of the density matrix, 
for systems with level degeneracy with respect to the 
projection of the angular momentum, can be repre- 
sented in the form 

The indices k, j ,  and I label here the energy levels. 
Each element p,, constitutes a vector whose components 
a re  characterized by angle variables and a velocity; 
A,, is a statistical operator that describes the result 
the collision; u;, is a dynamic operator responsible for 
the interaction with the external field. rkj and o,, are  
the constants of the radiative relaxation and of the f re-  
quency of the transition k- j; Qkj i s  the excitation vec- 
tor. 

In the irreducible tensor operator r e p r e ~ e n t a t i o n ~ ~ * ~ ]  
(the polarization-moment representation o r  the xq 
representation), the vectors and operators contained in 
(2.1) have the following structure and symmetry rela- 
tions'': 

The quantity pkj(xqv) is connected with the elements of 
the density matrix in the JM representation by the fol- 
lowing relation: 

pbi(xqv)= ( - ~ ) ' I - ~ J c ( J ~ J , x I M ~ - M , ~ ) P J ~ x ~ ~ J ~ Y ,  ( v ) .  (2.3) 
XxY, 

Here Jk and Jj are  the total angular momenta of the 
levels k and j; M, and M, a re  their projections; 
c( .  . . I., .) is a Clebsch-Gordan coefficient. The ma- 
tr ices Uj, a r e  given explicitly by 

where 
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Here V J f M f ; ,  ,, is the matrix element of the interactibn, 
V f  ,(nq) a re  the expansion coefficients in the irreducible 
tensor operators, and i s  the multipolarity of the inter- 
action (we confine ourselves henceforth to the dipole 
approximation, .i. e. , X = 1). 

Equations (2.1) will serve a s  the basis for the subse- 
quent analysis. 

3. TWO-LEVEL SYSTEM 

We consider the solution of Eqs. (2.1) in the case 
when the trial field is resonant to the same transition 
a s  the strong field (two-level system, transition m-n, 
Fig. la). The matrix element of the interaction is 
given by 

where 

and E, and EL are  the cyclic components of the strong 
and trial waves; w, w, and k, k, a re  the frequencies and 
the wave vectors; d,,, is the reduced matrix element of 
the dipole moment. The density-matrix elements that 
play an important role in the problem have the follow- 
ing structure: 

Here pjj i s  the value of pjf in the absence of external 
fields. On the other hand, the elements R and r satisfy 
under stationary and spatially -homogeneous conditions 
the following equations in matrix form (in perfect anal- 
ogy to the case of nondegenerate systemsc81): 

Am== ( r m m - i ~ ' ) I - A m m ,  A,,*=(rnn-i&') I-A,,,,, 
Amn=(rmn-iQ'-iel)Z-Am-. Anm=(rnm+iQT-i&')Z-A",, 
9'=Q-kv. Q-a-a,,. I (xqv l  x lq l v1 )  = 6 ( ~ - v , ) 6 , , 6 ~ , , .  

Each matrix element or  vector element in (3.3) and 
(3.4) i s  in turn a matrix o r  a vector, respectively. 
Thus, we a re  dealing with the so called supermatrices 
and supervectors. The matrices U:, and u:, are  given 
by formula (2.4) in which V j , ( ~ a )  is replaced respective- 
ly by the quantities G, and G:,(x= I). 

The next task i s  the solution of EqS. (3.3) by itera- 
tion with respect to the strong field. Bearing in mind 
the general character of the analysis, i t  is convenient 
to introduce for the operators Ajk the Green's functions 
defined by the equation 

The solution of (3.3) by iteration is obtained with the aid 
of the Green's function in elementary fashion. Thus, 
fo r  the matrix element r,,, which describes the polar - 
ization induced at the frequency of the trial field, we 
obtain the following result: 

rm.=ijmn{(um,m~,,LBmInpnno) 

- [ (umPfmmU",-+Um."f"*uBmn) fm.(~m"~pmm"-am""~.R) 

+ ( ~ m n " ' f m m ~ m n m + ~ m n * f  nnumm")Fnrn (Unmmpmmo-UmnpmO) 

+ (U~,'"F,,U,~"'+E,,"F,,U.,~)F,,(U,,'~~,~~~~,"~,,~) 
+ (um.m~mmUmnm+~m,nF1lnumnn)F,, . ( U , C ~ ~ ~ ~ - U , ~ ~ , . O )  I )  (3.6) 

Here F ,  is the Green's function for the operators Al,  
and E' = 0.  Unfortunately, without specifying the form 
of the Green's function i t  i s  impossible to simplify the 
result (3.6) significantly. We therefore make several 
simplifying assumptions concerning the character of 
the relaxation. We start  from the model of the isotropic 
collisional perturbation. c53 On the basis of the ideas of 
ofC5*91, we can assume that the Green's functions have 
the following structure2): 

and analogously for F f , .  It i s  assumed, a s  usual, that 
in the absence of fields the population distribution over 
the levels is Maxwellian in the velocities and uniform in 
the magnetic sublevels, i. e. , 

In optical experiments, a quantity r,,,,(xqv) appears with 
a value H = 1 (the induced dipole moment). We obtain 
for this quantity the following final expression, averaged 
over the velocities: 

We have introduced here the notation 

J ( x q )  = ~ ( - ~ ) ' - " ~ ' ~ ( l l x l a ' - ~ , ' q )  G,-'G.:~, 
a'.,' 

{ ' }* c ; ) = {  ' r, N-Nm-N". 
Jm Jn Jm ' J" Jm J" 

The angle brackets denote integration over all the ve- 
locities. I(nq) is the strong-field polarization tensor in 
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the xq r e p r e s e n t a t i ~ n ~ ~ " ~ ~ ;  J(xq) is the crossing polar- 
ization tensor. J( uq) is constructed in analogy with the 
usual polarization tensor, but in contrast to the latter, 
J(xq) contains bilinear combinations of cyclic compo- 
nents of different origin. 

Thus, formula (3.9) describes the circular compo- 
nent (a = 0, *I) of the macroscopic dipole moment of 
the medium at  the trial-field frequency. Before we 
proceed to analyze it, we obtain an analogous result for 
the case when the trial field is resonant to a neighbor- 
ing transition (three-level system, Fig. lb). 

4. THREE-LEVEL SYSTEMS 

The matrix elements of the interaction take the form 

The density matrix elements on the transition m-n are  
described a s  before by the f i rs t  equation of (3.3). The 
additional significant elements satisfy the following 
relations: 

The induced polarization a t  the frequency of the trial 
field is determined by the element Y,,. For this ele- 
ment, using Green's functions in analogy with (3.5), we 
obtain (cf. (3.6)): 

r, ,=if,~ { ( ~ ~ ~ " p , ~ ~ - t ? ~ l p i " )  

-Um2fd [ u ~ ~ " F ~ ~ ( U ~ ~ ~ ~ ~ ~ ~ - U ~ ~ ~ ~ ~ ~ O )  

+U,'f,l (ILlmpmmo-Eml1pl10) I 

-ILI'"F,,[ Um"'Pm,(Um,'"pmm0-U,,, ."pa>) 

+ (UmnmF, (U,mmpmmLUv,m"p,.,o) I ) .  (4.3) 

Assuming that the Green's function has the structure 
(3.7) and that the density matrix not perturbed by the 
field takes the form (3.8), we arrive a t  the following 
analog of formula (3.9): 

bmI ( ~ ) - ( f w  ( v I v ~ ) ~ . ( ; )  ( v ~ I v ~ )  [ f m r  ( v ~ ~ v I )  +Fm.'(v~Ivs) I W ( V I )  )c:l) , 

Bml (x )=<fml  ( v l v , )  ~ 2 : )  ((v, Iv,) [F,,(v,Ivs) +Fnn'(vrlvs) ] w(v,) >c? , 

We proceed to the analysis of formulas (3.9) and (4.4). 

5. DISCUSSION. POLARIZATION METHODS 

The choice of the model (3.7) for the Green's func- 
tions has resulted in separation, in explicit form, of the 
polarization structure in (3.9) and (4.4), i. e.  , of the 
dependence on the states of the polarization of the tr ial  

and strong fields, and the structure turned out to be 
the same for  r,, and Y,, . All the subsequent deductions 
concerning the polarization properties will consequently 
pertain equally well to two-level and three-level sys- 
tems. We note that in the derivation of formula (4.4) 
for the three-level system we did not use specific fea- 
tures of the system, such a s  Raman scattering ( ~ i g .  
lb). The results a r e  therefore equally applicable to 
schemes of the two-quantum absorption (luminescence) 
type. 

The terms proportional to @(x)  in (3.9) and (4.4) de- 
scribe the so-called nonlinear interference effectscfi1 
(interference terms). The terms proportional to B(X) 
a r e  connected with the changes of the distributions in 
the velocities and in the magnetic sublevels on the com- 
bining levels m and n under the influence of the strong 
field. We shall call them "population" terms. We 
note that the rrpopulation" and interference terms differ 
substantially in their polarization structure (this will 
become particularly clear later on). 3, 

Terms having different values of x in the nonlinear 
increment to formula (3.9) a r e  due to the relaxation of 
the polarization moments of the states m and n; this re-  
laxation i s  described by the Green's functions f :;' and 
F:;'. The terms contributing to the sum a r e  those with 
x = 0,1,2, a fact dictated by the properties of the 
Clebsch-Gordan coefficients. At x = 0 the Green's 
functions describe the relaxation of the total population, 
a t  x = 1 and at  x = 2 they describe the relaxations of the 
orientation and of the alignment, respectively. In the 
case of a three-level system (formula (4.4)) the inter- 
ference term is connected with the relaxation of the 
"polarization moments" of the forbidden transition 
n-1 (the Green's function f ',;'), which a re  constructed 
in analogy with the polarization moments of the levels 
(see (2.3)). 

In the general case, the expressions for Y,, and Y,, 

contain all the terms with H = 0,1,2, i. e. , a rather 
large number of relaxation characteristics. We shall 
show how to separate with the aid of the polarization 
method the terms with separate values of x, and will 
indicate the optimal way of successively investigating 
the relaxation characteristics. 

Consider the following experimental setup: the strong 
field is circularly polarized and weak one linearly, 
while the wave vectors k and k, a r e  collinear. Figures 
2a illustrate the transition scheme (for the sake of sim- 
plicity we show the transition Jm = 1 - J, = 0) in a coor- 
dinate system haveing a quantization axis along the wave 
vectors. In accordance with (3.9) and (4.4) we have 

The indices numbering the energy states have been 
left out here, since this structure is common to the two- 
level and three-level systems; 6,, i s  the Kronecker 
symbol. Since r(1ff)a Gg, the cyclic components of the 
tr ial  field a r e  propagated independently of one another, 
i. e . ,  a re  natural waves. The propagation of each of 
them can consequently be described with the aid of a 
complex vector 
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In the course of the propagation, the amplitudes and 
phases of the different natural waves vary essentially 
in different fashions (dichroism and birefringence). In 
the general case this difference i s  determined both by 
n 
population" and the interference parts of r. In the 

"population" part of the terms with x = 0 and x = 2 in- 
fluence the propagation of the left and right "circles" 
( a = * l )  in like manner. The difference i s  determined 
by the term with 'x = 1. In the interference part, the 
right "circle" (a! + 1) is influenced by terms with both 
values of x, while the left circle only with x=2 .  Let 
us  explain the reason for these singularities. We 
start with the "population" terms. The strong field, 
characterized by a polarization tensor I( uq), induces 
in the states m and n the elements pjj(xqv) a ~ ( x ~ ) [ ~ ~ ~  
( j  = m, n). In our case we have 

i .e . ,  the elements pjj(OOv) a re  induced. Taking into 
account the connection between pjj(xqv) and p+,;+,. 
(formula (2.3)), we obtain 

+5"'[lj(Ji+l) (Wrl) (2lj-I-3) ]-'h[3P-1j(Jj+1) Ipjj(20v)) (W,+i)-". 

(5.4) 
Thus, pjj(OOv) represents uniform distributions of the 
populations over the sublevels, while pjj(lOv) and 
pjj(20v) represent linear and quadratic distributions, 
respectively. The Green's functions with x = O , 1 ,  and 
2 describe independent relaxation of the corresponding 
distributions. The relaxation of the symmetrical dis- 
tributions (x  = 0,2), naturally, does not offer any ad- 
vantages in interactions with any particular "circle" of 
the trial field. The difference lies only in the asymmet- 
trical distribution, i.e., at x = 1 a s  is reflected in (5.1). 

The understanding of the polarization structure of the 
interference part is facilitated by Fig. 2a. For the 
right-hand "circle" of the tr ial  wave ( a  = 1) an impor- 
tant role is played by the relaxation of the sublevel pop- 
ulations (more accurately, the beats of the populations). 
This is precisely why at  a = 1 the quantities B(x) in 
(5.1) a r e  represented in the same proportion a s  B(x). 
For the left-hand "circle, " only the relaxation of the 
coherence between the magnetic sublevels with AM= 2 
is significant, and this relaxation is connected with the 
quantity x = 2. This fact also agrees with the structure 
of (5.1). 

Let us examine another experimental setup (Fig. 2b): 
the strong field is linearly polarized and the trial field 
is either circularly o r  also linearly polarized, but the 
plane of polarization is rotated (say through 45"). The 
wave vectors a r e  collinear a s  before, and the quantiza- 
tion axis is parallel to the electric field of the strong 
field. In this case we obtain 

In this choice of the coordinate system, the circular 

components ( a  = 0, 1) a r e  also natural waves whose 
propagation is described by formula (5.2). The condi- 
tions for  the propagation of the waves with a =* 1 a r e  
the same, s o  that in actual fact the natural waves a re  
waves with orthogonal linear polarizations, one of which 
is polarized in the same manner as the strong field. 

In this case, the polarization tensor of the strong field 
Z(xq) also changes the structure of Z(x0)6,, and, in 
addition, Z(10) = 0.. Consequently, the elements pjj(lOv) 
a re  not induced in the system, and this has led to the 
vanishing of the term with x = 1 in the "population" part. 
The fact that the terms proportional to B(2) a r e  not the 
same at  a! = 0 and a = f 1 is caused by the non-uniform 
populations of the sublevels on account of the element 
pjj(20v) (see (5.4)) which leads, a s  is illustrated in Fig. 
2b, to different positions of the propagation for  the 
waves with a! = 0 and a! = A 1. The term proportional to 
B(0) is the same for  all the waves for  the same reasons 
a s  in the preceding scheme. The interference part  con- 
tains a term with x = 1. It is connected with the co- 
herence between the magnetic sublevels, a coherence 
which i s  substantial for the waves with a! = * 1. For the 
waves with a = 0, the interference terms B(x) a re  
present in the same proportion a s  the "population" 
terms, and in particular, there is no term with x = 1. 
For waves with a = * 1 (orthogonal polarization), there 
is no term with x = 0, inasmuch a s  here, in accord 
with Fig. 2b, only the coherence between the sublevels 
is of importance. 

We proceed now to the question of separating the in- 
dividual relaxation characteristics. We confine our- 
selves here to systems with large Doppler broadening 
(E>> r, where r is the characteristic homogeneous 
width). The organization of the experiment is assumed 
to be the f ~ l l o w i n ~ . ~ ' ' ~ '  After passing through the me- 
dium, the trial  field is made to pass through a polaroid 
crossed with the polarization of the field parallel to its 
interaction with the medium. The signal passing 
through the polaroid is then registered. I t  is known"'] 
that when waves propagate in opposite directions in sys- 
tems with large Doppler broadening, there a r e  no inter- 
ference terms in the nonlinear susceptibility, i. e . ,  
there a re  no P(x) terms in formulas (5.1) and (5.5). 4' 

As the field polarization state characterized by Fig. 2a, 
the signal past the crossed polaroid i s  proportional, in 
accordance with (5.1) and the propagation law (5.21, to 
the quantity 

a b 
FIG. 2. Transitions between sublevels of a two-level system 
(J ,  = 1, J,, = 0). The strong field is circularly (a) o r  linearly (b) 
polarized. 
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For the case corresponding to Fig. 2b and formula 
(5.5), the signal is proportional to 

We can consequently separate only one term from each 
of the sets of terms ~ ( x )  and B(x) in (5.1) and (5.5), 
which differ in their relaxation characteristics. Thus, 
i t  is possible to create experimental conditions under 
which the terms B(x) with x =  1 and x =  2 can be sep- 
arately investigated. 

Unfortunately, the remaining terms ~ ( 0 )  and P(H) 
cannot be separated experimentally, and only a program 
whereby they a r e  turned on in succession can be real- 
ized. To this end, after separately studying ~ ( 1 )  and 
B(2) by the described method, i t  is advantageous to use 
the ordinary methods of nonlinear spectroscopy-in- 
vestigation of nonlinear absorption (amplification). In 
an experiment with opposing waves there will likewise 
be registered only the ' ~ o p ~ l a t i o n ' ~  part  of the non- 
linear increment. For  the case described by formula 
(5.5) this means that in the registered signal there will 
be present only terms B(0) and ~ ( 2 ) .  It i s  next possible 
to include the interference terms j3(~). For waves with 
orthogonal circular polarizations and propagating in the 
same direction (formula (5.1)) the only intereference 
term present is j3(2), while the entire set  of the "popu- 
lation" terms is present. Next, the term B(1) is added 
to the term b(2) in the case of waves with orthogonal 
linear polarizations and propagating in the same direc - 
tion (formula (5.5)), and a combination of j3(0) and P(1) 
enters in the case of identical linear polarizations. We 
note that in a two-level system B(x) and B(H) a r e  not 
completely independent, inasmuch a s  in the equations 
for the Green's functions f,, and Fjk the collision oper- 
ator Ajk is one and the same (see (3.3))and (3.5)). This 
circumstance facilitates the investigation of j3(x) after 
B(x). 

So f a r  we did not touch upon the question of the ex- 
pIicit forms of the quantities @(K) and ~ ( x ) .  The struc- 
ture of these quantities, i. e . ,  the dependence of the f re-  
quency detunings and the change of this dependence with 
changing pressure, i s  closely connected with the re -  
laxation model, in other words, i t  is determined by the 
concrete experimental object and by the experimental 
conditions. In the investigation of P(x) and B(x) a s  
functions of the frequency detunings and of the pressure 
yields information on the parameters of the model (re- 
laxation characteristics). By way of example, we shall 
discuss here two relaxation models. 

In the f i rs t  of them, which is the simplest and most 
widely used, the change of the velocity i s  described by 
the model of strong collisions and is accompanied by a 
uniform mixing of the sublevels. In addition, it i s  
assumed that the change of the projection of the angular 
momentum occurs in the collisions without change of 
velocity. C5-71 This model describes well atomic sys- 
tems, which a re  characterized by short lifetimes of the 
states and also molecular systems at  moderate pres- 
sures. The Green's functions in this case a re  

F,.(vIv,) -6 (v-v,) [rm,!'Li(9-kv) I-'. 

Here rE  a r e  relaxation constants of the polarization 
moment, n, is the effective number of collisions dur- 
ing the lifetime on the level j. The Green's functions 
(5.8) lead to the following expressions for the "popula- 
tion" terms: 

Each quantity B(x) is a superposition of a narrow dis- 
persion term of homogeneous width and a broad homo- 
geneous-saturation "pad. " We call attention to the fact 
that the "pad" contains the Kronecker symbol W, a s  a 
factor. Consequently, i t  will not be registered in the 
experiment with the crossed polaroid. The registered 
signal takes the following form (for example, for  the 
case (5.10)): 

The value x = 1 corresponds to circular polarization of 
the strong field, and n = 2 to linear polarization. The 
registered signal has a Lorentz profile with a half -width 

+ r:,' and with an amplitude proportional to l/[r',xI2. 
In this case one can determine experimentally both 
r:i + rA1/ (by measuring the width of the line profile) 
and rzd (H = 1,2) by investigating the pressure depen- 
dence of the amplitude of the profile (or the area). 

The reason for the absence of a "pad" in the signal 
past the crossed polaroid i s  connected with the assumed 
strong mixing of the sublevels in collisions, and is 
quite clear in light of the arguments given above. On 
the other hand, the appearance of a "pad" would be evi- 
dence of incomplete sublevel mixing, which would yield 
additional information on the processes of disorientation 
and would lead to a refinement of the relaxation model. 

For  molecular systems and atomic metastable sys- 
tems a t  low pressures, the analyzed relaxation model 
becomes no longer valid, since in this case elastic scat- 
tering through small angles plays an important role. ['] 
The influence of collisions on the nonlinear-absorption 
spectrum in systems with degenerate levels was ana- 
lyzed incs3. The basis used was the isotropic-perturba- 
tion model, and the change of velocity was described 
with the aid of collision-integral kernels that depend on 
the difference between the velocities before and after the 
collisions. It follows from the result ofcg1 that B ( H )  con- 
tains in place of the dispersion terms (as in (5.9) and 
(5.10)) structures that a re  spectrally more complicated 
and whose parameters a re  connected not only with the 
relaxation constants but also with the characteristics of 
the differential cross  section of the scattering. In addi- 
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tion, the terms B(X) 3ave different spectral structures 
at different values of .; s o  that in this case the most 
pressing problem is the experimental separation and in- 
vestigation of each of the terms B(x). Thus, under the 
experimental conditions that lead to formulas (5.6) and 
(5.7), the quantities I ~ ( 1 ) l '  and I B(2) l 2  are  individually 
separated. Investigating the dependence of the signal on 
the frequency of the tr ial  field, we can obtain on the ba- 
sis of the results ofcB1 information on the parameters of 
the model that describe small-angle elastic scattering. 

In conclusion, let us  dwell on one important practical 
application of the results. We have in mind high-accu- 
racy stabilization of laser frequencies. In our opinion, 
the polarization method using a crossed polaroid i s  in 
this respect highly promising, and not merely because 
of i t s  sensitivity. Namely, in the development of lasers  
with high frequency stability interest attaches only to 
long-lived systems (molecules and atomic metastable 
systems), and in these systems the homogeneous sat- 
uration due to the translational relaxation is exceptional- 
ly large. The important role in molecules i s  played 
also by rotational relaxation, which also leads to homo- 
geneous saturation. It is natural to expect translational 
and rotational relaxation to be accompanied also by a 
strong disorientation (mixing over the magnetic sub- 
levels). Consequently, just a s  in (5.81, the Green's 
functions F::) describing the relaxation in these sys- 
tems will contain, with a large weight, a term propor- 
tional to 6,,W(v) and responsible for the homogeneous 
saturation and containing the Kronecker symbol 6,,. 
The remaining part  of the Green's function, which gives 
the inhomogeneous saturation, can either correspond to 
the model (5.8), or,  at low pressure, to a more com- 
plicated model. ['I Thus, if we take a trial wave having 
the same frequency (or the same source) a s  the strong 
wave, then in the experiment with a crossed polaroid, 
corresponding to Fig. 2a o r  2b, the signal (for example 
for  the model (5.8)) will bt? proportional to the quantity 

As a function of the freque.ncy of the field, the signal is 
a contour with homogeneous half -width r(,,!,?. In the 
model ofC93, Eq. (5.12) is replaced by a more compli- 
cated spectral structure, but an important fact i s  that 
in either case the "pad" of the homogeneous saturation 
is completely missing. 

Formula (5.12) and i ts  equivalent in the model ofCS1 
pertain, strictly speaking, to systems in which each 
state can be described by one rotational quantum num- 
ber-the total angular momentum J. It is obvious, 

however, that the conclusion that the homogeneous sat-  
uration is substantially "suppressed" is valid also for 
complicated systems (molecules of low symmetry): the 
homogeneous saturation is accompanied in either case 
by strong disorientation of the particles, a t  which the 
anisotropy of the medium vanishes. 

I am deeply grateful to S. G. Rautian for a useful dis- 
cussion of the result. 

 he velocity v enters in the matrices and the vectors on the 
par with indices, i. e. ,  integration with respect to the veloc- 
ity is implied in the corresponding cases. 

Z ' ~ e  note that this model incorporates all the presently !mown 
relaxation models for degenerate states. 

3 ' ~ e  note in this connection that the distinction between the 
interference and population terms, which is made inc"' on 
the basis of the frequency-correlation properties of the non- 
linear susceptibility, turns out to be natural also from the 
point of view of the polarization structure. 

4)~n (luminescence) schemes, to the contrary, the hterference 
terms drop out if the waves propagate in the same direction!"' 
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