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Exact expressions for the transition probability amplitudes are presented in the form of Feynman path 
integrals, and their quasiclassical approximations are given. The quasiclassical representations obtained for 
the transition amplitudes in terms of the quasiclassical action in the action-angle variables are used to 
study a wide range of multidimensional problems with real interaction potentials (vibrational-rotational 
transitions in molecules, collisions of particles with a surface, etc.). Perturbation theory techniques for 
finding the classical action in the cases of fast and slow collisions are developed. As examples of the 
solution of multidimensional problems with real interaction potentials (vibrational-rotational transitions in 
molecules, collisions of particles with a surface, etc.). Perturbation theory techniques for finding the 
classical action in the cases of fast and slow collisions are developed. As examples of the solution of 
multidimensional problems, analytic expressions are obtained in terms of Bessel functions for the 
differential cross sections for excitation of hydrogen by a charged particle and of the rotational degrees of 
freedom of the molecule in the Li++H, collision, and also for the total cross sections for excitation of the 
high-lying hydrogen levels in H+H collisions. 

PACS numbers: 34.10.+x, 34.50.Ez, 34.50.H~ 

It is convenient to use the multidimensional quasi- 
classical method in angle-action variables in computa- 
tions of the vibrational-rotational transitions in mole- 
cules, the excitation of hydrogen-like states by charged 
and neutral particles, the collisions of particles with 
surfaces, etc. This method has been applied largely in 
the linear three-body problem (see Miller's review 
articlec']), where numerical computations of the clas- 
sical trajectories have been effectively used. Consider- 
ably less attention has been given to the question of the 
computation of the scattering amplitudes in a more real- 
istic three-dimensional collision model. In this case 
there arise additional complications connected with the 
derivation of convenient quasiclassical representations 
for the scattering amplitude, with the approximate com- 
putations of the classical action S and the remaining 
multidimensional integrals, a s  well a s  with the analytic 
continuation of the results obtained in the complex-pa- 
rameter region in the computation of the classically 
forbidden transitions. 

In the present paper we briefly analyze the various 
forms of the exact expressions for the transition am- 
plitudes in the form of Feynman path integrals and the 
quasiclassical representations obtained from these ex- 
pressions with the aid of the stationary-phase method. 
Classical perturbation theory techniques a re  formu- 
lated which allow us to find the classical action for fast 
and slow collisions. 

The derivations of the theory, which is suitable for 
carrying out specific calculations, a re  illustrated by 
solving specific physical problems: the computation of 
the differential cross section for excitation of the hy- 
drogen atom by a fast charged particle, the computa- . 
tion of the total cross section for excitation of the high- 
lying states in the collision of two hydrogen atoms, and 
the computation of rotational transitions in diatomic 
molecules. In the f i rs t  case, a s  i t  turns out, the cor- 
rection for the internal motion of the target removes 

the earlier noted divergence of the zero-angle eikonal 
amplitudes in the case of charged particles. ['I A com- 
parison is carried out with experiment and with the 
data of other authors. In the second case the found 
total cross  sections can be of interest in connection 
with the study of the relaxation processes in a hydrogen 
plasma. The computed cross  sections for the rotational 
transitions in the Li*-Hz system a re  in good agree- 
ment with experiment, and demonstrate the accuracy 
of the method. 

1. EXACT EXPRESSIONS FOR THE SCATTERING 
AMPLITUDE IN  THE FORM OF PATH INTEGRALS 
AND THEIR QUASICLASSICAL APPROXIMATIONS 

Let us give some exact expressions for the scatter- 
ing amplitude in the form of Feynman path integrals on 
the basis of the results of Ref. 3, where we refer the 
reader for certain mathematical details of their deriva- 
tion. 

We shall proceed from the well-known continuous rep- 
resentation for the amplitude of the transition i- f dur- 
ing the finite time interval t - t'Ce51: 

where q' and q denote the se ts  of initial and final Carte- 
sian coordinates in configuration space, the *,,, are  the 
initial and final wave functions of the unperturbed Hamil- 
tonian, and J D r  denotes a functional integral in the 
phase space (q, p), which can be understood, for exam- 
ple, in the sense of a finite-multiple approximation. C41 

The representation (1), which is in the form of an in- 
tegral over paths with given coordinate ends q' and q, 
is general, and is suitable for both nonstationary and 
stationary perturbations. 
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In the stationary case, to obtain the T matrix, which 
is connected with the S matrix by the relation 

i t  is necessary to accomplish the passage to the limit 
t' - - m, t - + -, and separate out the two 6-functions 
figuring in (2). The actual accomplishment of this pro- 
cedure depends on the form of the functions and 
has been carried out for the case of elastic scattering 
in Ref. 6. 

In the case of elastic scattering or  the problem of ex- 
citation involving the use of the angle-action (rp-I) vari- 
ables, the bound-state wave functions *,,fC71 can be 
written in the form (C is a normalization constant) 

Further, taking into account the easily verifiable-for 
example, in the framework of the finite-multiple ap- 
,proximation-relation 

p 1 q ' - p ~ + S ( q t ,  q't') =- j f ( a ) d P ( o ) -  j Hdo---S(pt ,  p't') (4) 
P 1 '  

and including the integration over the starting and end 
points q', q in the functional integral (I), we have 

Here the functional integration is performed over clas- 
sical trajectories with given initial and final momenta. 

Notice that the equality (4) is exact for elastic scat-' 
tering and formal for the problem of excitation, since 
we discarded the exponential tails of the bound-state 
wave functions, did not prove the canonical invariance 
of the integral (1) with respect to the angle-action vari- 
able:, etc. The expression (4) is justified in this case 
by the fact that, first, the quasiclassical approximation 
(4) coincides with the one that is obtained when we apply 
the stationary-phase method (f - 0) to (1) and then go 
over to the angle-action variables with the aid of the 
well-known rules of transformation from one represen- 
tation to another. Such considerations were essentially 
used in Miller's papers, "I where the "classical S ma- 
trix" was obtained from (4) by the stationary-phase 
method. In this case the passage to the t' - - t - + 
limit can be accomplished on even real classical tra- 
jectories. Secondly, a s  has been shown in practical 
computations, the "subbarrier" asymptotic form of 
which is important for the computation of the classically 
forbidden transitions, can be taken into account by 
means of an analytic continuation of the final expres- 
sions into the complex-parameter regions (see, in this 
connection, Refs. 8 gnd 9). The exact continuous T- 
matrix representation for the inelastic processes in 
terms of the abbreviated action So was obtained by 
another method in Refs. 10, 11, and 3, and has the form 
(for definiteness, we consider the case of excitation) 

Here the a r e  the wave functions of the initial and 
final states, So is the abbreviated action, and {Dr), ,, 

denotes the functional integral over trajectories lying 
"on the average" on the energy surface ye = E .  In the 
f -  0 limit% coincides with the Hamiltonian function H. 

Let us now proceed to the quasiclassical expressions 
for the transition amplitude aif(tl, t)  and Tif for A- 0 on 
the basis of the expressions (1) and (5), respectively, 
and in the approximation (3) for the bound -state wave 
functions (in the angle-action variables). Let us  sepa- 
rate out from the functional integral (1) or (4) one in- 
tegration over an intermediate point q* and apply to the 
remaining functional integrals the stationary-phase 
method in the vicinity of a nondegenerate classical tra- 
jectory (for details of such computations, see  Ref. 3). 
As a result, we obtain, a s  is easy to verify ( B  is a 
normalization constant that depends on the dimension- 
ality of the space) 

. , 
Xexp -(Aq'-AEt+AS-+AS+) , [ : 

AE-E,-E,,  A=pl-p; 
1 

d 
AS-= j (a-p ' )  dq"- J [ H  ( a )  - E , ] d o ,  

'1 f ' 

In these formulas 1 8q/8q*I and 1 ap,*/8p11 a r e  the cor- 
responding transformation Jacobians, which can be ex- 
pressed in terms of the derivatives of AS,  with respect 
to the initial and final coordinates, the AS,  are  the 
increments in the classical action over the ingoing and 
outgoing branches of the trajectories, and A and AE 
are  the given increments in the momenta and the en- 
ergy. The expression (6) is similar to Marcus's for- 
mula, t?] but has been derived more rigorously from a 
continuous integral and is applicable to the case of non- 
stationary perturbations. Because the momenta p_* 
and p: are  different, the two branches of the path a re  
not assumed to be joined. For q* = q o r  q* = q', we ob- 
tain a representation of the "final" or  "initial" coordi- 
nate point and, upon the computation of the integral over 
q* by the stationary-phase method (q* =q), the classical 
Miller S matrixt'] (t- - m, t- + m, provided the station- 
ary-phase point q$ is real (i. e., the transition is clas- 
sically allowed). When account is taken of the complex 
stationary-phase points, we obtain, in principle, clas- 
sically forbidden transitions. The expression (6) can 
also be used to derive different isometric representa- 
tions. 

In deriving a similar representation for the scattering 
amplitude (T matrix), we shall proceed from the ex- 
pression (5) in the angle-action ((p-~"~]) variables. In 
contrast to the earlier considered case, the end point 
q is now separated out by the presence of the potential 
W(q), and the initial and final configurations a re  char- 
acterized by different potentials, W,,, = W(I , ,  , cp, R), 
since the action variable I assumes different values 
I,, in the entrance and exit channels (in analogy to the 
rearrangement reaction in the eikonal approxima- 
tiont'3"51 ). Separating out an intermediate coordinate 
point (R*, p*) in (5), applying the stationary -phase 
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method, "" and symmetrizing the expression (5) with 
respect to the initial and final configurations, we ob- 
tain the final expression for the excitation amplitude 
(the three-body problem; CL is the reduced mass): 

AS*='/Z(AS,+ AS,) .  I;;=fi(v+G), 

In the formulas (81, (9) A and k a re  increments in the 
momentum and the quantum-number vector, while DiSf  
are  the Jacobinas of the coordinate transformations. 

The expressions (6) for the transition amplitude (the 
S matrix for t - tl- "0) and (8) for the T operator a re  
suitable for the computation of transition probabilities 
and differential cross sections under quasiclassical 
conditions. Notice that (6) and (8) a re  expressions for 
the S and T matrices respectively. In a particular case 
(small angle scattering), the expression (8) reduces to 
the form of (6) and of a representation for the impact 
parameter. '"I 

2. THE CLASSICAL PERTURBATION-THEORY 
METHOD 

To compute the transition amplitudes with the aid of 
the formulas (6) and (81, i t  is necessary to know the 
classical-action increment AS, which can be found by 
means of perturbation theory. Let us, for definiteness, 
consider the excitation problem (the formula (8)), and 
formulate perturbation-theory methods in the case of 
fast  (tc/T << 1) and slow (tc/T >> 1) collisions. 

The Hamiltonian function for the problem in the re- 
quisite variables has the form 

H(T,  v, R ,  P )  =Ho(v, p) +cW(q, v, R )  
- 

Ho=Zo ( v )  + p Z / 2 p .  (10) 

where z0(v)  is the Hamiltonian function for the target 
in the action variables v (I = E(v + 6), (p varying in this 
case in a cube of edge length 27r) and & is the small- 
ness parameter. 

Let us write down the canonical system of Hamilton's 
equations in the dimensionless time ? = Y "  t: 

In the case of fast collisions (tc/T << 1, tc=Ro/V is the 
collision time, T = vi;' is the characteristic period of 

the internal motions), let us se t  y = t,. We then have 
the dimensionless small parameters Yvo << 1 and &Y/E 
<< 1 (v, - ~ Z , ( V ) / ~ V ,  YP/R~P-YV/R~- 1). 

In the case of slow collisions (tc/T>> I), let us  se t  
Y = T and obtain a s  the small parameters yV/Ro << 1 and 
EY/E << 1; yvo- 1. In both cases we have the small pa- 
rameter EY (E= l )  in front of the perturbation2' when the 
relative motion is fast o r  slow. However, for slow col- 
lisions, we should regard (p(yvo- 1) a s  the "fast" vari- 
able, while for fast collisions R(yV/R0-1) should be 
regarded a s  the "fast" variable. Such a separation of 
the motions into "fast" and "slow" motions allows us to 
apply in canonical systems a fairly general perturba- 
tion-theory method, '"I which is constructed on the basis 
of the principle of averaging of Eqs. (1 1) over the "fast" 
variable. As applied to the problems of the theory of 
collisions, this method was developed in Ref. 18. In 
particular, if the Hamiltonian H has with respect to the 
"fast" variable an average value equal to zero (fast col- 
lisions), then i t  coincides with the canonical theory of 
perturbations. On the other hand, for slow co_llisions 
H has an average value H and a periodic part H, as a 
result of which the expansion in powers of the small pa- 
rameter is constructed differently. Let us  give the 
principal expressions of the perturbation theory that 
a re  necessary for the computation of the increments in 
the action in the case of fast and slow collisions. 

* 

A. For greater clarity in the case of fast collisions 
(cy/E << I), we shall proceed from the standard version 
of the canonical perturbation theory for the "eikonalized" 
Hamilton-Jacobi equation, which can be written in the 
form 

In this equation 8 denotes the internal energy of the 
target, and we have made the approximating substitu- 
tion p2/2p" - pi/2p+ V,p, Vz = p,/k where pz is the rela- 
tive-momentum value which is approximately conserved 
along the segment I of the path, and which we shall 
choose later. 

Let us seek the solution to (12) in the form of the ex- 
pansion (we formally assume E to be a small parameter 
in both cases) 

and let us, in accordance with the condition of the prob- 
lem, take as the arbitrary constants a and fi (general- 
ized momenta) along the segment 1 of the path, the cor- 
responding vz and p, values determined below from the 
condition of the problem. Evidently, we have in this 
case 

as, 
a=%=vl, a~ p=-- a R  -Pr 

Further, substituting (13) into (12), we obtain a system 
of equations for the determination of S,: 

~ Z , ( V , )  as, as 
So=plR+v,q, --+ vtS-= -Kp(q, V ,  R, P O ,  (15) av ,  aq a R  
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where where 

i f  f I ,  L( f .  ZI) I T  

- { s t ,  wl +t/z{sl { s t ,  c%fO) } , (16) X(V., h )=  T-.. lim - T X [ c p ( ~ ' ) ,  v., T', h ]dr l ,  

and (X, Y) denotes the classical Poisson brackets with 
respect t o  the variables .$ and 2,: X(cp,v., T ,  h )=  j { X [ c p ( ~ ' ) . v . ,  r ' . h l - ~ ) d ~ ~ :  

0 

ax ar axau  
(X. Y } - - - - -  -. at az, az, aE (17) The action function for the generai nonstationary case 

can then be written in the form of a ser ies  in powers 

The Eqs. (15) for p 2 1 have a simple solution in the of &: 
form of an integral over the unperturbed path along the 

s ( ,  v., I .  h)  - jr. d*. + j I drf  + 2 e p ~ , , ( ~ ,  v.. T ,  A ) ,  (24) 
segment 2: 

P - t  

t 

(18) 
where the K, are  defined by the formulas (16). sp=- J K p ( c p ( ~ ) , v ~ , R ( r ) , p 1 ) d z ,  cp(r)=cp,+v~r, 

- c+ For the stationary problem of scattering of an atom 
R (7)  --RI+V~T; on a target, we identify, after carrying out the computa- 
v , = a ~ ~  (v , )  /avl. (19) tions, 7 with t, make the substitution A(t) - R(t), p(t), 

Determining S,, we find the expansion in powers of & and carry  on the analysis a s  before. In this case we 
of the equations of the precise path along the segment add to the action function (24) the term J R p d ~ ' ,  which 
2: is computed over the paths with the Hamiltonian z. 

v = ~ ~ / ~ c p = v , + e v ~ ~ ' + e ' v : "  + . . ., Let us note, not dwelling for lack of space on details, 

p = ~ ~ / a ~ = ~ , t e ~ : " + ~ ~ ~ ~ "  + . . ., (20) the distinctive features of the method of asymptotic 
averaging. For  X,= 0 it  coincides with the canonical 

and along with it, from (81, the well-known formulas of perturbation theory, differing from it  in the case when 
collision theory (the Born and the eikonal formulas) in ft, + 0. 
the action-angle variables with subsequent corrections. 

The method is applicable to the case of nonstationary 
In particular, in first-order-canonical perturbation 

perturbations W ( t ) ;  in the stationary case, however, the 
theory, we obtain the eikonal formula (see Ref. 11) in expansion (23) coincides with the Born expansion, C'21 
the action-angle variables with a correction for the in- 

which was used in the old quantum mechanics to deter- 
ternal motion of the target: 

mine corrections to the energy. 
P & [: 1 /.,(pi, P,)= - --yjj dR----; waexp -(AR+hkcp+G+) ; (21) 

2nh (2x1 3. THE AMPLITUDE OF THE INELASTIC 

B. In the case of slow collisions (yV/R,  <<I), the 
periodic time function Q(T) is the "fast" variable, and 
therefore here, instead of the canonical theory of per- 
turbations, we should apply the method of asymptotic 
averaging. "*I - 

In applying this method to the canonically conjugate 
variables cp and v, we shall regard the variables R and 
p a s  parameters, the se t  of which we shall denote by 
the single letter A. In the analysis below we assume 
A(t) to be a slowly varying function of the time. Accord- 
ing to the method of asymptotic averaging, a s  applied 
to our problem, [l8] we should seek such canonical trans 
formation of the variables, Q, V- Q*, v*, in which 
H(Q, v, A) goes over into a Hamiltonian function, 
?i(v*, A), that depends only on v*. As can be shown, "*I 

the expression for has the form 

SCATTERING OF A CHARGED PARTICLE ON 
A HYDROGEN ATOM 

As the f i rs t  example, let us calculate the amplitude 
of the inelastic scattering (p, e) + H(n, 1, m) - (p ,  e) 
+H(nl, 1', m') a t  high energies. Interest to this reac- 
tion is due to the fact that the Glauber amplitudes diverge 
at zero angles in the case of the Coulomb potentials, C21 

and the procedure for their regularization is important 
for applications of the eikonal method in the case of 
processes in which charged particles participate. 

To solve this problem, we shall proceed from the for- 
mulas (21) and (221, which take screening in the eikonal 
phase into account. Let us focus our attention on small- 
angle scattering and small changes in the quantum-num- 
ber vector k. We can limit ourselves to the dipole ap- 
proximation for the potential 

and use in place of the quantities n, v, and m, v, the 
corresponding mean values n,, v,. Then in the expres- 
sion (21) we can carry  out the integration over the co- 
ordinate y ( R = ( ~ ~  +y2)1'2, see  Fig. 1) in much the same 
way a s  is done in the eikonal and obtain a 
generalization of the Glauber formula with allowance for 
the internal motion along an ellipse with frequency via 
(see Fig. 1; vza =usa = 0, Q=((PI, (PZ, (~31 ,  k= &I, k2, 
k3), 1 =PI@: 
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f 'N 
FIG. 1. Bound orbit (the NA plane) and the trajectory of the 
relative motion (the xy  plane). NP line of nodes, A) perihelion; 
( ~ i ,  a, q3) angular variables (elements of the orbit in units of 
li); cosi =vs/v2; vi n, + I + 1, vzG I ,  v3= M are the components 
of the quantum-number vector. 

As is easy to see, the expression (29) is finite a t  8 =O. 
In particular, for the amplitude of the zero-angle elas- 
tic scattering in the ground state we obtain 

e4 

dq, 
f,, ,.(o)=-ix j p dp ( j - ~o[2q2(~l'(qp)cosaq3+~~(qp)sin2 ~ J ~ ) ' ~ ] - I }  

2n 
0 0 

Using the optical theorem, we obtain from this the 
(30) 

total excitation cross  section: 

From (31) for low velocities (V lo8 cm/sec) we have, 
using the asymptotic forms of the Macdoriald functions, 
the following expression: 

-. 
ix 1. cs=nil2(nao2) , (32) 

tmm(e)= -- j p d  pi. (%re, jap [exp (ikp + 2 h 6 )  - s..] . (26) 
a while for high velocities (V>> 10' cm/sec) we have 

In writing down this formula we also made the reason- 
able assumption that the various orientations of the 
ellipse in space a re  distributed with weight exp(iqzn2 
+ icp3n3). This assumption is justified when we take 
into account additional perturbations (the relativistic 
splitting of the levels, the introduction of perturbed 
stationary states, etc.) leading to the removal of the 
degeneracy (v2 f v3 f 0) and the slow precession of the 
elements of the orbit. The meaning of all the angles 
and the other quantities is clear from Fig. 1, from 
which, with allowance for (25), we can derive an ex- 
plicit expression for the eikonal phase in the requisite 
variables : 

(cos' cp3+cos' i. sin' c~,) . cos (q,+X,) 

+ v , p ,  [( K, ( Y p )  + h. ($p)cos  i,) cosq. cos(ql+qi) 

- (K, ($.) w s  L J - K .  ( q p ) )  sin qi sin(cp,+cp.) I} , (28) 

where Dl = J&E,) +J1I&,), via = me"/ n% is the angular 
frequency, aa=n~,R2/me2 is the major semiaxis of the 
ellipse, E, = (1 -- n2a/921a)1'z is the eccentricity, hz((p3) 
= tan"(cosi, tanq3), tosi, = n3,/nZa, and the Jo, 1 and KO, 1 

are  Bessel and Macdonald functions. Under the quan- 
tum numbers (nl, nz, n3) we understand respectively 
( n ~  n, + 1 + 1, I ,  an); the index a designates the average 
values of the elements of the orbit. The expression 
(26) can, with allowance for (28), be written in the form 
(yo is the phase, which we do not write out): 

L 

Here we have introduced the notation 

Zee'\.,,a, 
fJ (qs, p) = TDi ((K,+Iio cos i,)' cosZ qs+ (K, cos i,+Ii,)' sin2cp,)" 

3ee'a, 
q(q3. p)= VRp E~(COS'  cr3+cos2 i,,?inZ q l ) '  : 

K, cos i,+K, 
I ,  (qs) = arc tg ( K,+K, cos ia t-. ~ 3 )  

where C =O. 5772 is the Euler constant. 

In Fig. 2 we show the correlation of our computed 
differential cross  section for the 1s-2s, p excitation 
with the data given in Refs. 19 and 20. As can be 
seen, the correction for the internal motion is impor- 
tant a t  lower energies. Thus, the considered correc- 
tion leads to a significant change in the angular dis- 
tribution, contrary to Jochain's assertionc211 that the 
difference between the various modifications of the 
Glauber formula is insignificant. 

4. TRANSITIONS BETWEEN HIGHLY-EXCITED 
STATES I N  COLLISIONS OF TWO HYDROGEN 
ATOMS 

Let us consider the process of excitation of the high- 
lying states in the reaction H(1s) +H(n, 1, m)-H(1s) 
+ ~ ( n ' ,  I * ,  m'), and use in computing the transition prob- 
abilities the model of an outer electron in the variable 
field of the ion Hz*. In this case the variable field is 
produced both as a result of the continual transitions of 
the core electron from one nucleus to another (the fast 
field) and as a result of the relative nuclear motion, 
which we shall assume to be classical. The Schriidinger 

FIG. 2. Differential cross sections for the excitation [Is -2s 
+2p] of the hydrogen atom by electron impact: A) the Glauber 
approximation12~i9'; B )  close-coupling methodIZ0'; C )  computed 
from the formula (29), a,= via= 1 a.u.; the points are experi- 
mental points. "'I 
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equation for  the valence electron r, in the variable field 
W(r,, t) has the form 

and for the potential W(Y,, t) under the condition 

(rf,, are  the mean radii of the orbits of the core and va- 
lence electrons) we can write, up to the quadrupole 
terms, the expression 

In the formula (36), the x, a r e  the components of the 
radius vector r,, the X, are  the components of the ra- 
dius vector R, and A is the difference between the terms 
of the symmetric and antisymmetric states for the sys- 
tem g. The system of coordinates has been chosen a s  
follows: the origin is located a t  the center of the H(n, 
I ,  m) atom, the i2 axis is directed along the initial rela- 
tive velocity (for simplicity, the motion of the nuclei is 
assumed to be rectilinear), and 2, is directed along the 
radius vector of the point of closest approach, so  that 
the vectors jZ,, 2, define the scattering plane. In com- 
puting the transition probability P,,,(p) = la,,(tl, t) l 2  
x ( t  - t l -  a), we proceed from the expression (6) and com- 
pute AS,, Dttf in first-order perturbation theory in the 
case of fast internal motions ($2, Subsec. B). The nec- 
essary computations in the requisite variables have al- 
ready been carried out by usC'"; therefore, we sub- 
stitute them at once into the expression (6). Notice 
only that, in contrast to the case of fast collisions, the 
degeneracy of the levels is now removed even in first- 
order perturbation theory, and Dip, +l.  The final ex- 
pression for Pm(p) in atomic units has the form 

In this formula (nl, n,, n,) and (m,, m,, m,) a re  sets of 
three quantum numbers in the initial and final states 
(nl=n, n2=l,  n3=m, ml=nt ,  m,=l', m,=ml),  

na+ml qs sin i Q =-{arc cos q3-sin i a- tg  [-]I. 
2 (l-q3 ) 

(38) 
2 cos i sin i 

D =  n S f  ms c o s i = -  , k,=lm,-n,l . 
x (1-qs2cos2 i )  (1-q,')'" ' n%+mz 

The expression (37) has been derived under the limi- 
tations on nl and ml that follow from (35), as well a s  
under the following limitations on the impact parameter 
and on the relative velocity V (in atomic units): 

Assuming that the dominant contribution to the cross  
section is made by the parameters satisfying the condi- 
tion (391, we obtain an approximate expression for the 
total transition cross section: 

Unfortunately, we do not know of any theoretical o r  ex- 
perimental data, a comparison with which would enable 
us to judge the accuracy of the formulas (37) and (40). 

5. THE DIFFERENTIAL CROSS SECTIONS FOR THE 
ROTATIONAL TRANSITIONS OCCURRING IN  THE 
Li' + H, COLLISION 

It i s  of interest to compute the cross  sections for ro- 
tational excitation in the Li++H, system, which i s  the 
most fully experimentally investigated system at pres- 
ent. We shall consider only the rotation of the Hz 
cule, and also take the analytic expression for the 
Li'-H2 interaction potential for the rotational transitions 
from Ref. 22. The Hamiltonian function has the form 
(in the atomic system of units) 

Here j is the orbital moment, B, is the rotational con- 
stant, y is the angle between the vectors R and r, p i s  
the reduced mass of the Li+ +Hz system, and p is the 
relative momentum. For  molecules with small moments 
of inertia in the region of energies up to 1 eV, the con- 
dition wj t ,  >> 1 is fulfilled, i. e. , the angular variable cpj, 
which is conjugate to the moment j ,  i s  a "fast" variable, 
while the remaining variables R, p, j, mj, and cp,, a r e  
'slow" variables (cp,, i s  the angular variable conjugate 
to mi). The computation of all the quantities (z and S )  
.n this case is completely similar to the computation of 
these quantities in the case of two hydrogen atoms, a s  a 
result of which we obtain (in first  order in E )  

R 
1 0.46 0.60 

A S = A S , + A S j + A S m j s  \ p d ~ + i ~ + - ( ~ - ~ )  wj 

q,, sin i 
x sin' cp j  + sin i arctg - sin" i c s i n  qmj  . (43) 

(1 - q;,)"z 

where 

sin2 i= 1-ml/ jz .  cos i=m,lj. o,=ZnB. (2j+ l )  , 
q, =cos qmj lcos i. 

Substituting (43) into (a), and separating out the elastic- 
scattering amplitude within the framework of the sta- 

TABLE I. Relative differential cross sectionsfor the 
rotational transitions 0-2 and 1-3 in Li' scattering 
on ortho- and parahydrogen Hz (in a 3 : 1 ratio) for a 
relative-motion energy E = 0.60 eV. 

I(O-O+l+l) I ( 0 - 2 )  1(1-~) 
-- ', deg Experiment [ ~ a ]  omputed by the 1211 ' Computed f ~ o m  1 -  k m ~ ~ e t h o d  1 
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tionary-phase method with respect to R,  in much the 
same way as  was done in Ref. 15, we have in the "fi- 
nite-coordinate" representation 

where Ro i s  the point of closest approach, 

I 0,46 3,09 
~ ~ R ~ . ( R ) ~ ~ ~ [ ~ A s ~ ~ ~ . ~ . R )  . v.(R)=---- 

2n R' R' 

4 cosZ i sin i 
(45) 

. k,=lj-j'l. 

The specific cross-section magnitudes for the Li '+H, 
system were next computed from the formula 

Relative cross-section values a re  given in Table I and 
compared with experiment and the results of numerical 
computations of other authors.c23' As can'be seen from 
the comparison, the formula (44) guarantees a good com- 
putational accuracy fo r  small-angle scattering. Notice 
that the formula (44) i s  not tied with a specific system, 
and can be used to calculate the rotational transitions in 
the rigid-rotator and anisotropic-interaction-potential 
approximation. In Table I we give the ratios of the elas- 
tic-scattering intensity to the rotational-excitation in- 
tensities for para- and orthohydrogen [I(O - 0 + 1 - 1) : z(O - 2) : ~ ( 1 -  3)]. Under the intensity z(O - 0 + 1 - 1)  
we understand the expression 

The intensities Z(0 - 2) and Z(1- 3) are  computed in much 
the same way. 

 he Bohr-Sommerfeld condition, which relates the action 
variable I with the quantum-number vectors n and m; 6 is a 
constant vector. 
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