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In the framework of the S-matrix formulation of statistical mechanics due to Dashen, Ma and Bemstein 
the contribution of the strong interaction to the thermodynamic potential 0 of an ~ m - s ~ s t e m  is calculated 
using the approximation of Regge two-particle interaction amplitudes. It is shown that the forces arising 
from the exchange off -  and a-Reggeons give a negative contribution to the pressure at temperatures of 
the order of 10 GeV. At temperatures above 100 GeV the principal contribution to the pressure is 
determined by the pomeron exchange. Owing to the fact that the negative contribution to the pressure 
becomes large in magnitude at certain temperatures, there exists a temperature region in which the 
system is thermodynamically unstable. 

PACS numbers: 05.30.Fk 

INTRODUCTION 

In strong-interaction physics the study of the thermo- 
dynamic properties of hadronic systems i s  of special 
interest. The collective properties of an aggregate of 
strongly interacting particles a re  manifested, e. g., in 
the hot Universe in the early stages of i ts  expansion, 
when the density of matter was of the order of the nu- 
clear density o r  greater. The nature of the gravitation- 
al collapse of massive bodies is also determined in 
many respects by the equation of state of hadronic mat- 
ter. Moreover, according to the bootstrap idea, the 
thermodynamic properties of hadronic systems may be 
of the essence for the strongly excited hadronic matter 
formed in collisions of fast elementary particles. 

It i s  clear that the statistical mechanics of strongly 
interacting particles should be constructed with allow- 
ance for the interaction between the elements constitut- 
ing the system. In ordinary statistical physics the in- 
teraction is taken into account by introducing an inter- 
action Hamiltonian into the corresponding formulas. In 
strong interactions, however, the Hamiltonian is an un- 
known quantity. The observable quantity in hadronic 
processes is the S-matrix. Therefore, the S-matrix 
formulation of statistical mechanics is the most suitable 
for the study of hadronic systems. Such a formulation 
was proposed several years ago by Dashen, Ma and 
Bernstein (DMB). ['I They represented the grand ther- 
modynamic potential S2 = - P V  of the system in the form 
of a series,  the n-th term of which is expressed in 
terms of an n-particle to n-particle transition matrix 
element: 

where 51, is the thermodynamic potential of the system 
under consideration in the absence of the interaction, 
z = eBu is the activity, J.I is the chemical potential, = l/ 
T is the inverse temperature, m is the particle mass, 
S is the scattering matrix, and A is the exchange oper- 
ator; the trace is taken over the free n-particle states 
and the subscript c indicates that i t  is necessary to take 

only connected diagrams into account when the trace is 
taken; the two-way derivative is defined a s  follows: 

We note that here and below we work in  the system E = c  
= 1 and take 1 GeV a s  the unit of energy. 

The expansion (1) was obtained in the nonrelativistic 
case; however, since i t  is written in an invariant S-ma- 
trix form, DMB suggest that i t  can also be used at rela- 
tivistic temperatures T >  m. Whereas for dilute systems 
at temperatures T << m the cluster expansion (1) is an ex- 
pansion in powers of the small parameter (the activity) 
z << 1 with coefficients expressed in an S-matrix form, 
at relativistic temperatures we have z = 1 (p = 0, since 
particles a r e  freely created) and it is not obvious a 
Priori that there i s  a small parameter in terms of which 
we can carry out the expansion in (1). Moreover, i t  may 
turn out that the interaction is realized in such a way 
that the series (1) begins to diverge at certain values 
of T, i. e., a limiting temperature appears. 

In order to answer these and similar questions in the 
DMB approach i t  is necessary, a t  least, to know all the 
multiple-collision and scattering amplitudes of the par- 
ticles. At the present time this is unrealistic. In this 
sense it seems to us to be justified to attempt, in the 
f i rs t  stage, to take the interaction in the system into 
account partially, without going beyond the framework 
of the information available from elementary-particle 
physics on the dynamics of hadronic processes. Thus, 
in Refs. 2 interesting results concerning the resonance 
component of the strong interaction were obtained. On 
the other hand, i t  can be shownc3] that the high-tempera- 
ture asymptotic form of the coefficients in the cluster 
expansion of the potential R is expressed in terms of the 
high-energy asymptotic form of the scattering amplitude. 
This makes i t  possible to study the thermodynamic con- 
sequences of the Reggeon component of the hadronic in- 
teractions in the framework of the DMB formalism. 

A system of mesons with interaction determined by 
the exchange of a Pomeranchuk pole was considered in 
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Ref. 3. A,s ##-scattering experiments show, vacuum 
exchange begins to dominate at energies 2 100 GeV, and, 
consequently, the results obtained in this paper pertain 
to the "superasymptotic" region of temperatures: 
T? 100 Gel[. It was found that at such temperatures the 
equation of state of hadronic matter has the form P = & / 5 ,  
as distinct from the case of a gas of noninteracting ul- 
trarelativistic particles ( ~ = c / 3 ) .  The decrease in the 
sound velocity from c, = l / f i  to c, = l / f i  was a con- 
sequence cb the interaction arising from the pomeron 
exchange. Later, in a number of papers, ['I an analo- 
gous conclusion concerning the velocity of sound in ha- 
dronic matter was reached from phenomenological con- 
siderations;. True, the authors of these papers con- 
sidered hadronic systems at temperatures of the order 
of the particle masses. 

1. FORMULATION OF THE PROBLEM AND 
APPROXI MATION 

In this paper we consider a model based on the follow- 
ing simplifying assumptions: 

1) The system consists only of nucleons and antinu- 
cleons. 

2) In the cluster expansion (1) only those n-particle 
diagrams ;are retained in which the intrinsically strong 
interaction is a two-particle interaction. 

3) For tlne interaction amplitudes we use the Regge 
model with allowance for the poles with intercepts 1 
and 4. 

We shalll discuss the nature of these assumptions in 
more detail. First, it is obvious that a system con- 
sisting only of nucleons and antinucleons cannot be real- 
ized, since at temperature T- m the creation of differ- 
ent mesons and hyperons is possible. Nevertheless, we 
disregard their contribution to the pressure. In this 
sense, our treatment has an incomplete, idealized char- 
acter. 

The strongest and least justified assumption i s  the 
second one. In this connection we should like to note 
thefollowing. In the diagrammatic language of the S- 
matrix formulation of statistical mechanics the sum of 
the exchange diagrams without interaction (Fig. l a )  cor- 
responds 1.0 the thermodynamic potential 51, of the ideal 
quantum gas. If the first step i s  to go from the Boltz- 
mann gas to the ideal quantum gas (i. e., to go from the 
first term of the series in Fig. l a  to the sum of the en- 
tire series), the next step in this scheme is, obviously, 
to sum the series of diagrams depicted in Fig. lb; this 
corresponds, in essence, to taking into account quan- 
tum exchange effects in the presence of two-particle 
interaction. 

Of course, without performing a detailed analysis of 
the problem it is impossible to guarantee that the con- 
tribution to (1) from processes in which the intrinsically 
strong interaction is a many-particle interaction, e. g., 
three-particle (see Fig. lc), does not alter the principal 
features of the equation of state obtained. We shall re- 
turn to a cliscussion of this question later. 

The third assumption, which concerns not the ther- 
modynamics but the dynamics of the microscopic inter- 
action between the elements of the system, can evident- 
ly give r ise  to no special doubts. The point is that, at 
high T, the principal contribution of the integrals ap- 
pearing in (1) is given by the region of large E. The 
model of Regge poles gives a good description of the ex- 
perimental data at high energies. Therefore, there are 
definite reasons to expect that the results obtained on 
the basis of the model can reflect real features of the 
thermodynamics of a hadronic system. Here it i s  nec- 
essary to note that, in principle, i t  i s  also possible to 
take experimental scattering data directly into account 
in the integrals in (I), omitting their model interpreta- 
tion. 

Thus, what we do in the present paper is to give a 
quantitative estimate of the contribution of pair interac- 
tions to the thermodynamic potential of a NR system us- 
ing experimental data on the scattering of hadrons at 
high energies. Since we do not check the order of mag- 
nitude of the higher diagram that a re  discarded in the 
expansion (I), our calculations, strictly speaking, can- 
not be regarded as  a derivation of the equation of state. 
Rather, they can serve as  an indication of the extent to 
which allowance for the interaction can change the ther- 
modynamics of a hadronic system in comparison with 
that of an ideal quantum gas. 

When we go over from the S matrix to the amplitude 
F(s,  t) the first term of the series (1) is written in the 
form of a sum of two integrals: 

where V i s  the volume of the system. 

In the center-of-mass frame of the colliding particles 
these integrals have the form 

C 

FIG. 1. a) Sum of the exchange diagrams without interaction, 
corresponding to the ideal quantum gas; b) diagrams corre- 
sponding to quantum exchange effects in the presence of two- 
particle interaction; c) diagrams in which the intrinsically 
strong interaction is a three-particle interaction. 

2 Sov. Phys. JETP 46(1), July 1977 A. I. ~ u ~ r 8  and A. A. ~rushevsk8 



FIG. 2 .  Types of diagrams taken into account in the surnma- 
tion of the series (1). 

DMB gave a proof that the summation over all  many 
particle diagrams of the type depicted in Fig. 2, in which 
the interaction i s  determined by the n-  n amplitude, re-  
duces to the appearance of a statistical factor IIEl(l 
i e-'4)-' multiplying the amplitude (the sign i is chosen 
in accordance with the statistics (Fermi or  Bose) and 
cl, is the energy of the k-th particle). In our case, this 
leads, in the integrals (2), (3), to the replacement 

In the center -of-mass (CM) frame, 

where u = p / ( ~ ~  + $)'I2 is the CM velocity, y = 1/(1- u2)'I2, 
and pl and -pl a re  the momenta of the particles in the 
CM frame. Substituting these expressions into (2) gives 

T " "  
P,(T)=--; j d p p 2 j  dEexp[-p(pz+E')'"] 

2 (2n)  2m 

where 

D, ( z )  =I+xe**', z -cosb ( p ,  p i ) ,  
x = e ~ p [ - ~ / ~ $ ( E ' + p ' ) ' " ] ,  rp='/2pp(1-4mzlE2)". 

Having taken the integral over z we obtain 

Integration of (6) by parts gives 

Making the replacement (4) in the integral (3), and also 
taking (5) into account, it is not difficult to obtain 
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where 

z,=cos 4 (p, p , ) ,  z~=cos  Q (p ,  P Z ) .  

The arrangement of the momenta is shown in Fig. 3. 

We proceed to the integration in spherical coordinates. 
Then 

where 

Z=cos Q (p , ,  p,) =1+2t / (E2-4mZ).  

The quantities z, zl and z2 a re  connected by the relation 

z=z2z,+ ( ~ - z Z Z ) ~ ~ ( I - Z , ~ ) %  cos q . 
At large values of T the small values of t are  important, 
i. e., z - 1 as p- 0, and so z2 = zl. As a result the in- 
tegrals a re  simplified and (9) takes the form 

where R2 denotes the integral 

Thus, the total pressure in the system is represented by 
the sum 

P=Po+P,+P,  (12) 

where Po is the pressure of the ideal relativistic Fermi 
gas, expressed by the well-known formula 

FIG. 3. Arrangement of the 
momenta in the reference 
frame used in the integration 
in (9). 
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Below we shad1 confine ourselves everywhere to percent- 
age accuracy in the calculations; in particular, for Po we 
have, approximately, 

- 
In the nucleon-antinucleon system there a r e  ten 2 - 2 

reaction channels in which the initial and final states 
coincide: 

pp+jSp, pii+pii, iiii+iiii, 

pp-pp, nii-nii, pii+pii np-np. 

Therefore, the total contribution of the interaction to the 
pressure of the system is obtained by summing the par- 
tial pressure!s (8) and (10) over all the reaction channels 
(14) in the N;V system. 

We note that our calculated expressions (8) and (10) 
for the contribution of the interaction a re  close in form 
and meaning to the expressions for the second virial 
coefficient (the visible difference is a consequence of the 
relativistic kinematics). Nevertheless, in the nonrela- 
tivistic limit this contribution does not corresponds to 
the second v:irial coefficient, since, in the ser ies  in Fig. 
lb, the summation of which led to the expressions (8) 
and (lo), there a re  terms with all powers of the activity 
z .  Indeed, even the contribution of the first diagram in 
Fig. lb, which is proportional to the f i rs t  power of z,  
does not tend to the second virial coefficient in the limit 
T / m  - 0; this is because (under conditions of baryon ex- 
cess), of the ten two-particle reaction channels (14), 
only the first  three remain in the nonrelativistic limit, 
since the anltiparticles are  annihilated. 

For the amplitudes of the reactions (14) we shall use 
the Regge-pole model. We take into account the Pomer- 
anchuk pole P, and also the trajectories with intercept 
$ (f, 3 p and A2). Using the experimental fact that in 
NN, NN and NR processes the Regge poles with isotopic 
spin 1, i. e., p and A2, give a considerably smaller con- 
tribution than the poles with isospin 0, i. e., f and'w, we 
can confine ourselves to taking only the latter into ac- 
count. As a. result, all ten reactions (14) a re  described 
by three Regge amplitudes: 

F,~=.F, ,=F, ,=F,~=F~+F I- F,, (16) 

where Fp, F, and F, a re  the contributions of the Pomer- 
anchuk pole and the f and w trajectories, respectively; 
the (J trajectory has odd charge-parity and, in view of 
this, gives contributions of opposite signs to the pro- 
cesses (14). 

Since, for the amplitudes, we a re  using expressions 
satisfying the optical theorem, we a re  thereby indirect- 
ly taking into account processes of creation of particles. 
This, in parBticular, will be clear from the fact that the 
final results a re  expressed in terms of total cross sec- 
tions. 

In the following we shall perform the calculations un- 
der the assumption that the Pomeranchuk pole is a sim- 
ple pole, corresponding to asymptotic constancy of the 

cross sections. In the light of recent experimental data 
it seems more plausible to assume that the pomeron is 
a multiple pole, giving a logarithmically increasingtotal 
cross section and a nonzero ReFp(s, O), but the calcula- 
tions in this case a re  considerably more complicated 
and the results do not differ fundamentally from those 
for the simple-pomeron variant. Therefore, for the 
case of a multiple pomeron we shall give only the final 
results. 

The contribution of a simple Pomeranchuk pole to the 
amplitude is written in the form 

where ap(t) = 1 + ( ~ i ( t )  is the trajectory of the Pomeran- 
chuk pole and yp(t) is the residue, for which we use the 
parametrization yp(t) = yp ebpt. The asymptotic total 
cross section is related by the optical theorem to the 
imaginary part  of the pomeron contribution: 

Starting from the experimentally observed approximate 
exchange degeneracy of the f and w Regge poles, we 
shall assume that they have the same residues and t ra-  
jectories. Then, 

F ,  (S, t )  = y  ( t )  (-i-e-Lil=f('' s"'('' ) 9 

F, . ( s ,  t )  = y r  ( t )  ( - l + e - ' " a ~ v ' ) s a ~ ( " ,  

where 

a !  ( t )  =O.j+a,' t ,  yl ( t )  =yjebt'. 

We shall use the following values of the Regge-pole pa- 
rameters obtained from analysis of pp- and pp-scatter- 
ing datac5': 

We introduce the notation F*(s, t) = Ff k F,. Because of 
the exchange degeneracy, 

F+ ( s ,  t )  = - 2 y ,  ( t ) sm7"' .  F - ( s ,  t )  =-2y. ( t )  ( - ~ ) ~ l ( " .  

2. A SYSTEM OF PROTONS 

As the f i rs t  stage 'of the solutionof the problem for- 
mulated we shall calculate the contribution to the pres- 
sure from the first  reaction of (14). This calculation 
is equivalent to treating a system of notional protons 
with nonconserved baryon number. 

TheReggeons f and w appear in the combination F+ in 
the amplitude of the pp-pp reaction. For the real  and 
imaginary parts of the amplitudes Fp and F+ we have 

Re F,(s ,  t )  =-yp( t ) s"*("  cos ( l / Z ~ a p ( t ) ) ,  

Im F p ( s ,  t )  =y , ( t ) sae("  sin ( ' / , n a , ( t )  ), 

Re F+ ( s ,  t )  =-2yl  ( t)sUl"',  Im F+ ( s ,  t )  =O.  

We n e e r i t e  out e x p r e s s i e o r  the quantities 
ReFp (a/aE) ImFp and ReF+(a/aE) ImFp appearing in the 
integrals in (10): 
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- a 
Re F+ - Im F p = - 2 y l y ~ ' e ~ ~ x ) t  

aE 

x ( [  1-2r(E) g ( E )  ICOS ( ' / rxapf t )  - (napJt)sin('/ ,na,' t))  ; (20) 

here, 

In the calculation of (19) and (20) we took into account 
that 

We now have all the necessary expressions for sub- 
stitution into the integrals (8) and (10). Fi rs t  we shall 
calculate the first  term of the ser ies  (1). This corre- 
sponds to replacing the functions R, and R2 by unity in 
the integrals in the right-hand sides of (8) and (10). 
These integrals a re  then conveniently rewritten a s  fol- 
lows: 

where K2(z) i s  a Bessel function of imaginary argument. 
Taking into account that a t  high temperatures the prin- 
cipal contribution to the integration over E is given by 
the region of large E, we replace the limit in the inte- 
grals over E by M =I0 GeV-the energy at which the 
Regge approximation becomes valid for the scattering 
amplitude. 

Since ReFp (s, 0) = 0, PI is saturated by the contribu- 
tion of the f and w poles. Changing the integration vari- 
able PE= z in (22) and denoting the corresponding partial 
pressure by q, we obtain 

Contributing to P, a re  the quantity 

and also the interference of the pomeron and the f, w 
poles: 

We shall denote the corresponding partial pressures by 
@ and piP. When the expressions (19) and (20) a r e  sub- 
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stituted into (22) the integration over t can be performed 
explicitly. Avoiding cumbersome formulas, we write.  
out approximate expressions for the integrals over t: 

Using (24) and (25) we obtain for and SP: 

TITPT' dz zXK, ( z )  g ( T )  
P 2 + p =  - 4 (2n) 'g (T )  [,I' g ( T )  +2 (ap'+at')  ln  ( T z )  

The integrals in the right-hand sides of (26) and (27) a r e  
slowly varying functions of T at temperatures T >  10 
GeV. Calculating them, we obtain expressions for P[ 
and P;' that a r e  valid with good accuracy in the temper- 
ature region under consideration: 

ypzap'T' 
PIP = 

8(2n) ' (bp+2ap'1n T)' ' 

One's attention is  drawn by the fact that the contribu- 
tion of the f and w poles to the total pressure of the sys- 
tem (the terms Pi and piP) has negative sign. The 
change of sign i s  not accidental; i t  is determined by the 
negative sign of the real  part  of the amplitude F+= Ff 
+ F ,  at  zero angle-a fact that is firmly established in 
pp-scattering experiments at high energies. 

Summing now the partial contributions (13), (23), (28) 
and (29), we obtain an expression for the total pressure 
in the system as a function of the temperature: 

31, + ~ T I Y P  - -  2r (T )  yp2ap'T6 -)I T S  + 
[ 4 ( 2 n ) '  ( 4n ) 'g (T )  ( l t g ( T )  8 (231) (bP+2adr ln T)'  ' 

Since the dependence on T in the coefficients of the pow- 
e r s  of the temperature appears in the form lnT, the co- 
efficients can be assumed to be  approximately constant 
in the region 10 GeVS T,< 1000 GeV. As a result, the 
following approximate formula is valid for the equation 
of state: 

In the case of a multiple Pomeranchuk pole the real 
part  of the pomeron amplitude at zero  angle i s  nonzero. 
Consequently, a contribution f l  is added to the total 
pressure. In addition, it is necessary to take into ac- 
count the changes in the expressions for P{ and piP, 
which contain the pomeron amplitude. The latter i s  
now represented in the form 



For the total cross section as E - m we have, in con- 
trast  to (17), 

a, ( E )  =yP(1+25 ~n E ) .  (31) 

It follows from experimentc5' that f = A. Doing the nec- 
essary calcul.ations we obtain as a result the following 
equation of state: 

26'(bP+2ap' In T )  32nS (bp+2ap1 In T) + x[ '+  
a p ' ( I + 2 S l n  T)' yP(1+26ln  T)' 

where o, is given by formula (31) and, expressed in 
G~v", has the form 

a, ( T )  =700(1+z / , s  In T )  . 

Thus, for the multiple-pomeron variant also, the equa- 
tion of state of the system has the form (30). The co- 
efficient C has remained the same, the coefficient B is 
quantitativel:~ practically unchanged, and the coefficient 
A has increased by a factor of approximately 2.3 on ac- 
count of the inclusion of the term P:. 

3. A NUCLEON-ANTINUCLEON SYSTEM 

In an ~ G - s ~ s t e m  there a re  four kinds of particles, 
and therefore the pressure of the ideal gas differs from 
that of a p p  :system by a factor of 4. Of the ten reac- 
tions (14) over which the summation must be performed 
the first  six are  described by the same f and a ampli- 
tudes, and their contribution to that part of the pressure 
which arises from the interaction is the same a s  in the 
@-system, multiplied by 6. The pomeron amplitude is 
the same for all ten reactions, and so we obtain the 
pomeron component of the total pressure in the NN sys- 
tem by multiplying the corresponding quantities ~ f '  and 
P[ for the pp system by 10. The important difference 
a r i s e ~ w h e n  we take into account the fa-contribution to 
the NN- NN reactions. These contributions appear in 
the amplitude (16) in the combination F-: 

Re F- (s, t )  ---2yt ( t ) s m ~ ( "  cos(;;z ( 1 ) ) .  

Im F- ( s ,  r') =2y,(t)snl(" sin(na, ( t )  ). 

Since ImF- t- 0, the combinations 
-. 

z F 5 
R e F - - 1 m F - ,  R e F - - I m F p ,  R e F p - I m F -  

aE aE  aE 

give a contribution to the integral (22). We denote the 
corresponding partial pressures by 5, PiP and Pr. It 
is clear from (32) that ReF.(s, 0) =O. Therefore, the 
term Pi vanishes. The total pressure in the system is 
represented in the form 

where Po, Pi, PiP, p p  and 6 were calculated in the 
preceding section. Using the expressions (32) we find 
the partial pressures Pi, piP and Pp: 

It follows from the calculations that the first, second 
and third brackets in (33) contain quantities proportion- 
al to T ~ ,  T ~ ,  and T', respectively. 

The combination 2(piP + ~: ') /3 appearing in (33) 
amounts to approximately 1.3% of Pi, and, therefore, 
within the limits of the accuracy of our calculations, 
we can neglect this contribution (the same is also true 
in the case when the pomeron is a multiple pole). Di- 
rect calculations also show that Pi is negligibly small 
compared with Po. Thus, we have, finally, 

4. INCLUSION OF THE EXCHANGE PROCESSES 

We gave a rather detailed discussion of the calcula- 
tions of the f i rs t  term of the ser ies  (1) because taking 
diagrams with exchange (Fig. lb) into account does not 
alter the qualitative form of the equation of state (30) 
but only modifies the numerical values of the coeffi- 
cients. We shall give an account of the basic features 
of the calculation of the integrals (8) and (10) with func- 
tions R, and R2 (the expressions (7) and (11)) arising 
from summation over many-particle processes. 

We separate out the temperature dependence in the 
integral (8). Inasmuch as  small values of E do not give 
a contribution to the integral at the temperatures under 
consideration, the function R1 (8, E,p) (7) depends, es- 
sentially, on the two variables 

so  that 

We also take into account that, in these variables, the 
Regge amplitude at zero angle has the form 

The integral P1(T) can then be written in the following 
form: 

where 

2' 
G I ( a ( 0 ) ) =  fdz- ~ ~ Z Z ~ ~ ( ~ ~ + ~ ~ X ~ [ - Z ( ~ + ~ ) ' ~ ] R , ( Z , Z ) .  

0 DM 

(34) 
The numerical value of the integral (34) is easily esti- 
mated by applying the average-value theorem: 

It can be seen from this formula that the difference 
between the quantity PI(T) and that calculated earlier 
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lies in the coefficient El&,, 2,). The position of the 
point (x,, 2, )  depends on the value of (~(0) .  We find it 
approximately by associating it with the position of the 
maximum of the integrand in (35): 

As a result, for the two cases ( ~ ( 0 )  = 1 and ( ~ ( 0 )  =$, we 
obtain 

- .  .- 

R , ( x l ,  z i )=0 .8  at a ( 0 ) = 1 ,  R l ( z l ,  z d z 0 . 7  at a ( 0 ) = ' l r .  

We proceed to estimate the integral (10). Carrying out 
the calculation we obtain 

- - 
G,(a , (O) ,  a 2 ( 0 ) )  = I &z2 j d z  exp[-z(1+~~)"]z~"~~~~+~~*~~~R~(x, z), 

0 PM 

where n depends on the Regge parameters and is cal- 
culated in the same way as  was done above; a, and a, 
are  the trajectories determining the asymptotic forms 
of the real and imaginary parts of the amplitude in the 
expression for P,(T); 

By the mean-value theorem, 

z z=Iy , l ( l - y , )  1'". z2=u2(i - -yz)"~,  

yz=l, u2=2a, (0)+2az(O) ,  
- 
R 2 ( z ? .  z?) ~ 0 . 4  for a , (O)  =a,(O) = l ,  

R , (x2 ,  2, )  ~ 0 . 2 2  for a ,  ( 0 )  ='I?, a 2  ( 0 )  =I. 

Using the values of R1(xl, 2,) and R2b2, 2,) we can cal- 
culate the coefficients A, B, andC in the equation of 
state (30). The numerical values of these coefficients 
are  given below: 

P 2 Tcz, 
Coefficient A,GeV" B,GeV-' C GeV GeV GeV 

Simple pomeron 0.0266 2.1 5  0.77 81 67 0 .2  
Double pomeron 0.106 2.2 0.77 21 17.5 0 .2  

related to the entropy density s = a ~ / a ~  and is a posi- 
tive-definite quantity, the portion of the curve between 
T, and T,, is unphysical. At the same time the temper- 
ature region T,< T < T,, in which the pressure in the 
system is negative, i s  not forbidden. Hadronic matter 
"supercooled" to such temperatures can be found in a 
metastable state, s o  long as  no fluctuations take the 
system away from the unstable thermodynamic equilib- 
rium. 

We note that the curve (Fig. 4a) of the equation of 
state of the N f l  system is analogous in a certain sense 
to the van der Waals curve describing the phase transi- 
tion in a liquid-vapor system (Fig. 5). Thus, the por- 
tion ab, correspo~ding to superheated liquid, can drop 
below the abscissa, i. e., the pressure can become neg- 
ative. This state is metastable. 

The energy density in a system with g = O  i s  equal to 

E ( T )  =Ts-P=5ATB-4BT5t-3CT'. 

A qualitative graph of the equation of state (36) in the 
coordinates (P, E )  is shown in Fig. 4b. The slope of 
this curve is equal to the square of the sound velocity: 

dP P' s  
C2=-=-=- 

" ( 2 ~  TP" Ts' ' 

The temperature Tc2 corresponding to the value at 
which P"(T) = O  i s  equal in our case to 3~,,/4. The 
f i rs t  thermodynamic inequality cv> 0 is violated at T 
= Tc2, since, in systems with p =0, cV=&'(T) = TP". 
Therefore, the temperature region Tc2< T< T, is  un- 
physical. As the temperature increases up to T,,, the 
velocity of sound, according to (37), increases without 
limit and can exceed the velocity of light in vacuo. The 
unbounded increase of the sound velocity as T - T,, is in 
agreement with the behavior of the adiabatic compres- 
sibility X, = (av/aV), = -Ss'/s3, which vanishes a s  T - Tc2 (S = Vs is the entropy of the system). 

5. THE EQUATION OF STATE 

Thus, in the framework of our approximations we 
have established that for  an NR system in the region of 
temperatures T>10 GeV the equation of state 

holds, where A, B, and C a re  positive quantities, weak- 
ly dependent on the temperature. They a re  expressed 
in terms of the experimentally known Regge-pole pa- 
rameters (18). The graph of P(T) is shown in Fig. 4a. 
From the graph it can be seen that there exists a re- 
gion of temperatures in which the pressure becomes 
negative. The temperatures at which the pressure van- 
ishes are  denoted by Tp2 and T,,. Two other charac- 
teristic points T,, and T,, correspond to the tempera- 
tures at which the derivative P'(T) of the pressure van- 
ishes. Since, in a system with p =0, this quantity is  

FIG. 4.  a )  P ( T )  graph corresponding to  the equation of state 
( 3 6 ) ;  b) graph of the equation of state ( 3 6 )  in the coordinates 
( P ,  E ) .  
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FIG. 5. Van der Waals 
curve describing the phase 
transition in the liquid- 
vapor system. 

0 

Although it  is not yet clear whether or  not such a phe- 
nomenon is permissible in the framework of the basic 
principles of physical theory (including causality), ['I 
nevertheless, adhering to a canonical point of view, we 
ought also to1 classify as unphysical the region of tem- 
peratures above Tcl, at which the velocity of sound 
reaches that of light. In any case, the appearance of 
supersound in the system requires a more detailed anal- 
ysis at the kinetic level. 

Thus, in a system describable by the equation of state 
(36), the temperature region T,,< T< T,, (in the graph of 
Fig. 4b this corresponds to the region c1 < c < E,) is ther- 
modynamically forbidden, and a question hangs over the 
region T,, < T <  T,,, where the supersound appears, and 
the region T&< T< T,,, where the pressure is negative. 
It follows from the derivation of Eq. (36) that the ap- 
pearance of this unphysical portion of the curve P(T) is 
due to the fact that in the given region of temperatures 
the interaction between the hadrons gives a large nega- 
tive contribution to the pressure of the system, i. e., 
forces of attraction become dominant. It is usually as- 
sumed that the interaction potential leading to the ha- 
dronic S-matrix will depend on the energy and, conse- 
quently, in a system of many particles, on the tempera- 
ture. Therefore, we can postulate that the interaction 
at T,,< T< T, acquires the character of a "catastrophic" 
potential, ['I leading to "~ol lapse '~  of the system. Some- 
how o r  other, the boundaries of the unphysical region 
are, in our view, evidence of instability of the system, 
as a result of which the hadronic matter can undergo a 
phase transition. Of course, when making such a far- 
reaching interpretation of the curve P(T) i t  is necessary 
to be aware of the extent to which the formalism in 
which the equation of state was obtained is reliable and 
the approximations lying at the basis of the model con- 
sidered a re  reasonable. A more detailed investigation 
i s  necessary at this level. 

Pausing to discuss, in particular, the question of the 
justification of the approximation of two-particle ampli- 
tudes, we turn to the multireggeon diagram of a 3 - 3 
process (Fig. 6). Because of the generalized optical 
theorem relating an inclusive process to the 3- 3 am- 
plitude the central vertex contains a cutoff with respect 
to the transverse momenta. As a result the integration 
over the three-particle phase volume gives the same 
power of the temperature as the 2 - 2 diagrams. Al- 
though in i ts  power of T the 3 - 3 contribution does not 
exceed the 2- 2 contribution, a quantitative estimate is 
necessary in order to determine the role of the 3- 3 and 
higher diagrams in the collective properties of a ha- 
dronic system. A more detailed consideration of this 
question lies outside the scope of this article. 
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Moreover, in the extrapolation to arbitrarily high tem- 
peratures and densities of the formulas that we have 
used, i t  has been tacitly implied throughout that the had- 
ron is an elementary particle in the sense that it is not 
decomposed into more-fundamental constituents, e. g., 
quarks and gluons, a t  certain sufficiently high tempera- 
tures. Otherwise, at temperatures above the "ioniza- 
tion" point i t  would be necessary to apply the DMB for- 
mulas for a system of quarks and gluons, taking into ac- 
count the interaction between them. 

We shall make a few more remarks on the thermo- 
dynamics of a system with the equation of state (36). As 
was noted above, i t  follows from Eq. (36) that the mat- 
t e r  in the system cannot, in an equilibrium manner, be 
heated to temperatures above T,, o r  cooled below Tp. 
It would seem to be possible, therefore, to speak of two 
phases: a less dense phase (c < t i )  and a denser phase 
(c> E,), o r  a "cold" and a "hot" phase, inasmuch as there 
is only one thermodynamic degree of freedom in a sys- 
tem with p = 0 and the density and temperature have a 
one-to-one relationship. However, the separation of a 
system with one thermodynamic degree of freedom into 
phases does not have any standard physical interpretation, 
if only because the "phases" here cannot coexist in ther- 
mal equilibrium, unlike, e. g., those in a liquid-vapor 
system. 

The chance quantitative agreement of T,,- 0.2 GeV 
(see above) with the Hagedorn limiting temperature T, 
- 0.16 G ~ V ~ "  cannot, apparently, be assigned any special 
significance, for two reasons. First ,  to construct the 
"cold" branch of P(T) we cannot use the asymptotic mod- 
els of the scattering amplitude. Secondly, the boundary 
points T,, and TS a re  not limiting temperatures in the 
established terminology, since the thermodynamic poten- 
tial a ( ~ )  i s  not singular at these points. Although equi- 
librium heating above T,, is impossible, in the collision 
of, e.g., two hadronic systems (or  hadrons) the energy 
density can exceed the critical value c, and thermody- 
namic equilibrium can then be established in the "hot, " 
denser phase. This phase can now be heated to arbi- - 
trarily high temperatures. 

We shall calculate c, =E(T,); for example, for the val- 
ues of the parameters A ,  B ,  and C corresponding to a 
multiple pomeron, c,- 10' (G~v)', and the correspond- 
ing mass density p,- g/cm3. We can estimate the 
energies in the center-of-mass frame of the colliding 
particles a t  which the hadronic matter that is formed 
will have the necessary density for  a transition to the 
denser phase. The density of the proton is of the order 
of 10'' g/cm3. If two protons, each with energy E ,  col- 
lide, the matter formed in the Lorentz-contracted vol- 
ume V =  v , ~ / E  (V,, i s  the volume of the proton) will have 
density p- 10" ( ~ / m ) '  g/cm3. Thus, the critical den- 
sity will be reached in collisions a t  energies E - 10' 
GeV, and we may expect that a change in the dynamics 

FIG. 6. Multireggeon three-particle 
diagram. 
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of the multiple-production processes will occur a t  these 
energies. 
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Nonlinear interaction of a monochromatic wave with 
particles in a gravitating system 

A. B. ~ikhailovskii, A. L. Frenkel', and A. M. Fridman 
Siberian Institute of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radiowaves, Siberian 
Division, USSR Academy of Sciences 
(Submitted January 14, 1977) 
Zh. Eksp. Teor. Fiz. 73, 20-30 (July 1977) 

A study is made of the motion of particles in a gravitational field corresponding to the proper 
characteristic monochromatic oscillatory mode of a gravitating collisionless cylinder. In the frame of 
reference rotating with the cylinder, the effect of the inertial forces on a gravitating particle is analogous 
to the effect of a longitudinal magnetic field on a test electric charge. In addition, the particles of the 
cylinder are magnetized, so that (approximately) they preserve their distance from the cylinder axis. For 
this reason, the equation of longitudinal motion of the particles reduces to an equation of the type of a 
mathematical pendulum, which can be solved in elliptic functions. An investigation is made of the 
nonlinear stage of the beam (two-stream) gravitational instability (see A. 3. ~ikhailovskii and A. M. 
Fridman, Zh. Eksp. Teor. Fiz. 61, 457 (1971); Sov. Phys. JETP 34, 263 (1972)): the nonlinear 
evolution of the particle distribution function is studied, and the densities of the kinetic energy of the 
particles and the energy of the monochromatic wave, both averaged over a cylindrical layer, are found. 
The energy balance method is used to determine the time dependence of the nonlinear growth rate. The 
range of applicability of the theory is found and the amplitudes of steady oscillations estimated. In this 
way it is shown that in gravitating systems an important role can be played by a nonlinear mechanism of 
stabilization of a monochromatic density wave which is analogous to the mechanism investigated in a 
collisionless plasma by Mazitov (Zh. Prikl. Mekh. Tekh. Fiz. 1, 27 (1965)) and O'Neil (Phys. Fluids 8, 
2255 (1965)). 

PACS numbers: 12.25. +e 

S 1. INTRODUCTION of the density waves of the interacting subsystems. Ini- 
tially, '" this effect was studied on a gravitating cylin- 

In real astrophysical objects, the velocity distribution der. Later, Ge3', the role of beam effects was investi- 
functions of the particles (stars, gas) often have a beam gated in more complicated systems consisting of two 
nature. Of this kind are: all galaxies with heteroge- interacting disks and a sphere and ellipsoid. It is very 
neous structure in which flat subsystems rotate relative important to establish whether nonlinear stabilization 
to elliptical and spherical subsystems; regions of active of the amplitude takes place o r  whether the instability 
centers characterized by ejections of large gaseous progresses and results in the collapse of the various 
masses; and so forth. density concentrations. We may mention that for the 

lnC", two of the present authors have shown that a of the spiral structure i f  galaxies particular 
beam (two-stream) instability can be excited in gravitat- interest attaches to the interaction of a monochromatic 
ing systems, this resulting in a growth in the amplitude density wave with the particles (stars). 

9 Sov. Phys. JETP 46(1), July 1977 0038-564617714601-0009$02.40 O 1978 American Institute of Physics 9 


