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Quas i -ond i s iona l  conductors have at low temperatures a gigantic dielectric susceptibility 
(superdielectrics) and produce on the x-ray patterns smeared-out spots at a momentum close to 2pF. This 
smearing attests to the absence of a long-range order in the charge-density wave. Both phenomena are 
attributed to the interaction of the charge-density wave with the impurities. A quantitative relation is 
established between the value of the dielectric susceptibility and the dimension of the spot on the x-ray 
pattern. 

PACS numbers: 77.50. +p, 78.70.Ck 

1. INTRODUCTION 

Quasi-one-dimensional semiconductors go over into 
a dielectric state a t  low temperatures. In this state, 
the electron density forms a three-dimensional lattice 
with a period equal to 1/2pF along a preferred axis 
(charge-density wave, CDW). Two effects hinder the 
f r ee  motion of the CDW through a crystal: pinning by 
the crystal lattice and pinning by the impurity. The 
f i rs t  effect is small if the period of the CDW and the 
period of the host lattice a r e  almost noncommensu- 
rate. In this case, which is realized in K ~ [ P ~ ( C N ) ~ ]  
Br0,3 3Hz0, (KCP), pinning by impurities is more 
significant. The pinning force depends on the impurity 
concentration and on the amplitude of the electron scat- 
tering by the impurities. This force determines the di- 
electric susceptibility and i t s  frequency dependence. 
When the electron-impurity interaction is weak the stat- 
ic value of the dielectric susceptibility is large and dis- 
persion se ts  in a t  relatively low frequencies. If the 
pinning by the impurity is stronger than by the crystal 
lattice, then the long-range order in the CDW vanishes. 
Consequently the 6-function sir~gularity in the structure 
factor smears  out near 2p,. C"T1 We shall establish be- 
low the relation between the width of the maximum of the 
structure function and the dielcxtric constant. Both 

Here 

U(r) is the potential of the interaction of the electrons 
with the impurity, ri a r e  the impurity coordinates and 
a r e  assumed to be randomly distributed, and the elec- 
tron spectrum ~ ( p )  is assumed to be one-dimensional. 
Averaging over the states of the Hamiltonian (1) will be 
replaced by averaging over classical boson fields. As 
applied to quasi-one-dimensional systems, this method 
is described intT9*'. Just  a s  in these references, we 
make the substitution 

where the functional F~[A] is equal to 

Po--1n Sp exp {Cr,[~z(~) A ' ( I J ) ~ ' ( P )  
D 0 

ZgZ 2ga I 

quantities a r e  determined by the amplitude of the elec- 
tron scattering by the impurities and by the impurity The functional F,[A] has a minimum at 

- .  - - 

concentration. The vanishing of long-range order in a 6 (r) =Ao sin (Qr+q), 
periodic structure always occu.rs if the impurities a r e  

where Q, ,=  2p, and Q, is determined by the type of inter- not coupled with this structure. This phenomenon was 
considered inc6' using a s  an example the destruction of action between electrons of different filaments. In the 

the vortex lattice in type-I1 superconductors. self-consistent field approximation, ~ ( r )  is determined 
from the relation 

2. INTERACTION OF CHARGE DENSITY WAVE 
WITH IMPURITIES 

In quasi-one-dimensional semiconductors the elec- 
trons move along individual filaments. The phonon 
spectrum can be three-dimensional in this case. The 
Hamiltonian that describes the interaction of the elec- 
trons with the phonons o r  imp~lrities is of the form 

where 

where ( ), is averaging with the Hamiltonian Ho, and N 
is the electron density. It follows from relation (5a) 
that 

v is the velocity on the Fermi surface. 

We shall henceforth be interested in fluctuations of 
the phase cp, which vary slowly in space and in time. 
Expanding the functional near i t s  minimum in terms of 
the slow changes of cp, we obtain 
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"' qa+cU (")'+ az c, (( $)'+(Y2)]h at. (7) 
a~ 

The effective mass m* in (7) is given by 

The elastic modulus C , ,  is equal to 

d is the distance between the conducting filaments. The 
constant C ,  is expressed in terms of the phonon spec- 
trum 

In the low-temperature phase the thermal and quantum 
fluctuations do not influence the qualitative pictures and 
will not be taken into account here. To estimate them 
we calculate (cp2) with the aid of the functional 

If the three-dimensionality effects a r e  large enough, o r  
if the adiabaticity condition m* >> m is satisfied, then 
these fluctuations a r e  quantitatively small. c8*91 What 
a r e  substantial a re  the phase fluctuations due to the im- 
purities. We consider below a case when the interac- 
tion with the impurities is weak enough, so  that the mean 
free path is much larger than the particle-hole pair di- 
mension. It is then possible to neglect their influence 
on the amplitude Ao. The influence on the phase is de- 
scribed by the Hamiltonian Hi. Near the extremum of 
Fo the Hamiltonian Hi must be replaced by the function- 
a l  F,: 

If the impurities have a random distribution and the in- 
teraction with them is weak, the random fields have a 
Gaussian distribution with a correlator 

In formula (13a), n is the impurity concentration. The 
equation for the phase is determined by the condition 
that the functional Fo + F, be a minimum. In the absence 
of external field this equation takes the form 

3. DESTRUCTION OF LONG RANGE ORDER 

The existence of a long-range order i s  determined by 
the behavior of the phonon Green's function G a t  zero 
frequency 

G = < ~ + ( o )  b ( ~ ) ) .  (15) 

At large distances, the main contribution to the form 
of the function G is made by the phase fluctuations: 

G ( R ) = -  (Q) A" II ( R )  cos QR, 
gz 

(16) 

where 

The thermal and quantum fluctuations in the low-tem- 
perature state lead to an insignificant decrease of n(R). 
If II (R) tends to a constant value a t  large R, then long- 
range order exists in the system and the amplitude of 
the neutron o r  x-ray elastic scattering should have a 
6-function singularity a t  a momentum equal to Q. Let 
u s  verify that the impurities lead to an exponential o r  
power-law decrease of II (R). 

To calculate the correlator II(R) (17) i t  is necessary 
to solve Eq. (14) at an arbitrary f @), substitute the 
solution in (17), and then average by using (13). We 
choose a s  the zeroth approximation the solution of (14) 
in an approximation linear in f (r) 

where the function G(r) satisfies the equation 

The Fourier component GQ) of this function is 

Substituting (18) in (17), we obtain IIm) a t  large dis- 
tances: 

In the derivation of (21) and everywhere else below it 
was assumed that the impurities a r e  weak enough 

Formula (21) shows that arbitrarily weak impurities de- 
stroy the long-range order. In exactly the same manner 
it is possible to calculate the average order parameter 
(A cosQ R): 

2(A cos QR)=Ao(etv)=A0 exp (-<pZ)/2) =O. (22) 

It follows from all  the foregoing that even weak inhomo- 
geneities disrupt the phase transition. 

Formulas analogous to (21) and (22) were obtained in 
[6] in the course of the solution of the problem of a vor- 
tex lattice in a random potential in a superconductor. 
For  the CDW they have been written out inc3**], where 
account was taken of only the zeroth approximation for 
cp [ ~ q .  (18)]. It could be verified, however, that each 
of the succeeding terms of the expansion obtained by 
solving Eq. (14) by iteration, is not small  and generally 
speaking the zeroth approximation is insufficient. None 
the less,  in the calculation of mean values such a s  (21) 
and (22), the contribution of the sum of all  the expansion 
terms higher than the zeroth is exactly equal to zero, 
and formulas (21) and (22) remain valid. 

To prove this statement and to calculate eventually the 
dynamic characteristics, it is convenient to use the dia- 
gram technique developed incio1. To this end, we expand 
the right hand of (14) in powers of cp and solve the re- 
sultant equation by iteration. The simplest diagram 
corresponding to cp'O'(r) is shown in Fig. la. The solid 
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Averaging and using the Leibnitz formula, we verify that 
the quantity under the integral sign is the derivative of 
a periodic function, and S,, is equal to zero a t  N r  1. 

line corresponds to the Green's functions G(r - r,) and 
the cross  to the random field f (r,) cosq - r. The inte- 
gration is with respect to the coordinate of the cross. 
A more complicated diagram is shown in Fig. lb. A 
diagram of arbitrary order constitutes a "tree. " Each 
line is set  in correspondence to a Green's function G(ri 
- r,), and the vertices correspond to 

Any number of lines can converge in each vertix. The 
only line that leads from some cross in the point i to the 
"base of the tree, " is defined a s  incoming into point i ,  
and the remaining lines a r e  outgoing. Then mi is equal 
to the number of lines that go out of the point i (to the 
order of the i-th vertex). Integration is carried out 
over the coordinates of al l  the points with crosses. 

For example, the diagram of Fig. l b  corresponds to 
the expression 

xcos Qr,f (r,)cos Qr J(D)COS Qr, d'r, ci13r2 d3r,. (23) 

To calculate the correlator II (17) we expand the ex- 
ponential in powers of cp. The general term of this se-  
r i e s  (cp(R,). . . cp&)) comprises N trees. We denote the 
correlator (f (r) f (r')) = y6(r - r') by a dashed line. 
Then, after averaging all the vertices, crosses turn out 
to be connected with the vertices by dashed lines. Dia- 
grams in which connections of even-order vertices with 
odd-order vertices a r e  encountered contain in the inte- 
grand rapidly oscillating factors ei9", and a r e  there- 
fore small. 

We consider now any two vertices of like parity joined 
by a dashed line. The junctions can be of two types: 1) 
Connection between two vertices such that it is possible 
to go from each vertex along solid lines to the base of 
the tree without crossing another vertex. 2) The con- 
nection between two vertices is such that it is impossi- 
ble to go from either vertex to the base without crossing 
a t  the same time the other vertex. We note that if the 
joined vertices pertain to different trees,  then the con- 
nection must be of the f i rs t  type. Examples of connec- 
tions of the f i rs t  and second type a r e  shown in Figs. 2a, 
b, c, and 2d, e, respectively. 

Let the connection between the j-th and i-th vertices 
be of the first  type and let the sum of the orders  of the 
connected vertices be 2N2 2. Cutting off a line outgo- 
ing, say, from the i-th vertices and attaching it to the 
j-th one, we obtain a diagram that corresponds to ex- 

_actly the same integral, but with a different coefficient. 
It is easy to see that there a r e  2N+ 1 such diagrams. 
The sum of the coefficients S,j is then 

d" cos Qri d2"-" cos Qr, 1 1 
( J 5 dr2N-m 

-- 
m! (2N-m) l 

f ( r . ) f ( ~ a # q ) .  
m-0 

(24) 

In Fig. 2, the diagrams a, by and c a r e  cancelled out 
(connection of the f i rs t  kind). It is easy to verify that if 
the connection is of the second type, then the sum of di- 
agrams obtained by cutting off the outgoing lines of one 
vertex and attaching them to the other is equal to zero. 
The difference from the f i rs t  case l ies only in the fact 
that it is impossible to cut off the branch on which the 
second vertex is situated. The diagrams cancelled out 
in Fig. 2 a r e  now d and e (connection of the second 
type). 

Thus, the only diagrams left a r e  those corresponding 
to the use of the zeroth approximation (18) for cp, and 
this confirms the validity of formulas (21) and (22). 

The cancellations described above take place if the cor- 
relation of the potential a t  different points is a d func- 
tion. Allowance for a small smearing leads to a small  
renormalization of the coefficients C and y in formulas 
(21) and (22). 

It was assumed above that the period of the CDW is 
not commensurate with the period of the host lattice. 
If they a r e  commensurate, then an additional term ap- 
pears in Eq. (14)"' 

-j3 sin ~ q ,  (25) 

where @'" ( A , , / & ~ ) ~  and M is the order of the commensu- 
rability. To destroy the long-range order in this case 
it is necessary that the concentration of the impurities 
be higher than critical. In order of magnitude, the cri t-  
ical value in formulas (13) and (13a) is equal to 

To verify this, we calculate the correlator (cp,cp_,) in two 
limiting cases. If y <<y,, only small cp a r e  significant 
in (25), and the sine function can be replaced by a lin- 
e a r  term. Then 

As seen from (22), in this limit the impurity have lit- 
t le effect on the long-range order. If y >> y,, then the 
term (25) can be taken into account a s  a perturbation. 
Calculating (cp,cp,,) accurate to terms of second order 
in p, we get 

Thus, a t  y >> y, the commensurability effects lead only 
to an inessential change of the correlation radius in for-  
mula (21). 

C 

FIG. 2. 
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The results obtained above pertained to compounds in 
which no large Coulomb forces ar ise  in the case of slow 
phase fluctuations. For example, in TTF-TCNQ there 
exists an electron and hole CDW. Therefore no space 
charge is produced in the case of slow fluctuations. The 
short-range part  of the Coulomb interaction leads only 
to a change of the coefficients C,, and C,. In compounds 
of the KCP type only one chain of the platinum atoms is 
conducting. In this case the spatial variations of the 
phase rp denote a change in the charge density p. ["I 

eacp/ar,,=np (r) da. (29) 

The Coulomb interaction leads to the appearance in 
the functional of an additional term F,: 

In formula (30) E,, and c, a r e  the dielectric constants 
along and across  the filaments a t  high frequencies. The 
Green's function G(k) then takes the form 

The last term, which describes the Coulomb interac- 
tion, has a singularity if the angle between the vector k 
and the z axis i s  small. Jus t  a s  in the theory of phase 
transitions, [12' the problem becomes formally four-di- 
mensional and (rp2) diverges logarithmically a t  small k. 
Therefore n ( R )  decreases in power-law fashion in the 
case of large R. The corresponding calculations and a 
comparison with experiment a r e  presented for KCP incs1 
and yield 

II (R,,) = (R,2C,2/Cl12ele2) -"I2, (32) 

where 

with a Z 0 .  055 in KCP. 

4. DIELECTRIC CONSTANT 

Most quasi-one-dimensional compounds have a t  low 
temperatures a large dielectric constant. There a r e  
several explanations for this phenomenon. In com- 
pounds of the KCP type, an electron CDW is produced 
with a period that is not commensurate with the period 
of the host lattice. The motion of this wave makes the 
main contribution to the dielectric constant. Without 
allowance for the interaction with the impurities, the 
static dielectric constant would be infinite. The weak 
interaction with the impurities makes the dielectric 
constant finite but large. 

It follows from (29) that the interaction with the ex- 
ternal electric field E leads to an additional term FB in 
the free-energy functional 

It is assumed in (33) that the field E ( t )  is directed along 
the filaments. Minimizing the functional F =Fo + F, +Pi  
+ F E  (formulas (7), (12), (30), and (33)), we obtain an 
equation for: 

CO-'T~ ( t )  + 5 f ( I )  cos (Qr+cp) e"Wr- 5 n 8  E~ ( t )  , (34) 

where 
Nm' d2 4eak,,' c,-' = - - + C, lk l , '+C~k~a+ 

( ~ P P ) '  atz (ellk{+elk12)nd' ' (35) 

Expanding the sine in (34) and solving this equation by 
iterations, we can obtain q in the form of a ser ies  in f 
and E .  In the approximation linear in the electric field 
we obtain for rp an expression in the form of a ser ies  in 
f, each term of which is represented graphically by a 
t ree  (see Fig. lb). The difference from the static case 
l ies in the fact that in one of the zeroth-order vertices 
f(r) cosQ .r is replaced by ~e/nd ' .  In addition, the 
frequency w of the external field passes along the trunk 
joining this vertex with the base of the tree. All the 
segments of this trunk represent the Green's function 
G(w), while the segments of the branches, just a s  in the 
static case, represent the Green's function G(0). Aver- 
aging over the impurities means, a s  before, the inter- 
connection of all the crosses in all  possible manners. 
Unlike the static case, however, there is no complete 
cancellation of the diagrams, since different parts of the 
diagrams contain different Green's functions G(w) and 
G(0). For  example, the self-energy part  C i s  repre- 
sented in f i rs t  orders  by the diagrams 3a and 3b, and 
is equal to 

d8k 
Z . = T J ~ I G ( W ) - G ( O )  I. (3 6) 

We consider f i rs t  the case of a weak Coulomb interac- 
tion, when the parameter a is large and the last term in 
(35) can be disregarded. We shall substitute henceforth 
in the skeleton diagrams the exact Green's functions, 
G" = Go1 -I;. The Green's functions represented by the 
"stubs, " a s  in Fig. 3a, a r e  not renormalized, just a s  in 
the static case. In second order in y, the self-energy 
part  g2 is represented by the diagrams 3c and 3d, and 
is equal to 

d", d=kZ 
z2 (k )  = y Z  S ~ ( k , + k , - k )  [ G ( k , ) G ( k 2 )  -Go(k,)Go(kz)  1- 

(2n) .  ' (3 7) 

where Go is the static Green's function (20). In third 
order in y, the self-energy part  of C, is equal to 

Putting 

we obtain for x the algebraic equation 

where 7 = y/4~C,<l . 

,/--x 4 
- d - 6  4:?:c-.h- 

a b c d 
FIG. 3. 
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Equation (39) yields H and consequently also the di- 
electric constant & a s  a function of the frequency 

4.+ 4ezf (s) (Nm') " o e - I - - - - ,  s=--- 
nxdL nd'p" ~ P P  9" ' 

Equation (39) enables u s  to find I: a t  high frequencies. 
For  x >> 1 we have 

At small x we can hope to attain numerical accuracy by 
including a sufficiently large number of the t e rms  of the 
ser ies  in the right-hand side of (39). If we retain one, 
two, o r  three terms of the series,  we obtain the follow- 
ing sequence of values off, (0): 

Thus, in the case of weak interaction of the electrons 
with the impurities, the static dielectric constant is 
large but finite. The statement that & is finite follows 
from the fact that Eq. (39) has a t  w = 0 a solution at finite 
n. The solution is valid, in any case, not only if the 
first  three calculated terms of the ser ies  a r e  positive, 
but also all the remaining terms. If the ser ies  is of al- 
ternating sign, then one cannot exclude the possibility, 
a s  in the theory of phase transition, that & can increase 
in power-law fashion a t  low frequencies. We regard a s  
more reasonable the first  possibility, which is analogous 
to that existing in the theory of the Kondo effect, when E 

is finite a t  low frequencies and can be expanded in pow- 
e r s  of w2. If we use Eq. (39), then we obtain for f(x) 
-at small x 

f (s) =0.23+0.15sz. (43) 

In the considered case of weak Coulomb interaction, 
the frequency dependence of &(w) has two regions, x 
>> 1 and x << 1. 

If the Coulomb interaction is strong enough, so  that 
the parameter a (32a) is small, then there exists an in- 
termediate frequency region where the effective number 
of conducting electrons depends logarithmically on the 
frequency. In the region of high frequencies w >> Z, the 
expansion (41) is valid. The value of ij is determined 
from the condition that the first  and fourth terms of (35) 
be equal 

We assume for simplicity that the equality C,,/CL >> &,,/&, 

is satisfied. As shown incs1, this case conforms to the 
experimental situation. In the region w << 5,  the expan- 
sion in y leads to logarithmic integrals. To sum the 
higher-order logarithms, we use the renormalization 
group method o r  the "parquet" equations. The second- 
order diagrams for the effective vertex I' a r e  shown in 
Fig. 4. The corresponding "parquetJ' equation is 

Solving this equation with logarithmic accuracy,-we ob- 
tain for the dimensionless effective interaction r=  ar /y :  

Exprsssion (46) is valid a t  high frequencies w >> w,, 
where r <<l. In this region G(w) can be obtained from 
the formula 

~ ( w )  in (47) satisfies the equation 

Solving (48) and substituting ~ ( w )  in (47), we obtain an 
expression for E (w): 

Formula (49) is valid a t  sufficiently high frequencies w 
>> WT, when f' << 1. We assume, just as in the theory of 
the Kondo effect, that &(w) assumes a constant value a t  
low frequencies. The value of &(O) can be obtained with 
exponential accuracy by substituting in (49) the value of 
w a t  which f is of the order of unity 

To find in (50) the dependence of the pre-exponential 
factor on a, i t  is necessary to write down the equation 
of the renormalization group accurate to the next term: 

The static value of the dielectric constant &(O) corre- 
sponds, apart  from a nume-rical factor, to a value of 
the parameter 5 such that I? becomes of the order of 
unity. Solving (51), we get 

(52) 

from which we obtain the value of c(0): 

where B is a number on the order of unity. 

It was assumed that &,C,, >> C,&,,(m). In the opposite 
limiting case formula (53) contains &,,(a) in place of 
&LCIl/CL. 

5. CONCLUSION 

Bergman, Price, and ~ e e ' ~ '  estimated the parameter 
a from the dimension of the spot on the x-ray diffrac- 
tion pattern (a = 0.055). oThey also obtaiaed the esti- 
mates C,, = 1.5 x ev/A, C,= 10'~ eV/A, &,= 3, and 
cll(m)= 340. Substituting these quantities in (53), we get 
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& 1. lo4. The experimental value is & = 1200. C'31 Recog- 
nizing that formula (53) was obtained accurate to a nu- 
merical factor and that the parameters that enter in i t  
a r e  not very accurately known, the agreement between 
theory and experiment can be regarded a s  satisfactory. 

Lee, Rice, and ~ n d e r s o n " ~  have discussed other ef- 
fects to lead to a large dielectric constant. One of these 
effects is connected with the relatively small  gap in the 
electronic spectrum and yields for & of KCP a value 
340, which is less  than the observed & = 1200. The sec-  
ond effect is connected with the CDW motion. It was as-  
sumed inci1 that the finite & is due to the pinning of the 
wave by the host lattice a s  a result of commensurability 
effects. It is difficult to estimate the magnitude of these 
effects. It appears that in KCP the pinning by the host 
lattice is weaker than the pinning by impurities, which 
was considered above, for otherwise the long-range or-  
der  would not vanish. 

It i s  possible to distinguish between the two pinning 
mechanism by means of the frequency dependence of &. 

The qualitative behavior is the same in both cases: a 
resonant maximum should appear in the far infrared at 
frequencies w2 = 4 r ~ e ~ / m * &  (o), and a t  higher frequen- 
cies & (w) is negative and decreases quadratically with 
frequency. At low temperatures, however, in the case 
of pinning by the lattice, the imaginary part is small a t  
all frequencies, and the resonance is narrow. In the 
case of pinning by impurities, the resonant maximum is 
broad. The behavior of the function &(w) is qualitative- 
ly the same in the case of weak and strong Coulomb in- 
teraction, and is described by Eq. (39) a t  sufficiently 
low frequencies, when the activation conduction can be 
neglected. It follows from this equation that a t  low fre- 
quencies w << o, the quantity &(a )  is real  and increases 
with frequency like & (o) = & (0) (1 + cw2/w; ), and an 
imaginary part  of & appears a t  w- w,; in the resonance 
region, the imaginary and real  components of & a r e  of 
the same order. At w >> w, the imaginary part  of & ( w )  
is smaller than the real  part, and their ratio decreases 
with increasing frequency in power-law fashion in the 
case of a weak Coulomb interaction (formulas (40) and 
(41)) o r  logarithmically in the case of a strong Coulomb 
interaction (formula (49)). 

A maximum of the dielectric constant &(w) a t  frequen- 
cies w" 0.002-0.003 eV was observed in experiment.ci41 
The real  and imaginary parts were of the same order, 
thus also indicating that the pinning by the impurities is 
stronger. 

In compounds of the TTF-TCNQ type below the transi- 
tion point there a r e  two charge-density waves, electron 
hole. These waves a r e  coupled with each other and do 
not transport any charge. The Coulomb effects a re  also 
inessential here. It is possible to apply to these sub- 
stances the results  of Sec. 3 for static correlators in 
the case of a weak Coulomb interaction: the correlation 
function should decrease exponentially a t  large dis- 
tances. The greater part of the dielectric constant of 
these compounds is evidently due not to pinning by impu- 
rities, but to the weak interaction of the CDW of oppo- 
site signs. 
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