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An exact solution to the problem of the bound states of a self-localized electron (or exciton) with phonons 
in a one-dimensional system is obtained in the strong-coupling limit. The phonons are assumed to be non- 
dispersive, while the interaction is assumed to be of the contact type. The bound state energies differ from 
the energy of the free phonon by universal numerical factors. The oscillator strengths of the optical 
transitions are computed. 

PACS numbers: 71.38.+i 

When an electron o r  an exciton interacts sufficiently 
strongly with the vibrations of the lattice, there arise 
self-localized states of these quasiparticles. The type 
of self-localized state is determined not only by the 
interaction strength, but also by the interaction law, 
the particle-dispersion law, and the dimensionality of 
the space. 

It was shown by pekaS1] that, when an electron in- 
teracts with polarization vibrations in a three-dimen- 
sional crystal, a self-localized state (the polaron) i s  
realized even in the macroscopic limit. In the case 
of a deformation interaction in a three-dimensional 
crystal there is a potential barrier for  the transition 
into the self-localized state, the minimum of the energy 
being attained outside the region of applicability of the 
macroscopic approximation. 

In one-dimensional systems, on the other hand, the 

ly well to the exciton. 

Let us  write down the Hamiltonian for the electron 
and phonons, the contact interaction of which is char- 
acterized by the constant a: 

The dimensionless length is expressed in units of 
( ~ / m w ~ ) " ~ .  The constant o! has been introduced in such 
a way that the f i rs t  correction to the energy of the sta- 
tionary electron from the interaction with the phonons i s  
equal to - atiw,,. 

Averaging the Hamiltonian (I), in which the phonon 
kinetic energy has been omitted, over the electron 
ground-state wave function Qo, and minimizing the ob- 
tained expression over Q,, we obtain 

self-localized states can, a s  has been shown by Rash- 
baLS1 and Holstein, C41 possess macroscopic dimensions ~ . = h w . { ~  f j (2) d Y  2 d . - ~  j Y:&}. 
even in the case of the deformation interaction. Of late 

(2) 

there has been a significant rise in interest in the prop- To  eliminate a, we make the substitution 
erties of one-dimensional systems, Apparently, this 
should explain the publication of papers in which the 
laws of dispersion of one-dimensional self-localized 
states a re  computed. L5*61 

It i s  interesting in the case of self-localization under 
conditions of strong coupling of the particle to the lattice 
to elucidate the nature of the energy spectrum in the 
vicinity of the ground state. It has been shownc71 that 
in the case of the polaron the lowest excited levels a re  
the phonon-polaron bound states, the free-phonon energy 
being a point of accumulation of the spectrum of these 
bound states. But i t  was not possible to solve the prob- 
lem completely, since the variational functional con- 
tained the polaron ground-state, wave function, for  which 
an analytic expression is not known. 

In contrast, in the one-dimensional case the ground- 
state wave function is known in the strong-coupling lim- 
it, and has a simple form.c141 This allows us  to solve 
completely the problem of the bound states of a phonon 
and an electron (or exciton), and find the oscillator 
strengths of the optical transitions. Below we shall, 
for brevity, speak of the electron, but the obtained re- 
sults (except the oscillator-strength values) apply equal- 

x=E/2'"a, Y ( x )  = (201) %lpO ( t)  . (3) 

Varying the functional Ho with respect to &, we ob- 
tain an equation for  the determination of the self-con- 
sistent ground-state function IJ and the excited-state 
functions IJ3 (s > 0) in the same potential 

For  IJo and E~ we obtain 

With allowance for  this, the ground-state energy is 
equal to 

The mass of the self-localized electron is expres- 
sible, a s  before, C1*81 in terms of the equilibrium phonon 
coordinates 

Q - ( 2 % ~ )  '" e'" Yo (x) d~ A- (7) 
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in the ground state, to wit 

dk 32 
~ = m  J - kzQ.Q-,, = - a'm. 

2rc 15 

into (13) of the potential -4&(5) from (4) yields, after 
integration by parts, an expression that differs only by 

(8) a numerical factor from the result of the substitution 
into the potential energy (12) of the function q(5)-d&/d[. 
The vanishing of the potential energy in the case of a 

It follows from the relation (6) that the criterion for  
definite form of the phonon function corresponds to the 

strong coupling in the one-dimensional case, IHo I 
vanishing of the frequency of that localized vibration 

>> Ewo (where Ho= - 0.1 cu2Rwo), is less  rigid than in which corresponds to a small shift of the self-localized 
the three-dimensional case. 

electron from the state of neutral equilibrium. The van- 
The interaction of an electron with phonons and an ishing of the frequencies of three vibration modes for 

attracting center leads to the formation of a bound the case of the polaron was demonstrated by Pekar. ''I 
state. We shall assume the potential of the interaction 

For  the determination of the frequencies, 6, =vnwo, of of the electron with the center to be of short range: the bound phonons, we use the equation 

V ( x )  =-y6(x). (9) 
$~(e)$.ce)  S $.(E') q(e')lpO(e')det (14) 

Eo-E. If this potential is sufficiently weak, then the dimen- .>O 

sion of the bound state, determined by the mass (8) and the right-hand side of which was obtained by means of 
the magnitude, y, of the potential, andequal to ~ ~ ( ~ ~ ~ m ) ' ' ,  the variation of the functional (12). Dividing (14) by 
exceeds the dimension, E'/2/a(mwo)'/2, of the self-lo- Qo(5) and letting the operator standing in the square 
calized state. In this case the 1:eduction in the ground brackets in Eq. (4) act from the left, we obtain after 
state energy on account of the coupling to the center is obvious transformations the final equation 
quadratic in y, so  that 

- , . azhoo 16a'~'m ft" I o. \ '1% 

The eigenfunctions of the operator standing on the 
  he interaction of the electron with a stronger poten- left-hand side of (15) a re  the associated Legendre poly- 

tial should be included in the nonlinear functional (2). In nomials p',,(th [) 30). Since q0([)- ~ { ( t h  [), and poly- 
this case nomials with different lower indices a r e  mutually or- 

thogonal, the right-hand side of (15) is equal to zero for 
m R" wo '1' ( )  >- - . (11) all the eigenfunctions of the left-hand side. Therefore, Bo(7)=---  

3 a2 ( m  ) 
The coupled states of a phonon and a self-localized 

electron arise owingto the quadratic-in Q,-term in 
the energy, a term which appears in second-order per- 
turbation theory with respect to the electron-phonon 
interaction near the ground state Q0.c5ve1 With allow- 
ance for this term, we obtain, izfter making the sub- 
stitution Q&) = ( ~ " ~ a ) " ~  q( [ ) ,  the following expression 
for the phonon potential energy: 

This expression does not costain the coupling con- 
stant a; therefore, the bound-state energies differ from 
the free-phonon energy Rwo by universal numerical fac- 
tors. 

Let us  show that there exists such a function, q([), 
which transforms the expression (12) into zero. For  
this purpose let us write down the following identical 
relation between the eigenfunctions, the eigenvalues, 
and the potential of the ~chrijdinger equation: 

To derive this relation, we should shift the potential 
V([) from the coordinate origin, expand the ground- 
state energy up to terms quadratic in the shift, and 
take into account the fact that the energy does not de- 
pend on the position of the potential. The substitution 

It i s  clear that the minimum frequency Go is equal to 
zero, in accordance with the foregoing. 

F o r  the determination of the normalization constant 
A ,, it is sufficient to equate the potential energy (12) 
computed with the eigenfunction q,(O to AGn/4. Using 
Eq. (15) to transform the second term in (12), we ob- 
tain the normalization condition in the form 

Knowledge of the bound-phonon frequencies allows us 
to find the ground-state energy of the self-localized elec- 
tron, including the coupling-constant-independent term. 
For  this purpose, it i s  sufficient to determine the change 
in the energy of the zero-point vibrations: 

Notice that the use of the variational principle pro- 
posed by ~ e y n m a n ' ~ ]  leads to an expression that differs 
from the exact expression (18) by the replacement of 
the number 3 by n in the first  term and of 0.88 by 0.94 
in the second term. 

To determine the optical characteristics of the phonon 
bound states, it is  necessary to find the matrix ele- 
ment of the dipole moment for the excitation of these 
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states. Let US write in the respresentation of the func- 
tions $s the Hamiltonian (1) without the third term, but 
with allowance for  the interaction of the electron with 
an e&ernal field: 

We a re  interested in the Hamiltonian's matrix ele- 
ment which is diagonal in the ground-state index s = 0 
and which contains the product of the field E and the 
phonon coordinate q,. It is obtained from (19) in sec- 
ond-order perturbation theory, and is given in the repre- 
sentation of the phonon creation and annihilation opera- 
tors by the expression 

where d, i s  the matrix element of the dipole moment: 

In this expression the sum over s can be evaluated if 
qn(() $&() is represented in the form 

which follows from (15). The operator in the square 
brackets in (221, acting on &((I, yields (&, -&,I zjs (51, 
a s  a result of which the energy denominator gets can- 
celed out. After this the sum over s gives a delta- 
function, the function &({) gets canceled out, and we 
finally obtain 

It can be seen from a comparison of (23) and (16) 
that the electric field excites transitions only into 

states with even n. The first  of these states has a zero 
frequency. The frequencies w, and the oscillator 
strengths f, for the transitions into the next two states 
are: 

As has been shown by Rashba, C'O1 the intensity of 
Raman scattering with excitation of the phonon bound 
states i s  high only in the case of polarization interac- 
tion. In the case considered by us  the Raman-scatter- 
ing intensity referred to one electron is small com- 
pared to the lattice-Raman-scattering intensity com- 
puted for one unit cell in terms of the parameter 
( i i / m ~ ~ ) ~ ' ~ / a ~ ~ ~ d ,  where A is the wavelength of the 
light and d is the lattice constant. 

The author thanks E. I. Rashba for  useful discussions. 
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