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The set of boundary conditions is solved and the surface tension is found for inclined boundaries in 
uniaxial fernmagnets. The behavior of the Landau-Lifshitz domain structure is de&tnined in an external 
magnetic field directed along the anisotropy axis. A structure is proposed for the intermediate state of 
antifemmagnets in the case in which one of the relativistic constants is smd. 

PACS numbers: 75.60.Ch 

As was shown by Landau and Lifshitz, '" ferromag- 
netic materials divide into domains with different di- 
rections of the magnetic moment. In uniaxial crystals, 
the magnetic moment within the domains is directed 
"up" or  "down" along the anisotropy axis. In a plate with 
the anisotropy axis perpendicular to its surface, the 
domains are parallel layers. If the anisotropy is weak, 
then where the layers emerge at the surface there are  
formed closure domains that prevent the occurrence of 
a strong magnetic field: the Landau-Lifshitz structure 
(Fig. la). When the anisotropy is large, it is not ad- 
vantageous for the moments to deviate from the anisot- 
ropy axis: the Kittel structure (Fig. lb). 

~r ivoro tsk i r '~  ' determined the thermodynamic condi- 
tion for coexistence of phases in any ferromagnetic ma- 
terials. It turned out that this condition was not satis- 
fied at the boundaries of the closure domains. It will be 
shown below that the contradiction can be removed by 
qualitative consideration of the domain structure with 
an arbitrary anisotropy constant. 

The paper investigates boundaries inclined to the an- 
isotropy axis. For them it is possible to find an exact 
solution of the system of boundary conditions in the case 
in which the moments of both phases lie in a plane per- 
pendicular to the boundary and passing through the an- 
isotropy axis. The result makes it possible to introduce 
a f*microscopic" definition of the position of the wall; 
such a definition is necessary, as  is well known, "' in 
order to separate out the surface part of any thermody- 
namic quantity, including the surface part of the thermo- 
dynamic potential, which plays the role of surface ten- 
sion of the domain boundary. The equations that de- 
scribe the structure of an inclined wall can be reduced 
to the form of the equations for walls directed along the 
anisotropy axis, which have been well studied. Also 
clarified is the dependence of the period of the Landau- 
Lifshitz structure on an external magnetic field directed 
along the anisotropy axis. 

The second part of the paper considers the structure 
of the intermediate state of antiferromagnets, which is 
analogous to the Landau-Lifshitz structure in ferromag- 
nets and which should occur when one of the relativistic 
constants is smw$l. The Appendix gives a derivation of 
the Privorotskii boundary condition. 

I. FERROMAGNETIC DOMAINS 

1. Domain boundaries 

We shall clarify what phases (domains) can coexist in 
the case in which the moments of both phases lie in a 
single plane (the xz plane, where z is the anisotropy 
axis) perpendicular to the boundary. It is conyvenient to 
use the potential O' introduced by Privorotskii '2': 

H, and B, are the components normal to the boundary of 
the magnetic field H and of the induction B; is the usu- 
al thermodyanmic potential ('", 1 36), 

M is the magnetic-moment density, /3 is the anisotropy 
constant, 9 is the angle between M and the anisotropy 
axis. In this section we shall suppose that I MI = 1. On 
substituting (2) in (11, we get 

H, and M, are  the tangential components of the field H 
and of the magnetic moment. We have omitted terms 
that depend on Ht and B,, which do not change during 
passage across the boundary. Because the moments 
lie in a single plane, Ht differs from zero only in this 
plane. Taking this into account, we introduce the fol- 
lowing notation: 

dsin20,=-4n sin2$, dcos 200=-p-4n cos 247, 

H,=cd sin (A+$), B,=cd cos (A+$), 
(4) 

J, is the angle between the z axis and the boundary. In 
this notation, O' has the simple form 

FIG. 1. Ferromagnetic domain structures: a, the Landau- 
Lifshitz when P - 0 ;  b, the Kittel when P-rn. 
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Q'='/,dcos 2 (8-0,)  -cd sin (@I-A).  (5) 

The boundary conditions a re  expressed by the follow- 
ing equations: 

The f i r s t  two a re  the stability conditions of phases 1 and 
2; the third is ~ r i v o r o t s k i ~ ' ~  thermodynamic conditionr2' 
for the coexistence of magnetic phases. Thus by use of 
expression (5) for the potential @'we get the system of 
equations 

sin 2(0 , -0 , )  +2c cos (&+A) =0, 

sin 2(01-8,)  +2c cos (8% + A )  =0, 

cos 2(8,-8,)  -4c sin (& +A)  =cos 2 (02-Ba) -4c sin (&+A) .  

By transformation to the variables 0' + 0, and 0' - B,, the 
solution is easily found: 

sin 29 el+ 02=28,=arctg 
cos 2$+p/4n + n ,  

81-82 HIZ+B,' 
cos-= * 

2 ( p2+8np cos 2$+16n2 

Here H ,  and B, are  related by the condition 

H,[4n+p cos 21$+ (pZ+8n cos 2$+1Rn2)'Lj =@B, sin 2 9  

The answers obtained must be investigated with respect 
to stability. In both phases we must have d2&/d82 > 0 
and H, sin0 > 0. The latter inequality is the condition 
that 5 be a minimum with respect to departure of the 
moments from the xz plane. For arbitrary P too com- 
plicated expressions a re  obtained. For  p- all phases 
defined by the solution (7) a re  stable. For P- 0 we ob- 
tain the simple condition 

(I -cZ)"" cos 2$*c sin 21p-0. 

Thus formation of boundaries inclined to the anisotropy 
axis a t  an angle greater than 45" is impossible, and the 
difference 8' - 0, can take values within the limits 411, to 
2n - 41). We note that in the limiting cases fl >> 4n and 
fl<< 1, the solution (7) coincides with the results ob- 
tained by Privorotski;. C21 

Thus the moments in the coexisting domains a re  lo- 
cated symmetrically with respect to a straight line di- 
rected at angle 0, to the anisotropy axis. Hence it is 
clear that for the case being considered, it is natural to 
define the position of the mean boundary in such a way 
that the component of the magnetic moment of the bound- 
ary perpendicular to this straight line, and lying in the 
xz plane, shall be zero. 

Since the potential @' is the same on both sides of the 
boundary, i t s  surface part  A' is simply the integral 

the 5 axis is perpendicular to the boundary. By use of 
the relation (1) of the potential 6 to @', the surface part  

A of the potential 6 (that is, the surface tension) can be 
expressed in terms of A' and the normal component M i  
of the magnetic moment of the boundary, which must be 
found on the basis of the definition of the mean bound- 
ary: 

The equations that describe the structure of the bound- 
ary can be found by variation of the potential (8). Here 
it is necessary to take into account the nonuniformity 
energy due to exchange interaction. It is convenient to 
introduce a spherical system of coordinates y, q, whose 
polar axis is directed at angle Bo to the anisotropy axis 
and lies in the xz plane. In these variables, the poten- 
tial (8) has the following form: 

a is the nonuniformity constant, and 2g= d + B - 4n. We 
see that in the variabres y and q, the potential differs 
from the well investigated case $ = 0 only in the value of 
the constants. Therefore we shall merely present sev- 
era l  solutions. When c = 0, the value of y is constant 
and equal to n/2, and 

cos 11=-th (:/IS), 6 = ( a / g ) " .  (11) 

If fi>> 4n, then 6 = 6,=  (a/@)"2; if fi<< 411, then 6 = 6 ,  cos"$. 
When c *  0 and p<< 4n, then the variation of the angle 77, 
in the zeroth approximation with respect to p/41r, is 
again described by the expression ( l l ) ,  while the angle 
y varies a s  follows: 

We record the value of the surface tension A for this 
boundary: 

~ = ~ , ( i + c o s ' ~ , )  cos .II, (13) 

A. = 2& is the surface tension o f  the usual Bloch bound- 
ary, investigated macroscopically by Landau and Lif- 
shitzC']; y* is the value of the angle y at infinity. 

2. The Landau-Lifshitz domain structure 

It would appear that the impossibility of existence of 
interdomain boundaries directed a t  angle 45" to the an- 
isotropy axis, between phases 0' = 0 and 8,=1r/2, for fl - 0 contradicts the Landau-Lifshitz structure. But ac- 
tually a transition from the state 0 = 0 to the state 8 = 7r/2 
can occur over macroscopic distances, dependent on the 
plate thickness L and small in comparison with the pe- 
riod a of the structure, to the degree that p is small. 
It is clear that for p-471, in the unbranched domain 
structure the walls emerge at the surface just a s  in the 
Kittel structure, but the moment is inclined at an appre- 
ciable angle to the anisotropy axis at distances of the 
order of a. For P- rn, the angle of inclination is small, 
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FIG. 2. The Landau-Lifshitz structure in an external mag- 
netic field H, II z .  

and only in a small neighborhood of the point of emer- 
gence of the interdomain boundary is the moment in- 
clined significantly, since i r ~  this place there develop 
strong fields - LiW (at the point of emergence, 6 = 71/2 
for arbitrary 8). For P- 0, the condition of absence of 
fields larger than pn/r leads naturally, in the zeroth ap- 
proximation in 8 to the Landau-Lifshitz structure. In 
the next approximation, slight departures from Fig. 1 
occur, and the transition between the primary and the 
closure domains occurs over macroscopic distances. 
These departures lead to the appearance of a magnetic 
field - W, which stabilizes the structure. 

We shall now consider the behavior of the Landau- 
Lifshitz domain structure in an external field H, direct- 
ed along the anisotropy axis. It is clear that the struc - 
ture must change as is shown in Fig. 2. The angles &, 
&, and 6, which describe the closure domains, a re  de- 
termined by the condition of continuity of M,,: 

R,=4nM cos 0, $,=0/2, q2=ni2-0/2 

The concentration c' of domains with moment directed 
along the field is found from the condition that Ho must 
equal the component normal to the plate surface of the 
mean induction B inside the plate; that is 

which the antiferromagnetic vector 1 is directed along 
the anisotropy axis, in the other perpendicular to this 
axis; they investigated a structure analogous to  the 
Kittel structure in ferromagnetsc6' and a branched 
structure. C5 I 

We shall write the energy density of an antiferromag- 
net in the form 

The f i rs t  two terms correspond to the exchange energy; 
xL and XI, a r e  the transverse and longitudinal susceptibil- 
ities in the exchange approximation; and p a re  rela- 
tivistic constants. When P>O, then during a change of 
the external magnetic field Ho from He, to Hc2, where 

antiferromagnets divide into domains with different di- 
rections of the vector 1: 1 ll z and l l  z .  The field H in- 
side the domains is directed along the z axis and is 
equal to the flip field Hc: 

The concentrations cL and c,, of the phases a r e  deter- 
mined by the condition of continuity of the magnetic f l u  
and a re  

When P<< 471, in perfect analogy to  the case of ferro- 
magnets, the structure should have the form shown in 
Fig. 3. In the closure domains, the z component of the 
magnetic moment is determined by the condition 

whence 

The volume of a closure doniain is $a2 sine. Thus the 
energy density in the plate is 

The first  term is the energy of emergence of domains 
at the surface, the second the energy of the domain 
boundaries. On minimizing, we obtain the period 

II. THE INTERMEDIATE STATE OF 
ANTI FERROMAGNETS 

A theory of the intermediate state of antiferromag- 
nets, which occurs in a certain field interval near the 
sublattice-flip field H,, has been developed by Bar'yakh- 
tar, Borovik, and popov. C 5 * 6 1  They determined the 
surface tension at a boundary between phases in one of 

x,, is the zz component of the magnetic susceptibility 
tensor, which depends on the angle 8 of inclination of 
the vector 1 to the z axis a s  follows: 

On substituting this value of x,, in (19), we find the angle 
6': 

cos 20=c,,-c,. 

FIG. 3. Structure of the intermediate state of antiferro- 
magnets when P - 0. 
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APPENDIX The component M, of the magnetic moment is determined 
by the xz component of the susceptibility tensor, M, 
= x x . H c ,  cind 

%.=- (L-x~~) sin 0 cos 8. 

We find the angles and z+& from the condition of con- 
tinuity of the normal component of the magnetic mo- 
ment: 

CQ $i=tg tp*=(cJc,I) ". 
We now have everything that is needed in order to cal- ' 

culate the energy density of the plate a s  a function of 
the period of the structure: 

The quantity 2A = (x, - X,,)pfi126 is the surface tension of 
a boundary between phases 1 !I z and 11 z; b2 = 
- xII) is the "thickness"of this boundaryCS1; a is the non- 
uniformity constant. On minimizing the energy, we 
find the period 

It is interesting that this expression agrees exactly with 
formula (14) for ferromagnets, if  in the latter we in- 
troduce, instead of the field H,, the concentrations of 
the phases with magnetic moment directed along the 
field and opposite to the field. 

Here we shall present, for comparison, the formula 
for the period of the structure considered in Ref. 6, 
when 8>> 47~, 

and its limiting expressions 

here c = cL or c,,. These expressions are  correct a s  
long a s  a << L. The problem can be solved also, quite 
analogously, when a- L. We shall present only the val- 
ue of the period when a>> L, 

The formula i s  correct with logarithmic accuracy in 
L/@. When the plate thickness exceeds a certain criti- 
cal L,, branching becomes advantageous. The value of 
L, can be found by comparison of the energy density of 
a structure of the Kittel typeC6' with the energy of the 
branched structure treated in Ref. 5; we get 

Since 6 - cm, X, - lo", and fi>> 1, Lo, considerably 
exceeds one centimeter; that is, the unbranched struc- 
ture should usually occur. 

I express my thanks to A. I?. Andreev for constant 
attention to and direction $f the research, and to E. M. 
Lifshitz, L. P. Pitaevskii, and A. E. Borovik for useful 
discussion. 

We consider the change of the thermodynamic poten- 
tial during an infinitely small change of the boundary 
between two magnetic phases: 

Here the integration extends over all space; Zo and & 
are the densities of the thermodynamic potential before 
and after, respectively, the variation. We separate out 
from this expression the integral over the volume 6V 
where a change of phase occurred: 

(A. 1) 

The first integral extends over all of space except 6V. 
Since there small changes occur, and in particular the 
magnetic field H changes slightly, the difference 6 -go 
can be expressed as  follows (see Ref. 4): 

By virtue of the equations divB = 0 and curl6H = 0, the 
integral of B6H over all space--is zero; therefore the 
first integral in (A. 1) can be transformed to an integral 
over the volume 6fi 

Finally, retaining in this expression terms linear in the 
boundary deviation f, we find 

(A. 2) 

We have replaced integration over the volume 16V by in- 
tegration over the area of the boundary; the indices 1 
and 2 denote quantities related to the different phases. 
In a state of thermodynamic equilibrium, the change of 
potential (A. 2) must vanish for an arbitrary variation f; 
therefore 
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