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The behavior of the Peierls instability as a function of the location of the electron Fermi level r, is 
investigated. It is shown that, when the level to which the one-dimensional band is filled deviates from the 
middle of the band by p, the wave vector, Q, of the charge density wave (CDW) is not equal to 2kF, 
and the dielectric gap, A,, is shifted with respect to the Fermi level. Although a state with a CDW is an 
ordered state of the dielectric type, it has, starting from p > A,, even at T = 0, free camers above the 
gap A, (to the extent of the noncoincidence of Q and 2kF). If bare attraction exists in the Cooper 
channel, then a state with a CDW still turns out to be unstable against superconducting ordering, and the 
coexistence of superconductivity and CDW becomes energetically advantageous at p > A,. 

PACS numbem 74.20. -2, 77.50. + p 

The low-temperature state of quasi-one-dimensional 
systems that exhibit metallic behavior at high tempera- 
tures continues to be intensively investigated in connec- 
tion with its expected, not-quite-usual properties. ['-=I 

It has been established, for example, that, depending 
on the relation between the constants characterizingthe 
bare electron interaction in the one-dimensional sys- 
tem, the ground state of the system may turn out to be 
an ordered state of the superconducting or  dielectric 
type, or may remain metallic. r4'5' 

The purpose of the present paper is to ascertain the 
conditions for the coexistence of the superconducting 
and dielectric states in a quasi-one-dimensional sys- 
tem in the framework of the conventional self-consis- 
tent scheme. We are aware of the limitedness of such 
an approach, which does not take into account the role 
of the long-wave fluctuations, which preclude the de- 
scription of a change in the state of strictly one-dimen- 
sional systems in terms of the theory of phase transi- 
tions. 

We hope, however, that the results of the mean-field 
approximation will prove to be useful in the discussion 
of the properties of quasi-one-dimensional systems, 
since, according to Ref. 6, they do not qualitatively 
change after allowing for the fluctuation effects in the 
Ginzburg-Landau scheme.for systems with two order 
parameters: A, and A,. Furthermore, these results 
form a basis for comparison with the results obtained 
by means of other methods, including more rigorous 
methods. [5 '11  

Here we pay particular attention to the behavior of the 
Peierls instability as  a functio~l of the level of deviation, 
p, of the filling of the one-dimensional band from the 
middle. Let us recall that, according to Ref. 8, if the 
band is exactly half-filled, i. e. , if p = 0, then there de- 
velop in the one-dimensional chain a displacement wave 
cp, and an associated charge-density wave (CDW), p,, 
with wave vector Q = 2kF= r/d. Below we shall show 
that, without allowance for the umklapp processes, the 
condition Q = 2kp is, as  in the jelly model, "' fulfilled 
regardless of the level to which the band i s  filled. Al- 
lowance for the unklapp processes (the periodicity of the 
lattice is, in fact, manifested in these processes) leads, 

in accordance with Ref. 10, to a situation in which the 
CDW vector Q that is established at the Peierls transi- 
tion point does not coincide with 2kp, i. e., Q # 2kp, if  
there i s  a finite deviation, p, from the middle of the 
band (when kp# r/2d). TO wit, at  small p the one-di- 
mensional system prefers to maintain a doubled period, 
i. e., Q = r/d. C''' It is only upon the attainment of a 
limiting deviation level, p,, that the CDW vector begins 
to change in the direction of the doubled limiting mo- 
mentum, but it remains, a s  before, Q # 2kp. 

It i s  appropriate in this connection to discuss the 
origin of the deviation of the level to which the band is 
filled from the middle of the band. First  of all, it can 
come about because of the overlap of the band under con- 
sideration with some other band playing the role of a 
reservoir and not undergoing a reconstruction in the 
transition. To a limiting case of a state with a given 
value of p corresponds an infinitely large density of 
states of the reservoir. A given value, 6n, of the de- 
viation of the electron concentration from the concen- 
tration that corresponds to the exactly half-filled band 
should be regarded as  another limiting case. A state 
with a given bnis characteristic rather of systems with 
doping if we ignore the possible formation of bound im- 
purity states. c'2' 

If the bare electron interaction in the Cooper channel 
corresponds to attraction, i. e., if X, < 0, then the di- 
electric and superconducting orderings should be con- 
sidered simultaneously. From the obtained system of 
self-consistent equations for the order parameters A, 
and A, we can establish precisely the conditions for the 
coexistence of the dielectric CDW state and supercon- 
ductivity. Below this i s  done for the case of a weak 
superconducting ordering against a background of a di- 
electric ordering established at a higher temperature, 
i. e., when the original critical temperatures, T,o and 
Tso, of the pure dielectric and superconducting phases 
differ so much so that T,,>> T,. In this case we can 
neglect the inverse effect of the superconductivity onthe 
CDW. 

Below we shall show that the conditions for the coex- 
istence of superconductivity and CDW are closely con- 
nected with the distinctive features of the excitation 
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spectrum of the dielectric phase, and, in fact, arise 
only when the Fermi level of the original metallic phase 
deviates from the middle of the band. Although a state 
with a CDW is of the dielectric type, its excitation spec- 
trum for p t  0 has no gap, since the dielectric gap in 
this case arises not exactly at the Fermi level. This 
state, which has free carriers above the gap A, (to the 
extent of the noncoincidence of Q and 2k,), turns out to 
be itself unstable against superconducting ordering, and 
the coexistence of superconductivity and CDW becomes 
energetically advantageous when p > A,. 

1. In the model Harniltonian of a one-dimensional 
metal 

we retain out of the interaction of the electrons with 
other and with the lattice only the terms that are  re- 
sponsible for the instabilities in the Peierls (the second 
and third) and superconducting (fourth) channels. Here 
a, and bQ are the annihilation operators for an electron 
and a photon in states respectively with quasimomenta 
p and Q (a i s  the spin index). We shall assume that the 
matrix elements VD and V,  include all the possibletypes 
of interelectron interaction (Coulomb, exchange of pho- 
nons, etc. ). 

The quasimomentum dependence of the electron en- 
ergy 

(2W is the band width and d i s  the period of the chain) 
possesses the obvious property: 

The shift of the chemical potential p = epp = - W coskpd 
from its position, p = 0 with k$ = n/2d, at the middle of 
the band takes account in the Hamiltonian (1) of the de- 
viation of the filling of the band from the exactly half- 
filled situation. 

We shall follow the stability of the phonon subsystem 
on the example of its interaction, involving momentum 
transfers Q- 2kp, with the electrons. The stability i s  
established according to the behavior of the phonon 
Green function 

where D0(an, Q) is the free-phonon Green function: 

while lI(a,, Q) is the polarization operator: 

which it i s  sufficient to compute in terms of the nonin- 
teracting-electron Green functions ~ ~ ~ ' ( w , ) ~ ' ~ ' :  

In normal (N) processes the initial and final electron 
states should belong to the first Brillouin zone, i. e., 
I pl , I p - &I < Qo. In the static limit On - 0, we find from 
(5) that 

The umklapp (U) processes make the remaining part of 
the first Brillouin zone accessible for scattering of pho- 
nonsofthe wo(Q)mode: Ipl,Ip-Q+HI <Qo, 

Introducing the new variable e =E,,,, let us rewrite IIN 
and nu: 

where we have introduced the notation 

p*=p+sin (qd/2) (W-E') ', W,=W cos (qd/2) ,  

and q(&) = w/(@ - E ~ ) " ~  is the density of states normal- 
ized to its value, N(0) = ~ / n d ~ ,  in the middle of the one- 
dimensional band. 

The temperature satisfying the equation for the poles 
of the phonon Green function (4) 

determines the critical temperature, T, for the devel- 
opment of the CDW of the mode wo(Q) a s  a function of 
the location of the Fermi level p = - W coskpd in the 
band of width 2W, the CDW period 2n/Q, and the effec- 
tive coupling constants Xi = 2d/wo(&). Allowance for 
the interelectron interactions leads to the result that as 
the A, we should set 

where the index i = N, U labels the normal and umklapp 
processes. 

We shall restrict ourselves to the consideration of 
the case of small deviations of the band filling from the 
middle, i. e., of the p << W case. It will be seen below 
that in this case the wave vector Q that gets established 
in the CDW system also differs little from Qo= d d  
(which corresponds to a simple doubling of the period), 
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FIG. 1. 

i. e., q = Q - Qo << Qo. Under these conditions, it is con- 
venient to transform the "exact" equation (lo), appro- 
priately changingctg1 the order of summation when com- 
puting NQ,, Q) in (5). 

In the case of the normal processes we obtain from 
(9) that 

where eo 1, = w sin(qd2) = vFq/2, I)(%) is the digamma 
function, and pM= (2y/r)4W exp(- I/&) is the Peierls 
doubling temperature (q= 0) for the exactly half-filled 
band, i.e., for p=O. 

To make a judgment about the! actual value of the re-  
construction temperature fl, it is sufficient to know 
that, according to (ll) ,  the max{c} is attained at &, 1, 
= p, i. e., at Q = 2 k ,  and is equal to (GI,= T$ irre- 
spective of the location of the Fermi level in the one- 
dimensional band. When allowance is made for only the 
normal processes, the corresponding dielectric gap al- 
ways arises at the Fermi level. Let us, for complete- 
ness, give the dependence on the wave vector Q of 
(Fig. I), expressed for convenience in terms of &,I,, 
for several values of the filling-deviation level p; the 
T, , line has been made distinct. 

To demonstrate the role of the umklapp processes in 
the development of the Peierls instability, we shall re- 
strict ourselves to the consideration of the case A, = AN. 
The corresponding equation for the determination of T, 
with a simultaneous allowance for the N and U processes 
has the 

where T,,= (2y/n)ho is the transition temperature for 
P= 0, &Q 1,  = 0, and a doubled (because of the fact that 
AN = XLI = A,,) coupling constant and 

the quantities (T, p, cQ1,) are  in units of Ao. The role 
of the umklapp processes is manifested first and fore- 
most in the effective doubling (for XN = &) of the coupling 
constant: into (13) enters 2A, as compared to AN in (11). 
The type of function Tp(zO is itself changed drastically. 

It is quite evident that, with the appearance of a de- 
viation, p, from the middle of the band, the max{T,} is 
first attained at E, = 0. This means that, for small 
deviation levels p, an instability develops at the point 
T, at double (2d) the period of the initial lattice. The 
limiting value p,, right up to which the doubling of the 
period is still advantageous, is found from the condi- 
tion R ~ B ~ $ ( Z ) / ~ Z ~ ~  # Z ( ~ ( O . S + ~ ~ ~ ~ / ~ ~ T , )  = 0, and is equal to P,, 
= 0. 602Ao. 

At higher p levels, the max{T,} is now attained at a 
finite value of &, 1, but still e, 1, + p. Thus, the wave 
vector Q = Qo + q of the generated displacement wave is 
not equal to 2kF of the original one-dimensional metal, 
and, consequently, although the low-temperature phase 
is of the dielectric type, it has in its conduction band 
carriers whose concentration is determined not only by 
thermal excitation across the resulting gap, but also by 
the extent of the noncoincidence of Q and 2kF. This 
would correspond at T = 0 to a degenerate semiconduc- 
tor. The connection between the indicated shift, p, of 
the chemical potential in the normal phase and the de- 
viation, 6n, of the concentration from the concentration 
corresponding to half filling of the band i s  established 
from the formula 

and, under conditions of degeneracy (T << W) of the car- 
riers, has the form 

2. Let us turn to the investigation of the reconstruc- 
tion of the electron spectrum and the lattice as  a result 
of the instability of the phonon subsystem. Let us in- 
troduce for consideration the electron temperature func- 
tion G,,,(T)~'~': 

In Fig. 2 we show the dependence T , ( & ~ / ~ )  for several 
values of p; the T,, curve has been made distinct. All 
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a,. ( z )  -exp ( z R ) ~ , .  exp ( -TR).  
The equations of motion for the Fourier components 
G,,,(w,) have the form 

where the order parameter A(&): 

is expressible in terms of the amplitude of the wo(Q)- 
mode displacement wave, 

(cp(z) )=<cpp)e'ox+(~-p)e-i4'  

and the amplitude, 

Po=C <ap+-oap) 
P 

of the real CDW. 

If the wave vector Q i s  incommensurable with the re- 
ciprocal-lattice vector 277/d, then the order of the sys- 
tem (15) formally becomes infinite. 

A. In a concrete analysis of the system (15), it is 
useful to consider the normal processes first, and then 
allow for the umklapp processes, in the same way as 
was done above in the study of T,. 

Clearly, for the N processes the states with the quasi- 
momenta p' and p should belong to the first Brillouin 
zone: I p'l , I pl < Qo. Then for a CDW with some Q (for 
definiteness, Q - Qo = q > 0) there remain out of the com- 
plete system (15) only the equations 

q<p<Qo. 

Similarly, in the equivalent region - Qo < < - q of the 
first  zone only GM ,, does not vanish (cf. Eq. (6)). 
Finally, for the electrons with I pl < Q - Qo we should 
set G,, ,, = GM ,,I 0, since these electrons cannot trans- 
fer the momentum Q without leaving the first zone. 

Solving (17), we find, for example, in the region q < p  
< Q o  

cpP- ( i o , , + ~ ~ - ~ + p ) j D ( p ,  o n ) ,  GP-Q. P=A ( Q ) / D ( P ,  a * ) .  

-- 
The self-consistency equation for A(Q) is obtained after 
eliminating the amplitudes (pa) = (ba + b ~ ) / o t / ~ ( ~ )  from 
(16) with the aid of the equations of motion for the pho- 
non averages (for greater details, see Ref. 15), and 
has the form (the index N denotes normal processes): 

After the summation over n and the substitution 

we obtain the equation of state of the low-symmetry 
phase with allowance for only the N processes: 

where 

E - ( e Z  cos2 ( q d / 2 )  +Az)",  p-=p- (Wz-e2) '"  sin ( q d / 2 ) ,  

' W 1 = W  cos ( q d / 2 ) ,  h.vl=hNN (0). 

For T = Tp, when A - 0, Eq. (19) goes over into (10). 
Let us begin the study of the ground state (T = 0 )  with 
the study of a CDW with such Q that at a given value of 
y the condition 

p-W sin ( q d / 2 )  =ear-~u,?<.4. 

is fulfilled. A direct computation of (19) yields 

where K is the complete, and F the incomplete, elliptic 
integral of the first  kind. Clearly, for q<< Qo, qd/2 
<< ?r/2 and w ~ / ( @  + A')'/~- 1. Using the asymptotic 
representations for K and F, we find, neglecting A in 
comparison with Wl, 

I 1 In 4 W [ I - s i n ( q d I 2 )  ] 
-=- 

A . AN' cos ( q d / 2 )  

A ( Q )  = 4 ( ~ - e a , t )  cxp ( - i / h s N ( e ~ ~ d ) .  (21) 

Let us draw attention to the fact that the coupling con- 
stant AN enters with the enhanced density of states N(O)/ 
cos(qd/2) = N(cQl2), but then the energy range in which 
the interaction i s  important decreases by a factor of 
[ I  - sin(qd/2)] in comparison with the simple doubling 
of the period at q = 0. 

The change, AilD, in the electronic part of the free 
energy, 

indicates that the dielectric state is preferred to the 
initial metallic state, while the variation with respect 
to Q (or q) clearly determines the self-consistent peri- 
04 2 n / ~ ,  of the CDW that i s  established at T = 0. 

Formally, the equation of state (18) admits of another 
type of solution, A', corresponding to such a wave vec- 
tor Q in the CDW that p - zQ 1 > A': 
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where A is given by the formula (21). The correspond- 
ing change an;, however, turns out to be positive. This 
proves that the wave vector, Q, of the displacement 
wave should in any case be such that the condition (19) 
is fulfilled: E , ~ - E ~ ~ ~  < A, 

Notice in this connection that there is a difference in 
the behavior of systems with a given value of the devi- 
ation, p, from the middle of the band and with a given 
value of the carrier-concentration excess, 6% over the 
concentration that corresponds to the half-filled band. ' 

The equation of state (18) in the latter case should be 
supplemented by the equation 

which expresses the condition for the conservation of 
charge in the phase transition. For T = 0 and 6n= 0, 
there remains out of all the A(Q) contained in (18) the 
solution with Q = Q,: 

which corresponds to exact doubling of the period. 

Any given finite value of 6n > 0 necessarily leads to 
p- = p - q,, 1 > a, since we have, on account of (23), 

Eliminating then from the equation of state p- = (z2 
+t?)ln, we find the dependence of the order parameter 

on n: 

A = [ A ( A - 2 n )  I"', 

where A is a quantity which can be computed from the 
formula (21). The change, ha,, in the free energy for 
n < A/2 is equal to 

~ G ~ = - ' ! z ~ ( e ~ , r )  [ A  (Q) -2nI2.  

For n:> A(Q)/2 the metallic phase i s  stable at T =O. 

B. In the case when the umklapp processes are taken 
into account, the uncoupling of G,, ,,= 0 for n > 1 be- 
comes, in contrast to the case of the normal processes, 
illegitimate, and we are  formally obligated to turn to 
the complete system of equations (15). The presence of 
the higher harmonics G,* ,, with n > 1 implies that, un- 
der the conditions of incommensurability of Q and r /d ,  
instead of the barely unstable displacement of the type 
(cp) - cosQz, a more complex CDW is established in a 
self-consistent fashion. 

It can, however, be seen from the solution to the sys- 
tem (15) that, compared to the (n - 1)-th harmonic 
G,(n-l,o ,,, G,,,, contains a s~iperfluous power of the 
order parameter A. The relative order of the corre- 
sponding corrections in the self-consistency equations 
is, in its turn, equal to A/W. Therefore, in the frame- 

work of the Hartree-Fock scheme, we should in the 
equation for A retain only the components GPo,, and 

GP+O ,P. 

To demonstrate the role of the umklapp processes, 
let us again consider the case of equal constants, AN 
= = A* for the normal and urnklapp processes. 

The self-consistency equation 

where the summation over p is performed in the first  
Brillouin zone and 

after the summation over on and standard transforma- 
tions, assumes the form 

(25) 
The solution, A, to Eq. (25) at T = 0 depends essentially 
on the quantity p. 

1) For small p < A, CDW with such Q that the condi- 
tion p- < p+ < A i s  fulfilled are  admissible. Then for T 
= 0 we find from (25) the equation 

Using the asymptotic form of the complete elliptic in- 
tegral K for Wl/($+ A ~ ) ~ ~ ~ -  1, let us solve it for A: 

Notice that allowance for the umklapps leads to an in- 
crease in the effective interaction (to its doubling when 
AN = kr). 

The change in the free energy can be computed a s  be- 
fore from the formula (22), and is now equal to 

the max{- An1} is attained at Q = Qo, i. e., 

(Ai).,,=4W exp ( - 1 / 2 h , N ( O ) )  =bo. (28) 

It follows from this that the ground state is insensitive 
to doping, p, until this quantity exceeds the maximum 
possible dielectric gap, A,, in the system. The CDW 
that is established corresponds in this case to a simple 
doubling of the period with Q = Qo. 

For p > A (when p+ > A  as  well), the properties of the 
ground state are  determined by the relation between p- 
and A. 

2) For example, for the solutions A2 that are such 
that p- <A2  < p+, the region E c0s(~d/2) < (p", - a2)lI2 

drops out from the integration at T =  0, and Eq. (25) as- 
sumes the form 
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whence, using the asymptotic forms of K and F in the 
case when w1/(wf +~:)"~-1,  we find that 

The change, An,, that occurs in the free energy during 
the changeover to the CDW state with these Q is equal 
to 

where 4 is found f rom Eq. (29). 

3) If, on the other hand, A < pCI, < p+, then the order 
parameter A, in this case satisfies the equation 

([IL+YIL+'-A~~)BI [P -+ (c~ . -~ -A~ ' )  ' l ) g = 4 ( ~ z - ~ ; ~ , ) "  exp[- i /25N(e~ ,~) l ,  

(31) 

but a CDW with such Q turns out to be energetically dis- 
advantageous (since the corresponding calculation yields 
An, > O), and is not realized a t  any given p. 

From a comparison of the cases 1) and 2) we conclude 
that in a regime of given p we can have either a dielec- 
tr ic state with a doubled period (when p <A), o r  a con- 
ducting state of the semiconducting type with the  order 
parameter 4, (29), but without a gap in the excitation 
spectrum (when p > A). In fact, the value of Q that gets 
established in the CDW in the p > A case is found from 
the corresponding variation A&, (30), with respect to 
Q (or 9). 

A different behavior is exhibited by the one-dimen- 
sional system during the reconstruction in the case 
when the number, 6n, of ca r r i e r s  above the halfway fill- 
ing mark of the band is given. As before, for the nor- 
mal processes, the equation of state (25) should be sup- 
plemented by the electrical-neutrality equation 

If i t  is given that n = 0 a t  T = 0, then, clearly, p- < p, < A. 
In this case the order parameter A = A. and the change 
A n  a re  determined by the preceding formulas (28) and 
(27), and Q,,, = Qo. A fixed value of n + 0 can be main- 
tained by the low-symmetry phase at T = 0 in two ways: 

a )  p- < A < p,. Equation (32) then gives n = (pf - ~2,)"~/2.  
Eliminating then p, = (4n2 + A:)"~ from Eq. (29), we ob- 
tain an equation for the determination of the order pa- 
rameter A, in this case: 

where the quantity Al is given by the formula (26). The 
change in the free energy is then equal to 

b) A < p- < p,. In this case Eq. (32) reduces at T = 0 
to 

2n= (p+"Aa2)"+ ( P - ~ - A ~ ~ )  '". 

Eliminating from this relation and Eq. (31) the quantity 
p, we obtain an equation for the order parameter Ab: 

where A1 is computed a s  before from the formula (26). 
The change in the f ree  energy is equal to 

The condition p-=  A determines in the n-co/, plane the 
equation of some curve, 

that delimits states of the type a )  and b) with one and 
the same carr ier  concentration n in the conduction zone 
of the reconstructed phase. We infer from the expres- 
sions for the corrections, An,  and Anb, t o  the thermo- 
dynamic potentials on this curve, 

that for a given n the states with those Q for which p, 
< A  < p,, i. e., states of the type a), a r e  more advanta- 
geous. Thus, the period 2n/Q that gets established a t  
T = 0 in the one-dimensional system should be found 
from An,, (33). 

3. For the simultaneous consideration of the instabil- 
ities of the one-dimensional metal in the superconduct- 
ing and Peieris channels, let us introduce, besides the 
functions G,, and G,,,,, the nondiagonal anomalous 
function 

As before, let us restrict  ourselves to the case of equal 
constants, A, = A, = A,, for the normal and umklapp scat- 
tering processes in the Peierls  channel. After Fourier- 
transforming the equation of motion for the components, 
the electron Green functions assume the form 

where 

Notice that into the equations of motion is inevitably 
drawn, along with F:,,,, the component I;;,,, of the 
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anomalous function, although it has itself no logarithmic 
singularity. For this reason, the corresponding compo- 
nent of the superconducting-order parameter is not re- 
tained in (36). Assuming that the superconducting inter- 
action includes all the possible superconductivity mecha- 
nisms (e. g., the excitonic, [1'61 etc. ), we can assume the 
constants A, and A, to be Gdependent phenomenological 
parameters of the theory. 

The solution to a system of the type (36) in the simple 
Q= Qo case of the conventional doubling was investigated 
in detail in Refs. 15 and 16. The classification of the 
solutions to the system (36) according to the relation 
between the phases of the order parameters A, and A, 
remains entirely valid under the conditions of incom- 
mensurability of Q and r /d .  Below we consider the so- 
called symmetric solution, when A, and A, a re  both 
real and of the same sign, which solution, according to 
Ref. 16, has the broader existence domain. 

The solution to the system (361 has the form 

DG.-@, p=Ap[  ( io+ep-9-p)  ( i o f  8,-p) -A,'-A:], 

DP~-,=A,[~~+(~~-~-~)'+A~~+A,'], (38) 

where D is the determinant of the system (36). The 
functions G,, ,, and F f , ,  from (38) when substituted in- 
to (37) determine the self-consistency equations for A, 
and A,. 

At T = 0 these equations can be written in the form 

where 

Li is the cutoff energy for the effective interaction in the 
superconducting channel (6- cr,,), while the density of 
states has been replaced by the constant N(0). 

The question of the coexistence of the dielectric and 
superconducting phases reduces, in the framework of 
the above-adopted formulation of the problem, to the 
question whether there exists a thermodynamically-ad- 
vantageous nontrivial simultaneous solution to the "equa- 
tions of state" (39) and (40) with A,# 0 and A,#O. The 
answer to this question can be obtained by investigating 
the case of a weak (in comparison with the dielectric) 
superconducting order, i. e., the case when A, << A,. 
Then we can set in Eq. (39) A,, = 0, which corresponds 
to the neglect of the inverse effect of the superconduct- 
ing ordering on the dielectric ordering. We can also 
set A, = 0 in the integrals J~(B, pt) in Eq. (40), since 
these integrals do not have singularities when considered 
a s  functions of A,. The quantity A, should, however, be 

retained in the terms with J2(G, pt) when a divergence, 
which indicates the instability of the dielectric phase 
against Cooper pairing, ar ises  in them at A, = 0. After 
this, the necessary integrations can easily be performed 
and, depending on the relation between p, and A, three 
essentially different cases should be distinguished (cf. 
Sec. 2). 

a )  p- < j.4, < A,. We set  everywhere A,= 0, since in 
this case J 2 ( 4  p*) does not diverge at  A,= 0, and find 
from (39) and (40) the expression 

,i 2W 1 2u I - - = l n - + T [ a ( l . r + ) + a ( ~ - ) l ,  
I, A h.' A* 

(42) 

where 

Since l /A;  = ln(2 W/Apo) and 1/A: = ln(23/ASo), where APo 
and A,, a re  the order parameters of the pure dielectric 
and superconducting phases, let us rewrite (42) in the 
form of a unified relation, 

which expresses the condition for the formation of the 
superconducting phase against a background of the di- 
electric phase at a given p <AM. It can be seen from 
(43) that the smallness of the Cooper interaction A,, 
<<AM can be compensated by the large magnitude of p+/ 
(A: - p",)1'2, provided the quantity p+ = p + vpg/2 comes 
close to the edge of the forbidden band, 2A, of the di- 
electric phase. On the other hand, the equilibrium val- 
ue of Q,,, for A, = 0 is determined exclusively by the 
properties of the dielectric phase. In the present case 
p < A,, and, according to (28), we should set Q,,, = Qo, 
i. e., p+= p- = p. Therefore, instead of (43) we have 

A90 I n -  ' arctg P 
A ,  (Ap:-pa)"' (Apo2-pa)'1' ' 

from which we can determine the value of p necessary 
for the onset of the Cooper ordering for a given relation 
between the bare interactions Aso and AM. 

b) For p- < A, <p+, we retain A, in Jz(G, p+). We find 
by much the same procedure used above that 

The condition (45) is resolved with respect to A, by the 
BCS-type formula 

where a s  A, we should substitute i ts  value computed 
from (29) for the purely dielectric ordering. 
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The change that occurs in the free energy during the 
transition with the two order parameters A, and A, can 
be computed from the 

where it is convenient to choose the integration path C, 
which joins the coordinate origin and the point with the 
given X, and A, such that initially A,= 0, while A, varies 
from zero to A,. Along the remaining path A,= const, 
while A, varies from zero to A,. As a result, we obtain 

where An, is the result of the integration over the sec- 
tion with A, = 0, a result which coincides, naturally, with 
the change that occurs in the free energy during the 
Peierls ordering, (29). It can be seen from (47) that 
the coexistence of superconductivity and the dielectric 
ordering is more advantageous than the purely dielec- 
tric ordering. 

c) A,< p- c p+. In this case we find, in the same was 
as we found (46), that 

(48) 
where 

~ / ( F ~ - A ~ ~ ) ' ~  
In b (p) = In 

4(pZ-Ap2) 
p+i(fi+Z-~p2)'h+p-/(p-z-~p2)~A p+ (pz -~pP) 'h '  

while as A, we should substitute the solution to (31) for 
the dielectric ordering in the A < p- < p+ case. The cor- 
responding change in the free energy i s  equal to 

where An, is the result of the computation on the A,= 0 
segment. Because of the positiveness of An,, we con- 
cluded in Sec. 2 that a CDW with such Q that p f E q 1 2  
> A, is not realizable at a given p >  A,. In spite of the 
fact that, when p- is sufficiently close to the edge of the 
allowed band, the sign of ~ h l z ' ,  (49), can on the whole 
change, we cannot say with certainty that a state with a 
A, of the type (48) is realizable. 

Thus, the consideration of even the case of very weak 
superconducting ordering, Td<< Tfl, to which we re- 
strict ourselves here, shows that, upon the deviation of 
the Fermi level of a one-dimensional metal from the 
middle of the band, there arise conditions for the coex- 
istence of a dielectric distortion and superconductivity. 
The coexistence manifests itself in the fact that the state 
with CDW that gets established in the one-dimensional 
system when p >A, is unstable against arbitrarily weak 
Cooper pairing, and lowers its symmetry with the super- 
conducting order parameter A, which satisfies a BCS- 
type equation. From this standpoint quasi-one-dimen- 
sional objects, in which the dielectric order sets in 
sooner than in most other materials, deserve considera- 
tion when potential candidates for one-dimensional super- 

conductivity are  being selected. By properly controlling 
the magnitude of the deviation, p, of the Fermi level 
from the middle of the band, we can secure a transition 
into a conducting state of the semiconducting type be- 
cause of the presence of 6n free carriers above the di- 
electric gap A,, 6n being determined by the extent of the 
noncoincidence of Q and 212,. 

Notice that, according to (46), the superconducting 
order parameter A, can, depending on the location of 
p, attain values considerably exceeding Ad, which are  
accessible in the absence of dielectric ordering. This 
distinctive feature, which was earlier noted in three- 
dimensional systems with simultaneous dielectric and 
superconducting order, C15,1e' is explained by the fact 
that the superconducting order under consideration is 
established against a background of an enhanced density 
of states, which is due to  the dielectric order. 

Similarly, the corresponding critical temperature T, 
can, depending on p, significiantly exceed the critical 
temperature, Td, of the purely superconducting transi- 
tion. This all the more indicates the need for a careful 
study of the low-temperature phase of quasi-one-dimen- 
sional systems with an electron concentration different 
from one per unit cell. 

The author i s  grateful to Yu. V. Kopaev for useful 
comments and for a discussion of the results. 
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