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Expressions are found for the sound attenuation due to interaction between the sound and magnons at 
temperatures To< T<O~Q,(To = 0, @M,J@,)'") and frequencies T,.; I, r@.;'<o< r;'(r,, T , . ~ ~ ,  and 
rfim are the magnon-magnon, magnon-phonon and phonon-magnon collision times). In a broad frequency 
range, the attenuation exceeds that of sound due to anhannonism. It is shown that the method proposed 
by Akhiezer for calculation of sound attenuation is valid over a broader frequency range than was 
previously assumed. 

PACS numbers: 43.35.R~ 

1. INTRODUCTION sound wave is considered a s  an external field, which 

In an ideal ferrodielectric at temperatures T <<@, ((3, 
is the Curie temperature) sound absorption is due to its 
interaction with magnons and phonons and depends es- 
sentially on the relation between the frequency of the 
sound wave w and the mean collision times: magnon- 
magon T,, phonon-phonon TM, magnon-phonon T,-*,, 

and phonon-magnon TM,, (in a ferrodielectric, over a 
wide temperature ranges, 7, << rM-, T,,,,~). ''I In the 
calculation of sound absorption, as a rule, two ap- 
proaches are  employed, the choice of which is also de- 
termined by the frequency interval under investigation. 

At high frequencies, the sound absorption is usually 
represented as the result of the collisions of a sound 
quantum with phonons and magnons of the crystal. Such 
phonon-phonon damping at 7;: << w, due to triple anhar- 
monism, i s  determined for transverse sound in second 
order perturbation theory, '21 and for longitudinal sound, 
by the method of account of the anharmonism in all 
orders of perturbation theorycg1 (the latter corresponds 
to account of the lifetime of the interacting phononsc41). 
Sound absorption due to interaction with magnons at T: 
<< w is also considered in second order perturbation 
theory.'5t81 It was shown in Ref. 7 that at temperatures 
T << 82,/0, (eO i s  the Debye temperature), it is not suf - 
ficient to limit ourselves to second order for the calcu- 
lation of phonon-magnon damping, rather it is necessary 
to take into account the contribution from fourth order 
perturbation theory. In this case, it turns out that the 
considered contribution can appreciably exceed the pho- 
non-phonon damping. 

At low frequencies, the sound absorption is usually 
calculated by the Akhiezer method. In this case, the 

produces a departure from equilibrium in the gas of 
magnons and phonons. Knowing the change in the parti- 
cle distribution function under the action of the sound 
field, we can determine the change in the entropy of the 
gas and thus calculate the dissipation of energy of the 
sound wave. The phonon-phonon damping in dielectrics 
at w << 7;: was calculated by this method. [" In what fol- 
lows, the indicated method for phonon-phonon damping 
was developed in other researches. C9"01 Phonon-mag- 
non damping of sound in ferrodielectrics was considered 
by the same method for the frequencies w << 7;' at low 
temperatures T <<To = o,(~M,/o,)~'~ (p  is the Bohr mag- 
neton, Mo the magnetization saturation), when the equi- 
librium in the magnon gas is established through dipole- 
dipole processes. C5*1'1 

In the present work, we consider the attenuation of 
sound in a ferrodielectric due to interaction with mag- 
nons at temperatures To<< T, when it is necessary to 
take exchange scattering into account, and at frequen- 
cies T&, 7SM << w << T:'. The sound attenuation in the 
given frequency range was considered previously in the 
work of Kaganov and Chikvashvili, C51 who neglected the 
contribution to the damping from the anisotropic part of 
the phonon-magnon interaction and, in addition, in con- 
trast to the case considered by us, assumed that To - 030,. 

As will be shown, account of the anisotropy has a 
significant effect on the results. It is also important 
here that the basic contribution to the damping is made 
by the interaction of the sound with subthermal inter- 
mediate magnons, while the phonon-magnon damping at 
T << To and the phonon-phonon damping due to anharmo- 
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nism are  determined by the interaction with thermal in- 
termediate states. In this sense, the situation is simi- 
lar to that considered earlier by two of the authors of 
the present work in the calculation of the damping of 
long-wave magnons, and also to the situation con- 
sidered by Gurevich and ~ h k l o v s k i f ~ ' ~ ~  in an account of 
the effect of impurities on the phonon-phonon damping 
of the sound. 

In the present work, the calculations are  carried out 
by the diagram method: '' Such an approach allows us 
not only to obtain an expression for the damping decre- 
ment, but also to show that the method of Akhiezer (in 
the form put forward in Refs. 9 and 10) is applicable 
over a wider range of frequencies than has been as- 
sumed earlier. It is also proposed that the given meth- 
od of calculation of the sound attenuation is applicable 
under two limitations: a) or,<< 1, or,,<< 1, and b) A*,, As <<A, where X i s  the sound wavelength, and c, X s  are 
the wavelengths of the magnons and phonons which make 
a substantial contribution to the sound absorption. We 
shall show that the only necessary condition is the sec- 
ond one, which, for example at the temperatures T << 0v 
O, considered by us and at the frequencies w << T/R, i s  
always satisfied. 

2. EQUATION FOR THE VERTEX. DAMPING 
DECREMENT 

We consider an isotropic ferrodielectric. The Ham- 
iltonian of the phonon-magnon system has the following 
formc": 

(I) (3) (0 
a=%,+v",-,h+v, + v e x  

Here 

is the Hamiltonian of the noninteracting phonons and 
magnons; E, = 0, (a&)', Rw, = Ooaq are  the energies of the 
magnons and phonons (at the considered temperatures 
To<< T, we can neglect the gap in the magnon spectrum); 
a;, b; are the creation operators of the magnons and pho- 
nons; the quantities 

v~,?,~,, = $(kt, kz, q)akr+ak2bq4(k,-kl-q)+ herm. conj. (24  
krkxq 

- - 

v!"= Q (k,, kz, k,) ak,+akz+ak,A (k,+kz-ka) +hem. conj. (2b) 
k,k*kr 

v.'="= @ (k,, kt, k ,  k,)akl+ak2+at,at~A (kt+ k~-k , - - t )  ( 2 ~ )  
k,k,k,kr 
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describe the magnon-phonon interaction, and also the 
dipole and exchange interaction of the magnons. 

$(It,, kz, q) =i@,a2 (~12pVo,)'"[Bl(ekl) (qkz) 
+Pi  (ekd (qkd +2B=(klkz) (ep) I, (3a) 

Q (kl, kZ, k8) =2n (2S)"pZrr-3[sin 20t, exp (-itpk,) 
+sin 29s  exp(-icpt,) 1, (3b) 

@(k,, k., ka, ki)=-8,aZ(k,kz+k,k,)/4S (3c) 

are  the amplitudes of these processes. Here p is the 
density, a is the period of the lattice, V i s  the volume 
of the crystal, PI and B2 are  dimensionless constants of 
the order of unity, e i s  the unit polarization vector, S 
is the spin of the atoms of the magnetic lattice, 8, and 
pk are the angles which describe the position of the 
wave vector relative to the axis of quantization. We do 
not take into account the interaction of the phonons, since 
it gives a separate contribution to the sound absorption 
in the frequency range considered (phonon-phonon damp- 
ing) and was considered previously. C2'4'"'0' We also 
neglect processes of phonon decay into two magnons, 
since they do not make a contribution in the frequency 
range considered. C5161 

We shall calculate the sound attenuation by the dia- 
gram technique. In such an approach, the damping de- 
crement of the sound i s  expressed in terms of the mass 
operator zR(w, q) of the equal-time retarded Green's 
function of the phonons''51: 

7 ( o )  =-Im BR(o, q ) .  

The damping due to the interaction with magnons, cal- 
culated by second order perturbation theory, corre- 
sponds to a diagram of second order, shown in Fig. la. 
The law of conservation of energy and momentum in 
this case leads to the result that only those magnons 
with energy &, R 0240 ,  can absorb or  emit a phonon. At 
low temperatures T << 0vO,, the number of such mag- 
nons is exponentially small, and the damping calculated 
in this approximation turns out to be correspondingly 
small. C51 However, as shown by ~hklovski?, '" we need 
to take into account higher order perturbation theory, 
the contribution of which to the damping at T << 030,, 
exceeds the contribution of second order perturbation 

-theory. He considered the case of frequencies ril<< W, 

where i t  sufficed to calculate the damping in fourth or-- 
' 

der perturbation theory (several diagrams of fourth or- 
der a re  shown in Fig. lb), since the higher orders are 
small in the smallness parameter (wT,)" << 1. In the 
opposite limiting case, wr, << 1, which we shall consider, 
it is necessary to sum the contributions of all orders of 
perturbation theory in order to obtain the correct ex- 
pression for the damping. 

The total mass operator is shown in Fig. 2, where 
the heavy lines correspond to the renormalized Green's 
function of the magnon, and I? denotes the vertex part. 
The' principal contribution to the mass operator is made 

0 FIG. 2. 
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3. CALCULATION OF THE DAMPING DECREMENT 
7 ( w )  

by the ladder diagrams. In what follows, we limit our- 
selves to not too low frequencies, ~;;f-~,, << W, when we 
can neglect the contribution to the mass operator from 
diagrams of the type shown in Fig. 3. The equation for 
the vertex I' with account of the ladder diagrams only 
is shown in Fig. 4. The reason why we cannot always 
neglect the dipole processes at To << kT, when the relax- 
ation in the magnon system is determined by the ex- 
change scattering, is that the sound absorption, as  will 
be shown below, is due to the interaction with an iso- 
lated, relatively small group of subthermal magnons. 

TO begin with, we consider the case in which the di- 
pole processes do not play a role. Here, the last two 
terms in the graphic equation for the vertex (see Fig. 
4) a re  discarded. Using the method of analytic contin- 
uation, C151161 we obtain the following expression for the 
damping decrement: 

Here yak) is the damping of the magnon with momen- 
tum iik due to the exchange scattering. The expression 
for L(k) at E~ << T can be found, for example, in Ref. 
17: 

In the derivation of (4), the expression for the mag- 
non mass operator C,,(z, k) in the renormalized Green's 
functions of the magnons 

was taken in second order perturbation theory, since 
the perturbation theory works well in this region of in- 
termediate wave vectors k of the magnons, which give 
the principal contribution to the damping. It has also 
been assumed that EW << T and q<< k. In similar fash- 
ion, we find the equation for the vertex I'(k, q): 

U k ,  q) --*(k, k. q) 

-2i Jjd3kz dskl y,(k, kt, k,, k J  {V (kz, q) -v (ka, q) -V (kk, q) 1, (6) 

v(k, q) =I? (k, q)/[o-pvk+2iy. ..(k) 1, kr=k+kt-kJ. 

Here ye,&, &, &, b) is the expression for the imaginary 
part of C in second order perturbation theory, not inte- 
grated over the intermediate momenta: 

vo' sh(eJ2T) I @  (kc, kr, kt, kr) 1'6(~kc+~rt-eks-~k,) 
y..(k,, kt, kr, k - 7 ' - (Zn) S ~ ( E ~ ~ I P T ) S ~  (ek,/2T)sh (ek1/2T) 

(7) 

We limit ourselves to consideration of the tempera- 
ture range T << @/@,, when the magnon energy differ- 
ence E ~ + ~ - & = E ~ v ~  in expressions (4) and (6) can be ne- 
glected in comparison with the sound frequency. 

The situations a re  different for transverse and longi- 
tudinal sound. 

A. Transverse sound 

We shall show that in this case the renormalization of 
the vertex can be neglected. For this, we estimate the 
contribution to the bare vertex $(k, k, q) for momenta 
Ek = Ek* <<EkT = ( E / a ) ( ~ / 8 ~ ) " ~  of the magnons, which 
make the principal contribution to the damping (an es- 
timate of JZ* is given below). We find the n-th iteration 
Ar.(k, q) for the first few n by direct calculation from 
Eq. (6): 

If the estimate (8) were valid at arbitrarily large num- 
bers n, then the contribution to the vertex $(k, k, q) 
would obviously be small. Such an assumption was 
made in Refs. 12 and 13, in which a similar problem 
of the renormalization of the vertex arose. A more 
critical consideration shows, however, that the esti- 
mate (8) is valid only at n < no. In our case, no is deter- 
mined from the condition 

At n > n, all the iterations are  of the same order: 

For this reason, it is impossible to conclude from (8) 
that the contribution to the vertex i s  actually small. 
Moreover, the renormalization of the vertex is essential 
for longitudinal sound (see Sec. 3B). This circumstance 
is connected with the fact that the isotropic part i s  con- 
tained in the bare vertex for longitudinal sound. For 
transverse sound, the amplitude $(k, k, q) is essentially 
anisotropic, and this leads to excellent convergence of 
the iteration series for the vertex r(k, q), which also 
allows us to neglect the renormalization of the vertex 
(for more details on this, see Sec. 3B). 

For parametrically excited magnons in ferromagnets 
(8, = ~ / 2 )  the bare amplitude (the dipole-dipole ampli- 
tude a,) does not contain an istropic part, and there- 
fore, the statement[121 that the renormalization of the 
vertex can be neglected is valid. Really, however, the 
renormalization of the vertex does not affect the order 
of the magnitude of the result. For this reason, the 
order-of-magnitude results of Gurevich and Shklovskii C131 

are also valid. 

4 = + 4+$ FIG. 4. 
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With account of what has been said above, we obtain 
the following expression for the damping of transverse 
sound: 

avo dak I~rpl(k,k,q) lZ , 2y&) 
r ( a ) - m l  sh8(e./2T) a'+*> (k) 

n 1 
=-- 

2 G4+z' ln'z (9) 

Here 

@(S k, q) is the amplitude of the magnon-phonon inter- 
action for transverse sound (expression (3a) at e l  q). 

The expression (9) differs from that obtained in sec- 
ond order perturbation theory 

in that the 6 function i s  replaced by a Lorentzian, a re- 
placement sometimes simply postulatedc4' on the basis 
of physical considerations of the finite lifetime of the 
particles. We see that such a procedure is correct if 
we can neglect the renormalization of the vertex. 

It is easy to see that the principal contribution to the 
integral (9) is made by x -  6 << 1 and, correspondingly, 
by magnons with wave vectors #C = kT(w~,,,)'14 << kT (here 
E ~ T - E ~ - ' ( T / o ~ ) ' ' ~  is the thermal momentum of the mag- 
nons), i. e., satisfying the condition w= y,,(k* ). 

Direct calculation of (9) gives: 

Here A = w2) n (n/3)'I4 cos (n/8) 132,S9'2 is a numerical 
factor, vi i s  the velocity of transverse sound, and M is 
the mass of the unit cell. 

B. Longitudinal sound 

For longitudinal sound, the amplitude of the interac- 
tion $(k, k, q) at q << k is of the form 

A 

(k, k, q) =2iQ,a2k'q(h/2pVo,)''[P2+~, cosZ qk]. (12) 

We shall seek a solution of Eq. (12) in the form 

which corresponds to the division of the amplitude $ll&, 
k, g )  into an isotropic part independent of the angles and 
an essentially anisotropic part, the averaging of which 
over the solid angle in the space of the wave vectors k 
yields zero. We obtain the following equation for the 
functions fi(k) and f2(k): 

f ,  (k) =k2-2i  d3k2 d3kg ye= (k, k ~ ,  k3, k ~ )  

Direct substitution can establish the fact that the solu- 
tion of Eq. (14), which corresponds to the isotropicpart 
of the amplitude, is the following expression: 

It is seen that the renormalization of the isotropic part 
of the bare amplitude is significant. 

The anisotropic part of the amplitude k, q) corre- 
sponds to Eq. (15). An estimate of the first iterations 
for fi(k), similar to that given in the case of transverse 
sound (see Eq. (E)), zhows that they are  small. The an- 
gular factors (3 cossk,k - 1)/2 under the integral sign in 
(15) lead, in contrast to the case of the isotropic part of 
the amplitude, to excellent convergence of the iteration 
series. In this case, the contribution of the high-order 
iterations n > n,, is small. For this reason, the zeroth 
approximation can be taken for f,(k): 

Thus, the renormalization of the vertex can be ne- 
glected if the bare amplitude is essentially anisotropic 
and the principal contribution to the damping is made by 
the subthermal momenta. 

Direct substitution of the expression (13) with account 
of (16) in the expression (4) can easily establish the fact 
that the isotropic part of the amplitude $,,(k, k, q) does 
not make a contribution to the damping in our approxi- 
mation, (we recall that we have neglected qvk in com- 
parison with the sound frequency w in (4)). 

When the anisotropy of the amplitude of the phonon- 
magnon interaction $(k, k, q) is taken into account itturns 
out, a s  also in the case of transverse sound, that the 
principal contribution is made by the subthermal mag- 
nons: W =  y,,(k). The damptng decrement of the longi- 
tudinal sound y,,(w) can be expressed in terms of the 
damping of the transverse sound y,(w): 

Here v ,  i s  the velocity of longitudinal sound. 

In the derivation of the formulas (11) and (17) for the 
damping of transverse and longitudinal sound, we have 
not taken the dipole-dipole interactions into account. It 
is physically clear that the dipole processes must be 
taken into account if the lifetime of the magnons, which 
make the principal contribution to the sound attenuation, 
is determined not only by the exchange scattering, but 
also by the triple dipole processes. Here, in the graphic 
equation at the vertex (Fig. 4), it is necessary to take 
into consideration the last three terms, which we have 
not previously considered. 
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The damping of the m.agnon states due to triple dipole 
processes is of the following formci1: 

Comparing yd(k) with y,,(k) (see Eq. (5)) a t  the momenta 
Fik-ti#c, we obtain the result that account of the dipole 
processes is necessary at  frequencies 

In this case we estimate the sound attenuation in order 
of magnitude. For frequencies satisfying (19), the basic 
contribution to the sound attenuation is made by mag- 
nons with wave vectors kt: yd(kl) - y,,(kl). Here we get 

4. EQUIVALENCE OF THE AKHIEZER METHOD AND 
THE DIAGRAM METHOD IN THE CALCULATION OF 
SOUND ATTENUATION 

We shall show the equivalence of both methods in the 
case considered here of the phonon-magnon sound atten- 
uation at r;LPh << w << 7;' for the case in which the dipole 
interaction of the magnons can be neglected. In the 
Akhiezer approach, the sound wave is considered a s  
an external field which modulates the energy of the mag- 
nons, leading to a departure of the distribution function 
from its equilibrium value. Knowing the change in the 
distribution function of the magnons under the action of 
the sound wave, we can determine the amount of energy 
absorbed by the crystal and, in the same way, the de- 
crease in the sound energy. 

Assuming the sound wavelength X = 2ir/q (9 is the wave 
vector of the sound) to be large in comparison with the 
magnon wavelength A,,, = 2dk ,  we introduce the local 
density of number of magnons n@, r, t). In order to de- 
termine n@, r, t), we write down the kinetic equation 
with the collision integral in second order perturbation 
theory, for the case of exchange scattering: 

-=- d'k, dgk3 d3k+ I Q (kI ,  kz, ks, ki) I 

Here C, is the energy of the mabmon in the presence of 
the sound wave, CgslO1 and vk= ae Jek is the velocity of the 
magnon. 

Assuming the deviation from equilibrium to be slight, 
we linearize the collision integral terms in the devia- 
tions 6n = n(k, r, t) - ne, where n: = (exp{C/~} - I)-'. Fol- 
lowing Akhiezer, we introduce the function p(k, r, t): 

n ( k ,  r, t )  =n;+T-lcp ( k ,  r, t )  nAO(n;-t I) (22) 

and obtain for it from (21) the following equation: 

The magnon energy 2 @, r, t) in the presence of the sound 
wave can be determined from the magnon-phonon Hamil- 
tonian (I), retaining only the Hamiltonian of the free 
magnons and the interaction with the sound wave ~ 2 i ~ ~ . ~ ~ ~  
Here the annihilation operator Ib, of the sound quanta can 
be replaced by the classical quantity bqei'Q'Wt) + c. c. 
corresponding to it, whence we obtain 

Substituting q(k, r, t) in the form 

we get from (23) the following equation for q(k, q): 

Comparing (25) with the equation for the vertex (6), we 
find the relation between the vertex r(k, q) and the func- 
tion p@, q) at which both equations a re  the same: 

The energy d ~ / d t  absorbed by the crystal per unit 
time can be determined from the dissipative functionc8' 
or from the obvious relationcg1 

(the angle brackets denote time averaging over the pe- 
riod of the wave). Recognizing that the energy of the 
sound wave is E = Bwl b,1 2, we find the sound damping 
decrement: 

which, with account taken of the expression (26), is 
identical with the diagram expression (4). 

We note that in the derivation of Eqs. (25) and (27), 
only the condition of the longwave nature of the sound 
was used: A,,, << X; it is sufficient to assume that this is 
satisfied for that group of magnons which make the 
principal contribution to the attenuation of the sound, 
that is, it is necessary that << X (or, correspondingly, 
q<< P). This condition is considerably weaker than the 
conditions WT, << 1 and wrph << 1, which were assumed to 
be necessary to be able to calculate the sound attenuation 
by the Akhiezer method. 

Of course, the equivalence of the two methods also 
holds for the problem of the calculation of the phonon- 
phonon damping. It is therefore not surprising that the 
expression obtained by Woodruff and ~ h r e n r e i c h ' ~ '  for 
the damping, which is valid, a s  was assumed, at wrPh 
<< 1, goes over at  1 << urn,, into the Landau-Rumer for - 
mula. 

It i s  interesting to note that i f  we solve the kinetic 
equation in the Akhiezer method in the 7,  approximation, 
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then this corresponds to neglect of the renormalization 
of the vertex in the diagram approach. Such an approach 
was used by. ~omeranchuk[ '~~  in the calculation of the 
sound attenuation in a dielectric with account of the 
fourth order anharmonism. 

5. CONCLUSION 

In conclusion, we compare the sound attenuation in a 
ferrodielectric, due to interaction with magnons at To 
<< T << eve,, r$Ph, << w << rA1, with the phonon- 
phonon damping due to the anharmonism. At 7;: << w, 
the damping of the transverse sound due to the anhar- 
monism is described by the Landau-Rumer formula: 

Comparing the damping of the transverse sound (11) with 
the phonon-magnon damping at w << T:', we find that it 
exceeds the phonon-phonon damping (28) at 

At wrph << 1, the phonon-phonon damping is proportional 
to the square of the frequency. At the same time, the 
phonon-magnon damping changes either in proportion 
to w"' (expression (ll)), or  in proportion to ccc? (expres- 
sion (20)). Therefore, at  (r,[')''S r;!, for frequencies 
w J; T;, the phonon-magnon damping is the principal ef- 
fect. This assertion is valid also for longitudinal sound. 
Taking into account the results of ~hklovskir, we can 
conclude that at (r,(')" S 7;: the sound attenuation is 
due to interaction with the magnons in the frequency 
range ri',,,, T;:,, << w << r25'/'. At 7;: S (T,@)-' this 
region narrows: (r,t2)-' S w 5 ~,;115~/'. 

We note that at WT, << 1, the phonon-magnon damping 
falls off slowly with increase in temperature and at 1 
<< WT, it increases ( a  T '9 /2 at 5 >> ltT1 and T exp{- 02,/ 
4 ~ 0 2  at 4 -  1). Therefore, the temperature depen- 
dence of the phonon-magnon damping has a broad maxi- 
mum at WT,= 1. Just this behavior of the sound attenu- 
ation has been observed in yttrium iron garnet (YIG) 
at a frequency of v = w/2n = 9 MHz. The authors of Ref. 
19 connected the broad maximum at T = 210 K with sili- 
con impurities and possible inhomogeneities of the crys- 
tal. Although this region of temperatures corresponds 
to 5 = 1, which lies on the boundary of applicability of 
the results that we have obtained, it is interesting to 
observe that both the location of the maximum T:; 
= 200 K, found under the condition WT, - 1, and the order 

of magnitude of the quality factor Q,,, = w/4y (w) = lo8, 
obtained under the assumption that the sound attenuation 
is due to the interaction with magnons, are  close to the 
experimental values. The experimental frequency de- 
pendence of the sound attenuation, '''' which is slower 
than d, is also in agreement with this supposition. 

In conclusion, the authors are  pleased to thank M. A. 
Savchenko for useful discussions. 
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