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Various singularities in the supexfluid ~e~ are considered: vortices, disgyrations, pointlike singularities, 
vortices with ends, singular surfaces, and particle-like states, as well as disclinations in cholesteric liquid 
crystals. A cl&cation is presented of the topologically stable singularities. The methods of homotopic 
topology are used and are described with examples of well known systems such as superfluid He 11, an 
isotropic ferromagnet, and a nematic liquid crystal. The possibility of applying these methods to ordinary 
crytals and to liquid crytals of the smectic type is discussed. 
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1. INTRODUCTION 

We shall consider singularities in superfluid He3 and 
in liquid crystals. These substances are  typical ex- 
amples of systems with spontaneously broken symmetry. 
Such systems a re  characterized by the fact that their 
equilibrium states, at given homogeneous external con- 
ditions (temperature, pressure, external fields) are  
degenerate with respect to one or  several parameters. 
In other words, there are  non-equivalent ecluilibrium 
states in which these parameters a re  different but the 
thermodynamic potential is the same. Thus, for He I1 
the degeneracy parameter is the condensate phase shift 
9, for an isotropic ferromagnet it is the direction of 
the spontaneous magnetization m (the degeneracy pa- 
rameters for liquid crystals and for superfluid ~e~ will 
be given in the text). 

In the case of an inhomogeneous state of the substance 
the degeneracy parameter is a function of the coordi- 
nates and of the time. Inhomogeneous states are  possi- 
ble in which, at  a certain point or  on a line in space, 
the degeneracy parameter is not defined, and this sin- 
gular point or line cannot be eliminated without de- 
stroying at the same time the ordered state in a large 
volume of matter. This, for example, is the situation 
with the vortex in He 11. This vortex constitutes a sin- 
gular line and the degeneracy parameter (the phase @) 
changes by 2n after circling this line. On the line it- 
self, the phase 9 is indeterminate. This singular line 
can be eliminated only by destroying the superfluid state 
in a large volume of liquid. It is easily seen that the 
existence of a vortex in He 11 i s  connected with the fact 
that the region in which the phase 9 varies i s  a circle 
of unit radius. 

It is natural to expect the existence of singular lines 
and points of other ordered substances also to depend 
on the global properties of the region where the degen- 
eracy parameter varies, i. e., on its topological struc- 
ture. The purpose of the present article i s  to describe 
a regular method of classifying topologically stable sin- 
gularities of the degeneracy parameter of an ordered 
system, by starting from the topological structure of 
the region where the latter varies. This method is 
based on the use of the so called homotopic group. It 

makes it possible to find all the types of topologically 
stable s iGlar i t i es ,  i. e., those which c&be eliminated 
only by destroying the ordered state in a large volume, 
and also to set in correspondence with each singularity 
a homotopic-group element, by the same token making 
it possible to classify the types of singularities. In ad- 
dition, by using this method, it is possible to identify 
the type of singularity that results from coalescence of 
singularities. 

The homotopic topology method has not been used in 
the literature known to us on the investigation of differ- 
ent singularities of ordered systems. (For the use of 
this method in field theory, see the paper of ~onas ty r sk i i  
and Perelomov. )[I1 In a number of cases, therefore, 
the classifications obtained in the literature were either 
incomplete or  contained singularities that could be elim- 
inated topologically. 

In Secs. 2-4 of the present paper the method of homo- 
topic groups is described with He 11, a ferromagnet, 
and a nematic liquid crystal as  examples. In the ex- 
position of this method, we cite elementary information 
on homotopic topology, details of which can be found, 
for example, in the book of Huismoller and Spanier. C21 

In Sec. 5, the homotopic groups are used to classify the 
singularities in superfluid ~e~ (some of the results were 
already published earlier). C31 In Sec. 6, this method is 
applied to the classification of singularities in liquid 
crystals of the cholesteric type, and the question of its 
application to ordinary crystals and liquid crystals of 
smectic type i s  also considered. The Appendix contains 
a brief description of the method of calculating the homo- 
topic groups used in the article (see a l s ~ ~ " ~ ~ ) .  

2. THE FUNDAMENTAL GROUP AND LINEAR 
SlNGULARlTlES OF He I I  

It i s  known that He 11 i s  characterized by a complex 
order parameter l = I l l ei". At equilibrium the modu- 
lus of the order parameter assumes a fixed value l ll 
= C(T, P), which minimizes the condensation energy 
Fc(l ll ), while the phase 9 can assume any value and is 
therefore the degeneracy parameter. In the nonequilib- 
rium state, when 191 and 9 vary in space, an additional 
gradient energy F,,,, which depends on Vl ll and Vb, 
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is added to the condensation energy. We consider weak- 
ly inhomogeneous states, when the characteristic dis- 
tances over which I Q l  and @ vary are  much larger than 
the coherence length ,$ (T, P). In th is  case Fm << Fc, so 
that we can assume 1 Q1 to be practically constant, and 
only the degeneracy parameter @ varies in space, and 
the gradient energy can be regarded as  dependent only 
on V 9 ,  i. e. , F- = ~$#d2, where v, = tiv@/m4 is the 
superfluid velocity and m4 is the mass of the ~ e '  atom. 
This no longer holds near the core of the vortex. In- 
deed, since the phase @ is indeterminate on the vortex 
axis and 1 Q l  should accordingly vanish, the gradient 
energy near the core becomes comparable with conden- 
sation energy. However, if  we are  not interested in a 
region of dimension near the core, and move over to a 
distance r>> 5, then we have here F,,<< Fc and we can 
again assume that I Q I = C(T, P) and only 9 changes. 

From the mathematical point of view, the complex 
order parameter Q(r) determines the continuous mapping 
of the set of points r of the vessel on the complex plane. 
If we consider only weakly inhomogeneous states and 
neglect regions with dimensions - 5 near the lines on 
which the phase is not determined, then we obtain 19 1 
= const, and @(r) maps continuously the set of points r 
of a vessel with a notched line L, on which the phase @ 
is not defined, into the circle that constitutes the region 
of variation of the phase @ (this circle will henceforth be 
designated s'). 

We must ascertain which of these singular lines can 
be eliminated by continuous deformation of the field 9 (r ), 
and which cannot be eliminated by any continuous change 
of the field @(r). To this end, we surround the investi- 
gated singular line L by a simple closed contour y (which 
passes, of course, at a distance r>> f from the line), 
which starts 'at a fixed point and goes in a fixed direc- 
tion. This contour is mapped by the function @(r) on 
the circle S' also into a closed contour r with a fixed 
circuiting direction; the point ro is mapped thereby into 
the point A = @ (ro) on s'. 

Let us imagine that we can contract the contour r to 
a point A, by continuously deforming it on s'. It i s  then 
easily seen that the investigated line is topologically not 
singular, since it can be eliminated by continuously 
transforming the field 9(r) into a constant field @(r) 
=const. In the case when the investigated line is the 
core of a vortex, the contour surrounds the circle S' 
once or several times and is closed at the point A. In 
this case we cannot contract the contour r into a point 
by any deformation. Consequently, no continuous change 
of the field @(r)  is capable of eliminating the singularity 
on the core of the vortex. 

Thus, the line L is topologically singular whenever 
the contours y which surround it are  mapped on contours 
r that cannot be contracted into points in the region of 
variation of the degeneracy parameters. This is valid 
also for other ordered systems. To investigate singu- 
lar lines of an ordered system it is therefore necessary 
to investigate the possible continuous deformations of 
the contours r in the region of variation of the degener- 
acy parameters (this region will henceforth be denoted R) 

In topology, continuous deformation is called homo- 
topy. Two closed contours emerging from a point Aare 
called homotopic relative to each other or  homotopically 
equivalent, or else belonging to a single homotopic class, 
if they can be deformed in continuous fashion into each 
other while leaving the point A immobile. The contours 
that contract to a mint are  referred to as  homotopic to 
zero. Obviously, contours with different numbers of 
circuits along a circle a re  homotopically not equivalent. 
The product of two contours rl and r2 is defined as  a 
contour r2rl such that the mapping of a point that runs 
along the contour y, after leaving the point A, first goes 
around contour rl and then r2. The element reciprocal 
to r is defined as  the contour r" with opposite circuit- 
ing direction. The set of contours r belonging to one 
homotopic class must be regarded as  a single contour 
within the homotopy accuracy. Just as for the contours, 
we can introduce definitions of multiplication of classes 
of contours, of a class that is the inverse of a given 
class, and also a unit class of contours that are homo- 
topic to  zero. It can be verified that multiplication of 
classes is associative. 

Thus, the aggregate classes of homotopic contours 
forms a group-the so called fundamental group of space 
R, which we designate nl(A, R). This group is generally 
speaking non-commutative. An example of such a non- 
commutative group is the fundamental of space R for a 
cholesteric liquid crystal. Deferring the discussion of 
non-commutative fundamental groups until we reachthis 
case, we consider for the time being Abelian fundamen- 
tal groups. The elements of the latter do not depend on 
the choice of the point A, so that the fundamental Abelian 
group will henceforth be designated ?r,(R). 

In the case of He 11, each vortex corresponds to a 
class of contours r-the transforms of the contours y 
that surround the vortex. Therefore each vortex can be 
set in correspondence to an element of the fundamental 
group %(s'), which is called the fundamental group of 
the circle. The latter is isomorphic to the group of 
integers (which will henceforth be designated Z), since 
each class of contours r can be set in correspondence 
with an integer N-the number of circuits of S' in the 
positive direction. Consequently, each vortex can be 
characterized by a whole-number index, N, which is 
equal in this case to the number of circulation quanta of 
the superfluid velocity v, around the core of the vortex 

In our case, too, each linear singularity of the degen- 
eracy parameters can be set in correspondence with an 
element of the fundamental group nl (R). A nonsingular 
configuration of the degeneracy-parameter field corre- 
sponds to a unit element of t h i s  group, and coalescence 
of the singularities corresponds to multiplication of ele- 
ments of these groups. Since we are  interested only in 
Abelian groups with a finite number of generators, each 
singularity can be characterized by a set of whole-num- 
ber indices {N,}. When singularities coalesce, the in- 
dices N, add up in modulo p,, where p, is the order of 
the i-th generator (for example, if  p = 2, then 1 + 1 = 0). 
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Degeneracy-parameter field configurations character- 
ized by identical indices N, can be continuously trans- 
formed into one another. Nevertheless, they differ in 
their energy and therefore, a potential barrier is possi- 
ble when they are  transformed into one another, i. e., 
different locally stable singularities with identical in- 
dices are possible. In the investigation of the stability 
it is important to know the heights of the barriers that 
hinder transitions into configuration with lower energy. 
Thus, for example, in He 11 a barrier is possible when 
a vortex with two circulation quanta (N = 2) decays (a 
process with decreasing energy) into vortices with one 
circulation quantum each (N= I + 1 = 2). An estimate 
shows that if such a barrier exists then its value is - ~ ~ 5 ' .  However, if we want to transform a vortex with 
N= 2 into a vortex with N= 1 or to annihilate a vortex 
(processes with decrease of energy), then no continuous 
change of the phase can accomplish this. To reach 
this goal it is necessary to go over in the intermediate 
states from the circle S1 into a complex plane on which 
the entire order parameter Q changes. It is easy to see 
that the path with minimal barrier on which one vortex 
is transformed into another, is the one in which 1 *I 
vanishes in the intermediate state on a certain surface 
S that borders on the vortex line. The phase @ is not 
defined on this surface. The height of the barrier turns 
out to be -Fc',5S>> ~ ~ 5 ' .  In view of the tremendous sizes 
of the potential barriers, the probability of processes 
with change of indices i s  vanishingly small. We can 
therefore assume that the dynamics of an ordered sys- 
tem is such that the summary indices of the singularities 
situated in a given volume of the system are conserved, 
i. e., the motion has the following invariants Ni:  

where the sum is taken over all the singularities in the 
given volume. The invariants N, can change only when 
a singularity enters or leaves the volume. Homotopic 
topology makes it therefore possible to single out classes 
of singularities having identical indices with macroscop- 
ically large barriers to transitions from one class to 
another. 

Thus, the procedure for classifying the linear singu- 
larities must be the following: A homotopic classifica- 
tion is first carried out to subdivide the singularities 
into classes with large topology-governed barriers to 
transitions from one class to another. For this purpose 
it is necessary to find the fundamental group of the space 
R. If this group i s  commutative, then each linear sin- 
gularity can be set in correspondence with an element of 
this group (or with a set of whole-number indices), by 
identifying the class of contours of the space R into 
which the contour surrounding the singular line i s  
mapped. By the same token, the singularities are sub- 
divided into classes characterized by identical indices 
with large barriers to transitions from class to class. 
The subsequent analysis, which i s  no longer homotopic, 
should consist of finding the locally stable singularities 
within each class by minimizing the functional of the en- 
ergy. 

3. THE HOMOTOPIC GROUP n2(R)  AND POINT 
SlNGULARlTlES OF A FERROMAGNET 

We proceed to the investigation of the singular points. 
By way of example we consider an isotropic ferromagnet. 
The order parameter of an isotropic ferromagnet i s  the 
magnetization vector M. The states of the ferromagnet 
are degenerate with respect to the directions of this vec- 
tor, and therefore the degeneracy parameter is the unit 
vector m = M/I MI , while the space R coincides with the 
two-dimensional sphere 9. We note that an isotropic 
ferromagnet has no topologically stable linear singular- 
ities, since the fundamental group of the space s2 is 
trivial (q(S2) = 0). Indeed, any contour on a sphere can 
be contracted into a point. This, of course, does not 
exclude the possible existence of locally stable singular 
lines of the vector m with a small barrier - FCt3 of non- 
topological character on going into a nonsingular con- 
figuration, where Fc is the ferromagnetic-ordering en- 
ergy. 

TO investigate the singular points, we surround in the 
ferromagnet a point in which the vector m is not defined 
by a sphere of radius much larger than 5.  The function 
m(r) specifies the mapping of this sphere on a certain 
closed surface on the sphere S2. If the sphere o goes 
over in this case to a surface that i s  homotopic to zero, 
i. e., that can be contracted into a point on s2, then the 
investigated singular point i s  topologically unstable, 
since the field m(r) can be made homogeneous by means 
of continuous deformation. On the other hand, if we 
consider the so called "hedgehog, " i. e., a field of the 
typt m(r) =P with a singular point at the origin (where 
2, 0, and @ are  the unit vectors of a spherical coordi- 
nate system in ordinary space), then the sphere o sur- 
rounding the singular point is mapped by the function 
m(r) on the entire sphere S2. This surface cannot be 
contracted into a point and remain on the sphere s2, 
since the singular point cannot be eliminated by any con- 
tinuous transformation of the field Ink). 

Thus, to classify the topologically stable singular 
points it is necessary to find all the classes of the sur- 
faces on the sphere s2 (in our case, in the space R) that 
are not homotopic to zero, into which the sphere o can 
be mapped. These classes, together with the class of 
surfaces homotopic to zero, a r e  the elements of a homo- 
topic group of dimensionality 2, designated n2(R). In 
the case of He 11 the group n2(s1) = 0  and there are  no 
point singularities in He II. 

In the case of an isotropic ferromagnet, the group 
n2(s2) is isomorphic to the group of integers 2. Indeed, 
to each class of mappings of u on S Z  one can set in cor- 
respondence an integer N that shows how many times 
the vector m runs over the sphere S2, with allowance 
for the orientation, whenever r runs over o. This num- 
ber is called the degree of mapping and it can be ex- 
pressed in terms of a surface integral of the field m(r), 
which coincides with the integral of the Gaussian curva- 
ture of the surface to which the vector m is the normal 
vector: 

1188 Sov. Phys. JETP 45 (6) .  Junc? 1977 G. E. Volovik and V. P. Mineev 1188 



FIG. 1. Closed paths that are not 
homotopic to zero in the space 
s2/z,. 

Thus, each point singularity in the field of the unit 
vector m(r) is characterized by a whole-number index 
N that runs through the values from - to Oo. In the 
case of a "hedgehog" in the form m(r) =$, we have N 
=1, and for the "hedgehog" of the type m(r)=-P the 
number is N= - 1. When the singularities coalesce, the 
indices N add up. Of course, within a singularity class 
characterized by a single index N, there can be differ- 
ent locally stable singularities. For one such singular- 
ity to go over into another with a lower energy it is 
necessary to overcome barr iers  on the order of ~ ~ 5 ' .  
But to transform a singularity of one class into a sin- 
gularity of the other class it is necessary, in the inter- 
mediate state, to make m indeterminate on the entire 
line L that emerges from the singular point. On this 
line, the vector M vanishes, and therefore the barrier 
is macroscopically large: - F C t 2 ~  >> ~ ~ 5 ' .  

When generalizing the foregoing arguments to the case 
of an arbitrary space R, it should be noted that we must 
stipulate in the definition of the group n2(R) that a cer- 
tain point r o ~  u always goes over a s  a result of the 
mapping into the same point A E  R. If the fundamental 
group q(R) is nontrivial, then it may turn out that when 
the point A is moved along a close contour that is not 
homotopic to zero the element of the group %(R) goes 
over into another element of this group. This influence 
of the fundamental group nl(R) on the group n2(R) will be 
considered in the next section, using nematic liquid crys- 
tals a s  an example. On the other hand, if this phenom- 
enon does not take place (for example, when q(R)  = 0), 
then the point singularities of ordered systems are  clas- 
sified in the same way a s  linear singularities in sub- 
stances with an Abelian fundamental group of the sapce 
R. Namely, one finds the group rr,(R), and then each 
point singularity is set in correspondence with an ele- 
ment of this group. When the singularities coalesce, 
multiplication of the elements of the group takes place. 
It is known that all the groups n2(R) a r e  Abelian, and 
therefore the pointlike singularities can be classified 
by means of whole-number integers. We then obtain 
singularity classes having identical indices, with large 
barriers for the transition between classes. The suc- 
ceeding, no longer homotopic, investigation of the en- 
ergy functional should reveal the locally stable singu- 
larities within each class. 

4. SlNGULARlTlES IN NEMATIC LIQUID CRYSTALS 

A nematic liquid crystal (NLC) is characterized by 
the unit vector d  of the director, the states with d and 
-d  being indistinguishable. Therefore the region of 

variation of the degeneracy parameter R is the sphere 
s2, in which two diametrically opposed points are  equiv- 
alent. This space is written in the form R =  .S2/Z2 (i. e., 
the sphere S' is factorized with respect to a group of 
two elements 2,). 

In contrast to a ferromagnet, a nematic liquid crystal 
has a nontrivial fundamental group q(R) = Z2 (Z2 is also 
called the group of residues in modulo 2). Indeed, con- 
sider a contour rt that joins two diametrically opposite 
A and A' on the sphere S2 (see Fig. 1). This contour is 
closed because A' = A and, in addition, cannot be con- 
tracted into a point. Therefore rl belongs to one of the 
classes of contours that a re  non-homotopic to zero. 
There is only one such class. Indeed, consider the con- 
tour I?;' that goes in the opposite direction. This path 
is equivalent to the path p1 consisting of the diametrically 
opposite points. But the path can be deformed into 
rl over the surface of the sphere, therefore ril = rl and 
consequently rl. rl = ro, where ro is the class of paths 
that a re  homotopic to zero. Thus, all the contours can 
be homotopic either to rl or to zero. Consequently the 
group nl(S2/Z2) consists of two elements (see also the 
Appendix). The singular lines of a nematic liquid crys- 
tal a re  characterized by a whole-number index N that 
assumes only two values, 0 and 1, and the addition of the 
indices occurs on modulo 2 (i. e., 1 + 1 =0). 

The linear singularities in NLC (disclinations) are  
customarily characterized by the Frank index m. The 
contour y that surrounds the disclinations with Frank 
index m is mapped into the contour rr which is homo- 
topic to zero for even m and homotopic to rl for odd m. 
Therefore disclinations with' an even Frank index m = 2k 
belong to the class of singularities with index N=O, and 
consequently any possible barrier to the transformation 
of these disclinations into a nonsingular configuration is 
small, - FC5' (here 5 is of the order of the interatomic 
distances, and I;,- K/.$', where K is the elastic modulus 
of the liquid crystal). Let us examine for example the 
elimination of the disclination d =  with m = 2 @, %, and 
@ a r e  the unit vectors of a cylindrical coordinate sys- 
tem). The field d = can be continuously deformed into 
a homogeneous field d =  & by means of the continuous 
transition 

d=p̂  cos (nt/2) +; sin (nt/2), 

by varying t from zero to unity (see Figs. 2a-2c). On 
the other hand, if we go through a potential barrier when 
t is varied (see, e. g., the paper of Anisimov and 
~ z ~ a l o s h i n s k i ~ ,  then it is more convenient to elimi- 
nate the singularity by breaking the filament (see Fig. 
2d). We then change the field in a volume of the order 
of 5', and possibly surmount a barrier 

- 

Disclinations with odd Frank indices m = 2k + 1 belong 
to the homotopic class N= 1. To eliminate them it is 
therefore necessary to surmount a barrier - Fc5S, where 
S is the area of the surface that bears on the disclina- 
tion line. An investigation of the locally stable disclina- 
tions inside each homotopic class can be found inc". 
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FIG. 2. Conversion of a disclination with m = 2 into a nonsin- 
gular configuration: a)+) by contbnous deformation, d) by 
breaking the filament. Thick line--disclination filament. Thin 
lines-lines of the director field in a plane passing through the 
filament. 

We proceed now to point singularities in NLC. The 
group is n2(S2/Ze) = Z  (see the Appendix), i. e., there is 
a group of homotopic mappings of the sphere u on the 
space R=S2/ze; this group is homotopic to the group of 
integers. These mappings can be easily obtained from 
the mappings of on the sphere S' followed by mappingse 
on Se/Z2. Therefore the elements of nz(R) are  charac- 
terized by a whole-number invariant N of the type (3. I), 
where m must be replaced by d. It is easy to see, how- 
ever, that each singularity i s  characterized by two num- 
bers, N and - N .  Indeed, replacement of d by - d does 
not change the states, whereas in (3.1) N is replaced by 
- N. This is the consequence of the influence of the fun- 
damental group nl(R) on the group n2(A, R). Let us ex- 
amine this in greater detail. 

Assume that we have a mapping of degree N of the 
sphere u on R, and the point ro goes over into a certain 
point d(ro) = A. If we move the point ro over a closed 
contour y, then the point A will move over a closed con- 
tour r in the space R. If the contour y does not enclose 
a singular line, then the vector d(ro) does not reverse 
sign after the circuit and N remains likewise unchanged. 
In the opposite case, when y encloses a singular line, 
then d(ro) goes over into - d(ro) after the circuit, and 
consequently N reverses sign. The point A then runs 
over the contour rl, which is not homotopic to zero. 
Thus, the influence of the fundamental group nl(R) on 
n2(R) consists in the fact that when the point A moves 
along a certain contour that i s  not homotopic to zero, the 
elements of the group ?r,(R) can go over into another ele- 
ment of this group. In this case the element N goes over 
into - N. In the general case of an arbitrary space R, 
we can state that each point singularity corresponds to 
an entire class of the group n2(R), whose elements are  
obtained from one another by n~otion of the point A over 
the contours of the group q(R),, Thus in this case each 
singularity corresponds to a class of a group of whole 
numbers with identical moduli, i. e., the singularities 
are characterized by the index I NI . When the singular- 
ities coalesce, multiplication of the classes takes place. 
In a nematic liquid crystal, the coalescence of singular- 
ities with I NII and I N21 can result in a singularity hav- 
ing either the index I NII + I N21 or the index I I Nil - I N21 
The particular singularity obtained depends on the man- 
ner of the coalescence. In order to clarify this, it is 
necessary to introduce continuously in the vicinity of 
the coalescence path, in place of the director field d, 
the field of the true director d and add the indices of the 

singular points of the field d (see Fig. 3 ). 

5. CLASSIFICATION OF SlNGULARlTlES IN  
SUPERFLUID He3 

The order parameter in superfluid ~ e '  is a complex 
3X 3 matrix A,,. In the equilibrium state, the order pa- 
rameter that minimizes the condensation energy F, (see 
Leggett's review), C51 

takes the following form for the A phase and the B phase 
of ~ e ' ,  respectively 

where V, A', and A'' a re  arbitrary unit vectors con- 
nected by the relation A' 1 A" (the vector product A' 
xA" specifies the direction 1 of the orbital angular mo- 
mentum of the Cooper pair); ih is the phase of the con- 
densate, R,,(w) is the matrix of the rotation through the 
angle I WI c n around the W axis, and const= (a/p)1'2. In 
the B phase of ~ e '  the equilibrium states are degenerate 
with respect to the phase ih and the rotation matrix R,,, 
therefore the space R for the B phase is the product of 
S' (the region of variation of the phase @) by the space 
of the three-dimensional rotations So3, i. e., 

In the A phase the space R is the product of S2 (the re- 
gion of variation of the vector V) by SO, (rotations that 
specify the orientation of the triplet of vectors A', A", 
1). It must be recognized here that the states with V, 

FIG. 3. Coalescence of point singularities with indices 
I Ni I = I N2 I = 1 in a ne_matic liquid crystal: a) coalescence 
along the paths Y and Y passing on opposite sides of the dis- 
clination line (the point 0 )  perpendicular to the plane of the 
figure yields respectively b) a point singularity with I NI = 2  
and c) a point singularity with IN I = 0. 
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A', A" and - V, - A', - A" a re  indistinguishable, so  that 
the space S2 x SO3 must be factorized with respect to the 
group Z2, i. e. , 

(~hechetkin'~'  has incorrectly defined the spaces RA and 
RB, and this resulted in an incorrect classification of 
the singularities in the A and B phases of ~ e ' ) .  

The degeneracy in the A and B phases is partially 
lifted on account of the weak spin-orbit interaction F,,: 

In the A phase, the vector V is fixed in either the direc- 
tion 1 or - 1, while in the B phase the degeneracy re-  
mains with respect only to those matrixes R,, which de- 
scribe rotation through afixed angle I W I  = Bo= a r c  cos(- i) 
= 104" relative to an arbitrary axis w. The regions RA 
and RB go over in this case into the following: 

where the sphere S' is the region of variation of the 
unit vector w/B0. 

In the inhomogeneous state, the gradient energy 

is added to Fc and F,,, and the result is two length 
scales 5-  (y/ff)ll' and Rc- ( y / ~ ) l ~ ~ ,  with Rc- (10'-10~)5 
>> 5. If the characteristic distances over which A,, 
varies are  r>> R,, then the gradient energy Fg,<< Fs,Fc, 
Fg,<< Fc does not change the structure of the order pa- 
rameter and the region of variation of R takes the form 
(5.6). On the other hand, if the characteristic dis- 
tances a re  5 << r<< R,, then F,, << Fed<< F,, and there- 
fore the spin-orbit interaction can be neglected, and 
does not influence the form of the order parameter, and 
consequently the region R is given by formulas (5.3) 
and (5.4). Therefore the classification of the singular- 
ities in superfluid ~ e '  depends essentially on the dimen- 
sions of the investigated region of the liquid. We shall 
consider only the A phase, since the classification of 
the linear and point singularities of the B phase is given 
quite completely in the preceding paper. Exceptions 
are  the singular surfaces (see below). 

We consider the f i rs t  when one of the characteristic 
dimensions of the region is [<< r<< R,. In this case the 
space R is given by formula (5.4). The homotopic groups 
of this space a re  

(see the Appendix). Here Z, is a group of residues in 
modulo 4, therefore the linear singularities a re  charac- 
terized by a whole-number index N that takes on values 
0, 1, 2, and 3. Coalescence of the singularities leads 
to addition of the indices in modulo 4, for example, 3 
+ 3 = 2. The barrier for the transition of a singularity 
from one class to another is "F,[S. 

TO find locally stable singularities within each class 
it is necessary to minimize the gradient-energy func- 
tional Jd'rF- with respect to the degeneracy param- 
eters. Upon variation of this functional, equations a re  
obtained for V, A', and A". We write out several solu- 
tions for these equations for linear singularities of var- 
ious classes (i, $, @ and E, ji $ are  unit vectors of cylin- 
drical and Cartesian coordinate systems, respectively, 
with the 2 axis along the singular line): 

'+' CP 
2  

(5.8) A ' + i ~ " = e ' " ~ ( ~ f  ~ j ) ,  v=; cos - - $sin - , v, = - 
2  

N T 2 :  4m5p 
- - 

A'=& A"=z, I = P ,  V=const, v*=o; - (5.9a) 
A f + i h " = e ~ ( ~ + i ~ ~ ) ,  V=const, ~ . = p / 2 m , ~ ;  (5.9b) 

- 
Here m3 is the mass of the ~ e '  atom and v', = A ' V ' A " / ~ ~ ~ .  

Singularities with N =  1 and N =  3 a r e  vortices in which 
the circulation quantum of the superfluid velocity v, is 
equal to $, superimposed on these vortices a re  disclina- 
tions of the vector V with a Frank index m = 1 (the vector 
V turns out to be analogous to the vector d in the NLC). 
The written-out singularities with N= 2 a re  the vortex 
(5.9b) with one circulation quantum and the disgyrations 
(see de Gennes' paperc71) (5.9a) and (5 .9~) .  An analysis 
of the energy functional IdjrF,, shows that both dis- 
gyrations a re  locally stable (seeCB') and have identical 
and apparently the lowest energies from among all sin- 
gularities of the class N= 2. The vortex (5.9b) is locally 
unstable and should go over without a barrier into one 
of the stable disgyrations. The locally stable solution 
(5.9d) is a junction of two disgyrations (5.9a) and ( 5 . 9 ~ )  
at the point r = 0. Indeed, at z > 0, p-  0 we have 1- ,6, 
A" - 5, i. e., the solution takes the form (5.9a), and a t  
z < 0, p - 0 we have 1- - 5; Ah'' - ,and the solution takes 
the form ( 5 . 9 ~ ) .  

Singularities with N= 0-a vortex with two circulation 
quanta (5. l l b )  and a disclination in the field of the vec- 
tor  V (5. l l c )  with a Frank index m = 2 can relax without 
a barrier into the homogeneous state (5. l la) .  A barri- 
e r  - F0t3 can appear when account is taken of the struc- 
ture of the cores of these singularities; 

The point singularities of the A phase in the region 
5 << r<< R, are  singularities in the vector field V. They 
are  analogous to the singularities of the vector d in a 
nematic liquid crystal and are  characterized by the in- 
dex I NI in accordance with formula (3. I), in which m 
must be replaced by V. The corresponding solutions of 
the equations for v, Ah', and A" a re  not simple in form 
even for I NI = 1. The "hedgehog" of the form V = r ,  A' 
+ ia" = const is not a solution of these equations and re- 
laxes to a stable singularity with I NI = 1 (we note that 
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FIG. 4. Qualitative distribution of the vector fields in a plane 
perpendicular to the axis of a stable vortex with N = 2 at dis- 
tances p>R, from the axis. Thin lines-lines of vector field 
1. Thick lines-streamlines of superfluid velocity v,. 

point singularities in the field of the vector 1, in con- 
t ras t  to the statement made by Blaha, [" are  topological- 
ly removable. ) 

Let us see now what happens if we extend the region of 
the liquid to distances r>> R,, where the range of vari- 
ation of the degeneracy parameters RA narrows down to 
3A of (5.5). This gives r i se  to two groups of singular- 
ities of different origin. The first  group includes the 
singularities characterized by elements of homotopic 
groups of space A,. Let us examine f i rs t  these singu- 
lar itie s. 

The homotopic groups a re  nl(&) = 2, and nz(RA) = 0, 
i. e., there are  no point singularities, and there a re  two 
classes of linear singularities. It is convenient to char- 
acterize them by the same index N  a s  the linear singu- 
larities in the region 5 << r<< R,, but now N  can assume 
only two values, 0 and 2, with addition in modulo 4. 

FIG. 5. Formation of singular surface in the propagation of a 
linear singularity from the region of distances p<R,  into the 
region p>  R, from the singular line.. a) region p <R,. The 
field of the vector w on the contour r surrounding the disclina- 
tion line ( z  axis) with m =1 in the Ephase of ~ e ~ :  w=i(a-cp) 
(seetS1). b) region p>R,. Field of the vector w on the contour 
r surrounding the disclination line ( z  axis) and crossing at the 
point A the singular surface bearing against the disclination 
line. In the region of distances larger than R, from the sin- 
gular surface we have I w l 104". 

FIG. 6. Formation of singular lines in 
the propagation of the point singularity 
of the field of the vector V with IN 1 = 1 
from the region of distances r < (R,5)i/2 
into the region r > (Rc5 )'I2 from the sin- 
gular point. The qualitative distribution 
of the lines of the vector field 1 is shown 
by thin lines, and those of the field V by 
thick lines. 

Among the singularities of the class N =  2, the lowest 
energy is possessed by a vortex with one circulation 
quantum and vectors 1 and v perpendicular to the vortex 
axis. The corresponding solution has no simple form. 
The lines of the fields 1 and V, in a plane perpendicular 
to the vortex axis a re  shown in Fig. 4. At distances r 
SR,, this solution merges with one of the locally stable 
solutions of the class N =  2 (see (5.9)). We note that in 
addition to linear singularities, the state RA admits of 
the existence of singular surfaces." The reason is that 
the space O3 is doubly connected (in other words no(03) 
=Z2, where the homotopic group no(R) determines the 
connectivity of the space R). There is therefore one 
class of singular surfaces joining the region with V = 1 
and the region with V= -1. The width of the surface is - R,. These surfaces recall the domain walls in mag- 
nets. 

The second group of singularities occurs when linear 
singularities with N =  1 and 3 and point singularities 
propagated from the region 5 << r<< R, into the region r 
>> R,. In this case, inasmuch a s  we cannot satisfy the 
condition V I I  1 in the region r>> R,, the energy of these 
singularities becomes proportional to F,, V, where V is 
the volume of space in which V *  i 1. In the case of linear 
singularities, this volume is minimal if Vf *l on a cer- 
tain surface of thickness R,, bearing on the singular 
line. Thus, the singular lines with N =  1 and 3 go over 
into singular surfaces that border on these lines. A 
similar surface exists also in the B phase (see Fig. 5). 

Analogously, the point singularity of the field V with 
index 1 NI goes over into a singular line of thickness 
(R,[)"~, which starts out from a singular point (see Fig. 
6). In the same homotopic class there exists another 
singular line, albeit less convenient because of the 
larger gradient energy, but apparently locally stable. 
This singular line is a vortex with an end (vorton), the 
possible existence of which was noted by Blaha and by 
us cg'lO'. The exact solution for this singularity does not 
have a simple form, and we therefore present one of 
the possible configurations of the fields V and 1, which 
a re  characterized by the index I NI = 1 (see Fig. 7): 
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R ~ ,  all the points of which are equivalent at infinity, 
has the same topology a s  a three-dimensional sphere S3 
in four-dimensional space EY' (exactly just as  the plane 
R2, all of the infinitely remote points of which are 
mapped on a single point via, e. g., a stereographic pro- 
jection, i s  equivalent to a two-dimensional sphere s2). 
Thus, the field of the degeneracy parameter specifies 
the mapping of S9 in R. The homotopic classes of these 
mappings form the group rs(R). For the A phase, for 
example, in the region r> R, we have n3(RA)=z (see the 
Appendix). Therefore particle-like solutions are  char- 
acterized by a whole-number invariant, which in this 
case can be written in the form 

N= (m,/Znfr) ' d3r v. rot v.. (5.13) 

-4-R, 
FIG. 7. Vortex with free and with IN I =l.  a) The qualitative 
distribution of the lines of the vector field 1 is  shown by thin 
lines, and those of the field V by thick lines. b) Distribution 
of the lines of the vector field A' on a sphere at distances 
p > R ,  from the vortex line coinciding with the semiaxis z < 0. 

At a distance p > R, from the lower semiaxis the field of 
the suptirfluid velocity V,  and the field 1 take the form 

which corresponds to a vortex with two circulation 
quanta that terminate at the center of the "hedgehog" 
(seeclO'). The width of the core of the vortex is - R,. In 
the region r< R, there are  no singularities in the fields 
vs and 1. Such a vorton cannot vanish because of the 
topologically stable point singularity in the field V with 
index I NI = 1 at the origin. However, it i s  separated by 
an energy barrier - F,,% from the singular line withthe 
lowest energy, shown in Fig. 6. On the other hand, if 
there is no singularity in the field of the vector V, then 
such a vortex relaxes into a nonsingular configuration. 

We have considered all types of singular lines, points, 
and surfaces in the A phase in the absence of external 
fields. The presence of a magnetic field complicates 
the situation, since a third length scale appears, namely 
the magnetic lengths RH - (ya/&~2)112, where x is the 
magnetic susceptibility of ~ e ~ .  The classification de- 
pends on the relations between 5, R,, and RH and on the 
length interval in which the characteristic dimensions 
of the investigated regions of the liquid are  situated. 
For lack of space, we shall not describe this classifica- 
tion. It is obtained by the same method as  in the case 
of two lengths. 

We note in conclusion that the topology admits of the 
existence in the A phase of ~ e '  of particle-like solutions 
that have no singularities. By particle-like solutions 
we mean solutions characterized by a topological in- 
variant that does not perturb the field of the degeneracy 
parameters at large distances from the particle, so that 
at infinity the field of the degeneracy parameters is 
homogeneous, i. e., all of infinity i s  mapped on a single 
point of the space R. The usual three-dimensional space 

From dimensionality considerations, the momentum and 
energy of such particles are  of the order of 

where p, i s  the density of the superfluid component, ro 
is the characteristic dimension of the region of space 
where the fields V, a', and A" are  inhomogeneous. 
The spectrum of such particles E -pU2 i s  reminiscent 
of the spectrum of vortex rings in He If, but the field 
of the vectors V, a', and a" has no singularities any- 
where; in addition, the spectrum can be anisotropic. 

The particles can also have dimensions smaller than 
4, since n3 (RA) = Z + Z (see the Appendix). The smallest 
dimension of these formations is - 5 .  If ro 5 5, then 
Fd- F, in this region, and consequently the order pa- 
rameter A,, changes already not in the vicinity of RA, 
but in the entire linear space R". Since % is trivial 
for any linear space R, it follows that the topological 
invariant N ceases to exist. Thus, if the particle mo- 
mentum decreases to ps ~['/rn,, then the particle cango 
over continuodsly into a homogeneous state. 

6. CHOLESTERIC LIQUID CRYSTALS 

In cholesteric liquid crystals (CLC) the spatial dis- 
tribution of the director d about an arbitrary point r, 
takes the following form (see the review of Stephen and 
~ t r a l e ~ ' ~ " ) :  

i. e., at each point ro of space there is specified an or- 
thonormal basis t, d, txd  (analogous to  1, A', A" in 
the A phase of ~ e ~ ) ;  t is a unit vector of the helix axis, 
and L is the pitch of the helix. Let us find the space R 
for CLC. We note for this purpose that the region of 
variation of the triplet of vectors t, d, txd  i s  the three- 
dimensional group SO3 of rotations of this triplet rela- 
tive, e. g., the bases 4 9, 5. It is known that each three- 
dimensional rotation corresponds to two 2x2 complex 
unimodular matrices 6 and - 6. If we express the ma- 
trix $ in the form 
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FIG. 8. The paths Y,,, Y,, Ya=Yh"Ya 
surrounding the singular lines marked 

' 
by the points a and b . 

.then, by virtue of unimodularity we have x + x i  + x + x i  
= 1, and consequently the region of variation of the ma- 
trix b is the three-dimensional sphere Ss in four-di- 
mensional space. Each three-dimensional rotation cor- 
responds to two diametrically opposite points on the 
sphere s'. Consequently SOs = p/Zz. 

In CLC, however, the factoring of 9 is not confined 
to the inversion group in four-dimensional space. In- 
deed, the states obtained from the initial one by making 
in (6.1) the substitutions 

are  equivalent to the initial state. Therefore each point 
on the sphere Ss has already 7 equivalent points that a re  
obtained by inversion and rotations in three-dimensional 
space through an angle n about the axes t, d, t x  d. Thus, 
for example, the point corresponding to the unit matrix 
&= 60 on the sphere Ss has equivalent points correspond- 
ing to the matrices 

where &, G9, 5' are Pauli matrices. The matrices (6.4) 
together with the unit matrix form a group that is iso- 
morphic to the group Q of the quaternion units, which 
consists of 8 elements (1. - 1, i, - i, j, - j, k, - k), 
suchthat i j=- j i=k ,  jk=-kj=i ,  ki=-ik=j ,  i i=kk= j j  
= - 1. It can be shown that any 8 equivalent points on S3 
also form a group isomorphic to Q. Therefore the 
space R for CLC is R = S S / ~ .  

The homotopic groups of this space are  nz(R) = 0 and 
?rl(A, R) = Q (see the Appendix). CLC have no pointllke 
topologically stable singularities. The fundamental 
group %(A, R) = Q is noncommutative. As a result, each 
linear singularity in CLC is characterized not by an ele- 
ment of the fundamental group, but by a class of con- 
jugate elements of this group. Let us consider the two 
singular lines mar'ked in Fig. 8 by the points a and b. 
We take the point ro and surround a and b by contours 
y, y,, and 7, that start out from this point. It can be 
verified that the contour Tb can be represented in the 
form 

If y, is mapped into element a of the group %(R) and yb 
into element b, then 7, is mapped into the element b 
= dlba. Let a=  i and b = j ;  then 8 = - j. This means that 

the singularity b is characterized by two elements, j 
and - j, i. e., by the class G, - j). There are  five such 
classes: 

When the singularities coalesce the classes are multi- 
plied. We present the results of the multiplication 

When a i s  multiplied by a we obtain either an element 
of the class e or  an element of the class el. An anal- 
ogous result is obtained for bb and cc. This meansthat 
in the foregoing three cases, and only in these cases, 
the type of the resultant singularity depends on the co- 
alescence path, in analogy with coalescence of singular 
points in NLC (see Fig. 9). 

Kleman and ~ r i e d e l ~ ' ~ '  (see alsoc1") have presented a 
classification of the disclinations in CLC. According to 
this classification there a re  three types of disclinations: 
X ( m )  , * ( m )  , T ( m )  , where m is the Frank index of the dis- 

clination. We write out the distribution of these singu- 
larities among the classes of the elements of group Q: 

We recall that within each class the disclinations can 
continuously go over into one another. The question of 
the local stability of the disclinations within each class 
is no longer homotopic and calls for an examination of 
the functional of the energy. 

A few words now concern smectic liquid crystals and 
ordinary crystals. The states of an ordinary crystal are 
degenerate with respect to translation through an arbi- 
trary vector u that runs through the linear space p, 
and with respect to the three-dimensional rotations de- 
fined in the space SO,. In the space x sos, each point 
corresponds to a set of equivalent points that transform 
the crystal into a state identical with the initial one. 
This set forms a subgroup G of the a crystal space group 
whose elements contain no inversion. Therefore for a 
crystal the space i s  R = ( e x  SO~)/G. The homotopic 
group is n2(R) = 0, so that there a re  no point singular- 

FIG. 9. Coalescence of singular lines in a 
cholesteric liquid crystal. The results of . the coalescence is b-b  =eLalong the path Y 
and bsb  = e  along the path Y. 
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ities of topological character in the crystals. The fun- 
damental group nl(R) depends on the form of G and ad- 
mits, besides dislocations, of the existence of disclina- 
tions. These disclinations, however, have an energy 
proportional to the volume, which is the result of the 
requirement that the distances between the crystalplanes 
be equal; they can exist only in very soft crystals. The 
homotopic classification of the dislocations yields noth- 
ing new in comparison with the known classification in 
accordance with the Burgers vector. From the point of 
view of homotopic topology, edge and screw dislocations, 
characterized by an identical Burgers vectors belong to 
one homotopic class. 

A smectic liquid crystal constitutes a system of equi- 
distant surfaces separated from one another by atomic 
distances. These surfaces can bend, so that in smectic 
liquid crystals there are  no dislocations. However, the 
requirement that the distances between layers be con- 
stant makes impossible many continuous deformations 
and therefore limits the applicability of the homotopic 
classification. In CLC the requirement that the pitch L 
of the helix be constant i s  not so stringent, since L is 
much larger than the dimension of the molecules and 
can vary slowly from point to point. 

In conclusion, the authors thank S. P. Novikov, 0. I. 
~ o ~ o ~ a v l e n s k ~ ,  M. I. ~ o n a s t ~ r s k i i ,  and V. L. Golo for 
valuable consultations on topology, and also I. E. 
~z~alosh insk i f  for interesting discussions of the ques- 
tions touched upon in the paper. 

APPENDIX 

The spaces R used in this paper have the general form 
PIG, where G is a discrete group, for example 2, or 
the group of quaternion units Q; P= RIX &, where R1 
and & are spaces with known homotopic groups. In the 
calculation of the homotopic groups of the space R of 
this type it is necessary to use certain very simple rules 
which make it possible to express %(R) in terms of the 
homotopic groups Rl and &. First, 

n.(P)  =n. ( R , )  + ~ . ( R z ) .  (A. 1) 

Second, the sequence of homomorphisms of the groups 

+*.(G) -+z.(P) + n . ( p ! G ) + n . - ~ ( G ) +  . .. (A. 2) 

i s  exact, i. e., for each triplet of successive groups 
from this sequence GI - Gz - G, the transform of the 
homomorphism GI - Gz i s  the kernel of the homomorphism 
G, - G,. Third, no from a connected space is trivial, 
and 

n,  ( G )  =G. (A. 3) 

1. Nematic liquid crystal 

The spaces R = s2 /Z , .  It is known that n2(s2) = Z and 
n1(s2) = no(S2) = O .  To find r l ( R )  and nz(R) we write down 
the exact sequence (A.  2): 

or, substituting the known homotopic group, we obtain 

Using the definition of the exact sequence, we obtain 

n,  (S21Zz) =Z1, n Z ( s z / z , )  =z. (A. 4) 

2. Cholesteric liquid crystals 

The space is R = s ~ / Q .  It is lmown that ro(s3)  = rl(s3) 
= lra (s' ) = 0 and n3 (s' ) = 2; using the exact sequence, we 
obtain 

ni (SJ /Q)  =Q, nz= (S31Q) =O, nP(S3/Q) =Z .  (A. 5) 

3. The B phase of He3 

The space is R, = S'XSO,. We first  obtain 7r,(SO3). 
For this purpose we use the fact that SO, = S S / Z ,  (see 
Sec. 6 )  and then we have in analogy with (A. 5) q(S0,) 
= Z,, n2(S03) = 0, r3(S03) = Z .  Using (A .  1 )  we obtain 

4. The A phase of He3 

The space is RA = (s' X SO,)/Z,. We have 
. 

n2( (SZXSOI)IZz) =nz (SZXS03)  =nz(Sz )  +nz (S0 , )  =Z, 

n ,  ( R A )  =n3 ( S Z )  +n3 (SO,) =Z+Z, since n3 (S" =Z. 
(A.  7) 

To calculate rl(RA) we make the exact sequence 

or, substituting in the known homotopic groups, we ob- 
tain 

O+Z?+n, (R, , )  +Z?+0. 

It 'follows therefore that either rl(RA) = Z1 O r  rl(RA) = Z 2  
+Z, .  It can be shown that for the A phase the first pos- 
sibility is realized. 

The space is &A = 0, = SO, X 2,. We have 
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Expressions are found for the sound attenuation due to interaction between the sound and magnons at 
temperatures To< T<O~Q,(To = 0, @M,J@,)'") and frequencies T,.; I, r@.;'<o< r;'(r,, T , . ~ ~ ,  and 
rfim are the magnon-magnon, magnon-phonon and phonon-magnon collision times). In a broad frequency 
range, the attenuation exceeds that of sound due to anhannonism. It is shown that the method proposed 
by Akhiezer for calculation of sound attenuation is valid over a broader frequency range than was 
previously assumed. 

PACS numbers: 43.35.R~ 

1. INTRODUCTION sound wave is considered a s  an external field, which 

In an ideal ferrodielectric at temperatures T <<@, ((3, 
is the Curie temperature) sound absorption is due to its 
interaction with magnons and phonons and depends es- 
sentially on the relation between the frequency of the 
sound wave w and the mean collision times: magnon- 
magon T,, phonon-phonon TM, magnon-phonon T,-*,, 

and phonon-magnon TM,, (in a ferrodielectric, over a 
wide temperature ranges, 7, << rM-, T,,,,~). ''I In the 
calculation of sound absorption, as a rule, two ap- 
proaches are  employed, the choice of which is also de- 
termined by the frequency interval under investigation. 

At high frequencies, the sound absorption is usually 
represented as the result of the collisions of a sound 
quantum with phonons and magnons of the crystal. Such 
phonon-phonon damping at 7;: << w, due to triple anhar- 
monism, i s  determined for transverse sound in second 
order perturbation theory, '21 and for longitudinal sound, 
by the method of account of the anharmonism in all 
orders of perturbation theorycg1 (the latter corresponds 
to account of the lifetime of the interacting phononsc41). 
Sound absorption due to interaction with magnons at T: 
<< w is also considered in second order perturbation 
theory.'5t81 It was shown in Ref. 7 that at temperatures 
T << 82,/0, (eO i s  the Debye temperature), it is not suf - 
ficient to limit ourselves to second order for the calcu- 
lation of phonon-magnon damping, rather it is necessary 
to take into account the contribution from fourth order 
perturbation theory. In this case, it turns out that the 
considered contribution can appreciably exceed the pho- 
non-phonon damping. 

At low frequencies, the sound absorption is usually 
calculated by the Akhiezer method. In this case, the 

produces a departure from equilibrium in the gas of 
magnons and phonons. Knowing the change in the parti- 
cle distribution function under the action of the sound 
field, we can determine the change in the entropy of the 
gas and thus calculate the dissipation of energy of the 
sound wave. The phonon-phonon damping in dielectrics 
at w << 7;: was calculated by this method. [" In what fol- 
lows, the indicated method for phonon-phonon damping 
was developed in other researches. C9"01 Phonon-mag- 
non damping of sound in ferrodielectrics was considered 
by the same method for the frequencies w << 7;' at low 
temperatures T <<To = o,(~M,/o,)~'~ (p  is the Bohr mag- 
neton, Mo the magnetization saturation), when the equi- 
librium in the magnon gas is established through dipole- 
dipole processes. C5*1'1 

In the present work, we consider the attenuation of 
sound in a ferrodielectric due to interaction with mag- 
nons at temperatures To<< T, when it is necessary to 
take exchange scattering into account, and at frequen- 
cies T&, 7SM << w << T:'. The sound attenuation in the 
given frequency range was considered previously in the 
work of Kaganov and Chikvashvili, C51 who neglected the 
contribution to the damping from the anisotropic part of 
the phonon-magnon interaction and, in addition, in con- 
trast to the case considered by us, assumed that To - 030,. 

As will be shown, account of the anisotropy has a 
significant effect on the results. It is also important 
here that the basic contribution to the damping is made 
by the interaction of the sound with subthermal inter- 
mediate magnons, while the phonon-magnon damping at 
T << To and the phonon-phonon damping due to anharmo- 
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