
%. N. Es+'son, V. N. Grigor'ev, V. G. Ivantsov, E. Ya. second sound in dilute ~ e ~ - ~ e ~  mixtures. Ch. 3. Preprint,  
Rudavskii and D. G. Sanikidze, Rastvory kvantovykh 1976. 
zhidkostej I3eS-He4 (Solutions of the quantum liquids 
HeS-He4) Nauka, 1973. Ch. 7. 
'w. J. P. De Voogt, Experiments on phonon pulses and Translated by R. T. Beyer 

Optical orientation and alignment of free excitons in GaSe 
under resonant excitation. Theory. 

E. L. Ivchenko, G. E. Pikus, B. S. Razbirin, and A. I. Starukhin 

A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences 
(Submitted December 21, 1976) 
Zh. Eksp. Teor. Fiz. 72, 223&2245 (June 1977) 

A microscopic theory is constructed for optical orientation and alignment of excitons in semiconductors 
under resonant excitation; the theory is valid for any ratio of their lifetimes to the momentum relaxation 
time. The exciton radiation is regarded as a result of resonant scattering of light with multiple elastic 
scattering of the excited excitons by impurities. It is shown that in the case of n-fold scattering (n 2 2) 
the probability of backward emission of the light, i.e., at scattering angles close to s, is increased by two 
times. The theory takes into account the influence of the Faraday rotation, dichroism and birefringence of 
the light propagating in a crystal in a magnetic field. The influence of inhomogeneous broadening is 
analyzed. The developed is used to calculate the change in the intensity and in the degree of polarization 
of exciton radiation in GaSe in longitudinal and transverse magnetic fields following excitation with 
linearly and circularly polarized light. 

PACS numbers: 78.20.L~ 

INTRODUCTION logical theory ofC6' does not hold. In this paper we de- 
velop a microscopic theory of optical orientation of ex- 

Optical orientation of excitons in semiconductors was citons, which is valid for an arbitrary ratio of TO and T, 
f irst  observed by Gross, Ekimov, Razbirin, andsafarov and takes into account the singularities of the optical 
in CdSe crystals. This phenomenon was observed by properties of GaSe. 
now in many semiconductors (see the reviewc2'). 

In GaSe crystals, the exciton orientation was first  ob- 
served by Veshchunov, Zakharchenya, and Leonov. [" 
I n ~ 3 ~  , a s  well a s  in a later studyt" the excitons were pro- 

duced by binding free electrons and holes excited with 
light. ~n"], where resonant excitation was used, both 
orientation and alignment of the excitons were observed, 
in accordance with the predictions of the theory. The 
character of the depolarization of the exciton radiation 
in the magnetic field (the Hanle effect) differed qualita- 
tively from that customarily observed for excitons and 
free carriers. Calculation within the framework of the 
phenomenlogical theoryc6' with allowance for the singu- 
larities of the band structure of GaSe does not explain 
the dependences of the polarization on the magnetic field 
observed inc5'. It was suggested incs1 that the charac- 
ter  of these dependences is connected with the fact that 
in GaSe the exciton lifetime TO is comparable with the 
momentum relaxation time T,, and an analogy was noted 
there between the orientation of free excitons and the 
orientation of atoms in gases under cascade excitation. 
The role of the different energy levels in the atom under 
resonant excitation of excitons is played in this case by 
states with different momenta. 

If TO and T, a re  comparable in value, the phenomeno- 

In the f i rs t  part of the article we derive a general ex- 
pression for the density matrix of the secondary radia- 
tion following resonant excitation of the excitons. It is 
shown that this radiation can be regarded a s  a result of the 
resonant scattering of light in multiple scattering of the 
excited excitons by the impurities. In the general case 
i t  is necessary to take into account here scattering in all 
orders, and this can be done in a sufficiently weak in- 
teraction of excitons and photons in the crystal The 
description of the secondary radiation a s  resonant scat- 
tering is a consistent quantum-mechanical description," 
that takes into account, in particular, interference phe- 
nomena that occur in backward scattering of light. At 
TO>> T,, when the predominant contribution is made by 
high-order scattering, the derived expressions coincide 
with the formulas of the phenomenological theory that 
regards secondary radiation a s  a result of exciton lumi- 
nescence. 

In the second part of the article we calculate the 
change in the degree polarization of exciton radiation in 
GaSe under resonant excitation in longitudinal and trans- 
verse magnetic fields. 

The present paper is the theoretical part of a joint ex- 
perimental and theoretical investigation of optical orien- 
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tation and alignment of excitons in GaSe. A separate 
article will be devoted to a detailed description of the 
procedure and results of the experiment and to their 
comparison with the conclusions of the theory developed 
here. 

I. OPTICAL ORIENTATION I N  THE CASE OF 
NONEQUl LlBR IUM EXCITON MOMENTUM 
DISTRIBUTION 

1. General formula for the secondary radiation density 
matrix 

We consider a semi-infinite crystal on the surface 
z = 0 of which the exciting light is normally incident. The 
intensity and polarization of the exciting light in the 
crystal are  determined by the density matrix d i B ( ~ ,  2) 

in a basis of polarization vectors e,. The density ma- 
trix of the light radiated by the excitons from the vol- 
ume Vo, situated at a distance z from the crystal sur- 
face, is connected with the exciton Green's function 
Fmm,(q, w', z)  by the relation 

Here K and m are the wave vector and the index of the 
spin state of the exciton; &,,(t) and 8~,,,(t) are  the op- 
erators of creation and annihilation of the exciton in the 
state (K, m) in the Heisenberg representation; w' and q 
are the frequency and wave vector (in the crystal) of the 
radiated light. 10) i s  the ground state of the crystal, 
and j := (ml je, I 0) is the matrix element of the current- 
density operator following excitation of the exciton into 
the state m. Formula (1.1) follows directly from the 
known relation between the vector potential of the ra- 
diated light and the extraneous current produced when 
the crystal is excited (see, e. g., if we change over 
to the second-quantization representation in the indi- 
cated relation. The value Vo of the radiating region i s  
chosen in this case such that, on the one hand, the den- 
sity matrix d i g  ( z )  hardly changes in the region, and on 
the other hand, the linear dimensions of the region ex- 
ceed the wavelength of the light. We note that in (1.1) 
and subsequently we leave out inessential factors that 
do not depend on the polarization indices. We consider 
the case of resonant excitation with light wtiose average 
frequency corresponds to the energy of the ground state 
of the exciton, and whose spectral line width is smaller 
than the distance between the ground and excited states. 
Therefore the summation in (1.1) i s  only over the spin 
indices of the exciton in the ground state n = 1. 

We calculate the Green's function Fmm.(K, w') first for 
monochromatic excitation. We use for the calculation 
the diagram technique developed by ~ e l d ~ s h ' ' ~  for non- 
equilibrium systems. To this end we introduce, in an- 
alogy with, '" a contour C with two branches parallel to 
the time axis, the upper from - .o to + .o and the lower 
from + .o to - -. In the approximation linear in the in- 
tensity of the exciting light, the single-particle Green's 

function in (1.1) can be expressed in terms of the two- 
particle Green's function of the excitons in the absence 
of exciting light: 

where Tc is the operator of ordering along the contour 
C, bkm(t) and bb(t) are  the operators of creation and 
annihilation in the interaction representation, and g, i s  
the wave vector of the exciting light in the crystal. The 
index indicates the position of the temporal point on 
the upper (from - - to +-) or lower branch of the con- 
tour C, respectively. The operator of the interaction 
of the excitons with the impurities and with the lattice 
vibrations V is best represented in the form of two 
terms, Vl.+ V2. The interaction Vi is responsible for 
the exciton momentum scattering within the limits of the 
exciton band. We shall henceforth include in Vl only 
scattering by impurities. In this case we have 

V ,  = x ~ ~ - ~ .  exp{i(K-K1)r,) brvmbrm, (1.4) 
KK' 
m. 

where VK-K~ is the amplitude of the scattering of an ex- 
citon by an individual impurity center and r,  is the posi- 
tion of the s-th impurity. The expression (1.3) for the 
function GI' is averaged over the impurity distribution 
which is assumed, as  usual, to be uncorrelated. For 
simplicity we neglect in (1.4) the scattering with transi- 
tion from one spin state of the exciton to the other, i. e.? 
we do not take into account the spin relaxation of the ex- 
citons. In this case the two-particle Green's function 
(1.3) is different from zero only at mi = m, and m2 =m,. 

The operator V2 describes nonradiative transitions of 
the exciton into lower states: bound excitons, indirect 
excitons and electron-hole pairs, etc. At sufficiently 
low temperatures, when there is no reversed transi- 
tions from these states, the contribution of V2 to the 
Green's function of the excitons does not depend on the 
concrete mechanism of the transition and is determined 
by the "departure" time, i. e., the lifetime of the exci- 
ton TO, which is assumed henceforth to be independent 
of the state of the exciton (K, m). 

In our case, when the excitation i s  produced by mono- 
chromatic light and the exciton scattering is elastic, the 
Green's functions F,,,,.K, w') can be written in the form 

F,,. ( K ,  0') =6 (0-0') fmm, (K, 0 ) .  (1.5) 

The function f (K, w) determines the probability of the 
excitation of an exciton with wave vector K at the fre- 
quency of the exciting monochromatic radiation. 
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k FIG. 1. Simplest diagram for the func- 
I t i o n f d  (s, w). 

2. Derivation of the equation for the function fmmv(K,  w) 

The simplest diagram that determines fmm, (IS w) i s  
shown in Fig. 1. The upper and lower exciton lines are  
set in correspondence respectively to the causal and 
anti-causal Green's functions 

GoC(", Km) =(a-oxm+i6) -I, Goc(", Km) = (o-o~,- i8)- ' ,  (1.6) 

where tiwG is the exciton energy in the state (IS m) and 
6- +O. It follows from (1.2) that for each diagram the 
corresponding expression is multiplied by 

Therefore the diagram of Fig. 1 is set in correspon- 
dence with the expression 

where N, is the concentration of the scattering centers. 

Substituting (1.7) in (1.5) and (1.5) in (1.1) we obtain 
the usual expression for the cross section for the scat- 
tering of light in single scattering of an exciton by an 
impurity. Under resonance conditions, however, it is 
necessary to sum an infinite sequence of diagrams. 
This summation can be carried out if the average mo- 
mentum I Aql are transferred in the exciton scattering 
exceeds its reciprocal mean free path 

i l l  Rqo le-l=(v*T)-', -=-+-, 
'C 70 Tr me 

where 7,. is the momentum relaxation time, m, is the 
effective mass of the exciton. At A q -  go this i s  the or- 
dinary condition for the applicability of the kinetic equa- 
tion 

where Awgo= (2m,)-1(tTqo)2 is the exciton kinetic energy. 
We also assume the Born approximation to be valid. 
When these conditions are  satisfied, it suffices to take 
into account in the summation the diagrams without in- 
tersection of the impurity lines (Fig. 2a). At q + qo = 0 
it is necessary to take into account, from among the 
diagrams with line intersection, those shown in Fig. 2b, 
which are  conveniently represented in the form of Fig. 
2c. Each of the diagrams of Fig. 2a or  Fig. 2b will be 

regarded as  a sum of diagrams with a specified number 
of vertical impurity lines and with an arbitrary number 
of non-intersecting horizontal impurity lines, i. e., lines 
joining vertices located on one branch of the contour C. 
This leads to a replacement of the functions G :  and 
ei, which a re  set in correspondence with the exciton 
lines, by the exact causal and anti-causal Green's func- 
tions without allowance for the interaction of the exci- 
tons with the light; in this case these functions are de- 
fined by the formulas 

GC(o, Km) =GC'(o, ~ m )  =aK,-'= (o-oKm+irKm)-',  (1.9) 

where the damping is 

In formula (1.9), wlbt is the exciton frequency renormal- 
ized with allowance for the interaction; the quantity rlL, 
includes the damping due to the nonradiative departure 
from the exciton band. 

The diagram of Fig. 2% of order 2n, describes or- 
dinary scattering of light with n-fold scattering of the 
excited excitons by the impurities. The diagram in Fig. 
2c describes the interference contribution made to the 
scattering cross section by the backwards scattering. 
This contribution is of general character, independent 
of the actual scattering mechanism, and is due to the 
fact, as  seen from Fig. 3, in backward scattering the 
phase shift of the ray scattered directly by centers 1, 
2, . . . , n coincides exactly with the phase shift of the ray 
scattered in succession by the centers n, n - 1, . . . , 1. 
As a result, the intensity of the backwards scattering of 
n-th order is doubled at n 3 2. " 

We now derive an equation for the function f,,,,. (K, w). 
It is convenient to write it in the form 

where f"' corresponds to the sum of diagrams of the 
type 2% while f2' corresponds to the sum of diagrams 

.r, q o -  K t -  4 JJ - - - FIG. 2. Normal (a) and 
" A-' 

b >.( t anomalous (b, c) diagrams 

/ k+. for the function f,,,,,,,(q, w). 
/ \ 

K Z + x  - K , + n  q 
- - % 
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FIG. 3. Interference of backward- 
I scattered waves (in multiple scatter- 

ing). 

2c. The diagram fl with one vertical impurity line was 
included by us not only in f "' but also in f") . With this 
definition, a s  seen from Figs. 2a and 2c, f'" = f c l )  at 
q+qo=o. 

Summing diagrams 2a and 2c, which reduces in this 
case to summation of two "ladders, " we obtain for f' 
and f '" the following equations: 

1 (-+ iommp+l )  (K, o )  = Am*(qo, u)g..,(m)drw (1. l l a )  
To 

take into account here the fact that when light propa- 
gates in a crystal in a magnetic field, its intensity and 
polarization prior to the absorption point and after the 
emission can be altered a s  a result of absorption, di- 
chroism, birefringence, or Faraday rotation. We as- 
sume that in the absence of a magnetic field, at  the 
chosen light propagation direction z ,  a crystal has an 
optically isotropic behavior. For a uniaxial crystal, 
such a direction is the principal symmetry axis. 

The polarization basis vectors e, a re  conveniently 
chosen such that the tensor of the transverse permit- 
tivity && in this basis is diagonal. We separate here 
in E:, the resonance contribution due to excitation of 
the exciton n = 1 

Here 4 is the nonresonant (background) isotropic com- 
ponent of the permittivity. The basis e, depends on the 
direction of the magnetic field. In this basis, each of 
the states m is excited by light of only one polarization, 
i.e., 

where 

~f,,$ = Q(K-K') [A,,. ( K ,  o )  f;:. (K, o )  - Am,, (K, o )  f$d.(~', o )  1, 
P' (1.13) 

.. 
and the expression for If',";. is determined by a formu- 
la that differs from (1.13) in that Am,,(K, W) is replaced 
by Lmm.(K, w). We have taken into here the fact that at  
wa07 >> 1 and I w,,, l S 7 - I  the value of rx is independent 
of m, and at a fixed direction K does not change in the 
range of values of K satisfying the condition I WK, - wl 
S r g  and greatly exceeds the renormalization of the 
difference in frequencies w,,. a s  a result of the colli- 
sions. 

The term fr which enters in fmma w, w) is equal to 

3. Allowance for the change of the polarization of light 
as it propagates in the crystal 

Formulas (1. I), (1.5), and (1.11) determine the den- 
sity matrix of the radiation from a small volume Vo in 
the immediate vicinity of the volume. We a re  interested 
in the radiation emitted by the entire crystal and propa- 
gating in a narrow solid angle in a direction opposite to 
the excitation direction. To calculate the density matrix 
of this radiation it is necessary to integrate expression 
(1.1) over the entire excited volume. It is necessary to 

The density matrix of the exciting light is given in the 
basis e, by 

where &,(w) = dO,,(w, O), and. i: is the root of the dis- 
per sion equation 

The density matrix of the light radiated backwards, i. e., 
da,(wf, q), is determined at q = - qo by the relation 

Substituting formulas (1. I), (1.5), and (1.16) in this 
expression, ,we obtain after integrating with respect to 
w and W' the following expression for the integral den- 
sity matrix daB(- qO) for nonmon~chr~matic  excitation: 

The quantity fm,,(q, m) in (1.18) is the solution of Eqs. 
(1. l l ) ,  in which &,(w, z )  is replaced by. the value of 
dO,,(w) on the crystal boundary. 

4. Criteria for the applicability of the theory ' 
Let us indicate the conditions under which formulas 

(1.17) and (1.18) a re  valid. We neglect reradiation, 
i. e., the secondary production of excitons by the ra- 
diated light. This approximation is correct if the non- 
radiative lifetime To is small in comparison with the 
radiative time T,,,,= lrpdu;k, where I,, is the mean free 
path of the exciton with respect to photon radiation and 
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is given by 

Here OLT is the longitudinal-transverse splitting for 
the exciton: 

4n 
o,, = 7C Ijc12. 

tro no ." 
Thus, the condition T, >> TO indicated above can be ex- 
pressed in the form 

where T = (2I7-l. 

Equations (1.11) for f,,. presume the possibility of 
separating a volume Vo with linear dimensions that are  
small in comparison with the quantity Iph = I q; - 41fl I 
= which determines the length over which a notice- 
able change takes place in the intensity and polarization 
of the light, but a re  large in comparison with the dif- 
fusion length of the exciton ID = vao(~or)l'e, so that we 
can neglect in (1.11) the diffusion transport of the ex- 
citons. This locality condition ID << I,, can be written 
in the form 

In addition, we neglect throughout the polariton effect, 
i. e., we regard the photons and excitons in the crystal 
as weakly interacting particles. This approach is valid 
when the exciton mean free path I, is small in compar- 
ison with &, i. e., 

It i s  seen that the condition (1.21) is the most stringent 
and if it is satisfied the inequalities (1.22) and (1.23) 
are also satisfied. Since Eqs. (1.11) were derived un- 
der the condition waor >> 1, the inequality (1.23) leads 
also to the inequality WLT <<ji= 2I'. At WLTT :< 1 the 
resonant contribution to &I,, is small in comparison 
with the nonresonant one. Therefore the coefficient of 
light transmission through the crystal boundary i s  prac- 
tically independent of the frequency, and 

5. Allowance for inhomogeneous broadening , 

As shown by experiment, when the excitation is by 
a broad line AW >> r the exciton-radiation line width in 
GaSe is 6 w >> .>r and is determined by the inhomogeneous 
broadening of the exciton spectrum. The influence of 
the inhomogeneous broadening on the polarization of the 
radiated light is substantially determined by the cor- 
relation length a of the exciton energy fluctuations. At 
a>> Gh= I,,, formula (1.18) above remains in force, 
since no averaging of the quantity ijt- ?$* takes place 
over the light absorption depth I,, and at A w  >> r aver- 

aging over the transverse coordinates does not change 
the final expression for the integral density matrix of 
the photons. At Gh>> a>> qil; the exponential in (1.16) 
and (1.17) is replaced by 

exp {i j [ q o a ( z I ) -  qZ'(zI)  l d z , ]  = exp[ i (p-r )z ] ,  
0 

where 7$ is the value of ?jg(w) averaged over the ex- 
citon energy. If the inhomogeneous broadening is 6w 
>> r, then we get from (1.24) 

We took account of the fact that the sum Cl j:l in 
(1.20) does not depend on the polarization (a. Thus, at 
a<< Gh there is no birefringence or dichroism of absorp- 
tion of light at the absorption length, which in this case 
is equal to (2 1mF)-'. If furthermore a >> ID, then the 
locality condition is preserved and we have according 
to (1.18) 

where 

f,,; (q) = J d" fmm- ((I, 0). 

6. Solution of the equations for fmm8(K,w) in the 
isotropic approximation 

It i s  seen from (1.11) that at w,, - wl 5; r scattering 
by impurity centers leads to excitation of excitons that 
likewise have only I W K ~ -  W I  5; I', i. e., the scattering 
is accompanied by a small change of w ~ , .  For the 
sake of simplicity we shall consider henceforth the case 
of spherical isotropy of w ~ ,  and Q(K - Kt). In this case 
the function Q(K - K') at K' = K can be expanded in Le- 
gendre polynomials P,(cos8'), where 0' is the angle be- 
tween the vectors K and K': 

We substitute this expansion in (1. l la) ,  multiply by 
P,. (case), where 8 is the angle between K and go, and in- 
tegrate over the solid angle. As a result we obtain in- 
dependent expressions for the corresponding compo- 
nents f :A,, , (K, w) of the expansion off L:. (K, W) in Le- 
gendre polynomials. Next, summing these equations 
over K, we get 

after which the functions f:,.,,(K, a) are  readily deter- 
mined. At q = - qO, when f = 2f1' - fl, we obtain the fol- 
lowing expression for fmm,(-qo, w): 
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where I':=l?- 1/27, and I?;= r i ~ , / ( 2 1 +  l)Qo. At Q(cos8) 
= Qo= const, when only the principal term with 1 = 0 re- 
mains in (1.27), we have 

According to (1.26), in the case of strong inhomoge- 
neous broadening at a depth 4, the radiation polariza- 
tion is determined by the quantity f,,. (- q,). In the con- 
sidered approximation we have in accordance with (1.28) 

When only diagrams of type 2a are considered, the ex- 
pression in the square brackets in (1.28) and (1.29) is 
replaced by unity. It is seen that a t  TO << T,, i. e., as T - 70, or at I wme l >> the contribution of the diagrams 
2c is immaterial. If we take into account in (1.27) the 
terms with If 0 and the function Q(cos8) is smooth 
enough, when Q,/Qo < 21+ 1, the second term in the 
brackets of (1.28) or (1.29) acquires an additional fac- 
tor [2 - Q(- ~)/Qo]. 

Formulas (1.28) and (1.29) are  valid for backward 
scattering. When the direction of the scattered light i s  
inclined to the normal by an angle 8, it can be shown, by 
solving Eq. (1. l lb )  by the iteration method, that the 
contribution of the diagrams 2c decreases: when terms 
up to second order in x inclusive are  taken into account, 
the relative change of the contribution of these diagrams 
is 

(21 
Aim,* - 8 --- (0, i )z  TOT 

f ~ ~ . - f r , m m .  3 ( I + i o m m . r o )  ( l + i o m m , t )  ' 

Thus, the contribution off "' - f1 is significant at 8 
4 (qOID)", i. e., at 14 ID 4 1. Therefore at TO- T the polar- 
ization of the radiation should change substantially when 
the scattering angle is changed by an amount on theorder 
of (90 lD I-'. 

7. Transition to  the limit of the phenomenological 
theory 

We consider the limiting case T;', 1 w,,,l << T;~. We 
note first that at large values of TO the limiting angle - 
8ra=(qolD)-1 at which the difference f'*' -fi is comparable 
with f "' is small and when the scattering light is ob- 
served in a sufficiently large solid angle the contribu- 
tion from f"' - fl vanishes, and therefore f = f"'. At 
i w,,.l << ril, a s  seen from (1.24), the birefringence 
and dichroism are insignificant in a magnetic field. In 
the zeroth approximation in the parameters T, /T~ and 
w,,,~,, the function f ;,,(K, W) satisfies the equation 
@\,.(K, w) = 0 and is equal to 

fPm. (K, w ) = C m , . ( m ) A m m ' ( K .  0 ) .  (1.31) 

Inasmuch as  I w,,, I << T;' in this case, the quantity 
A,,, (K, w) = A m ,  w) does not depend on the spin indices, 

i. e., f,,. (K, w )  can be written in the form of a product 
of the function C,,.(w), which depends only on the spin 
indices, and the function A(K, w), which depends only 
on K. At an arbitrary ratio of T, and T, such a repre- 
sentation, a s  seen from (1.27) and (1.28), i s  impossi- 
ble. To determine C,,, (w) we sum the right-hand and 
left-hand sides of (1. lla): 

We substitute in this relation f!,,(K, W) in the form 
(1.31) and integrate with respect to W. We then obtain 
for the matrix 

the equation 

According to (1.18), (1.31), and (1.32), the integral 
density matrix of the radiated light is in this case 

The expressions (1.33) and (1.34) were used earlier 
i n [ 6 ~  , where a phenomenological theory of optical orien- 

tation of excitons in semiconductors was developed. The 
equation for the matrix p,,, in (1.33) was written in the 
diagonal representation. In an arbitrary basis, with 
allowance for spin relaxation and also for the possible 
dependence of the recombination rate on the spin state, 
this equation can be rewritten in the formCB1 

It was indicated inc6' that the phenomenological theory, 
strictly speaking, is valid for bound excitons, for which 
the microscopic and phenomenological theories are  
equivalent. The derivation given above shows that at 
7, << TO << T , ~  the theory can be used also to  describe 
optical orientation of free excitons. '' We consider be- 
low, using GaSe crystals a s  an example, the qualitative 
differences that result at TO- T, from the use of the ex- 
act formulas of the microscopic theory in comparison 
with the results of the phenomenological theory. 

11. POLARIZATION OF EXClTON RADIATION OF 
GaSe IN A MAGNETIC FIELD 

1. Exciton spectrum and selection rules 

It is known that GaSe is crystallized in three modifi- 
cations, B(D,), y(C3") and E (D3,,). All the modifications 
have a similar band structure (see, e. g., the reviewcu' 
where detailed references to the original papers are 
given). We shall therefore consider henceforth only the 
E modification. The lower conduction band and the up- 
per valence band at the point are  simple and correspond 
to the representations r 4 ( 4 )  and rl(A;). When the spin 
is taken into account, the representation r4 goes over 
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into r, and rl into r,. A noticeable spin-orbit mixing 
takes place then in the nearest bands rl and f,, which 
split into f, + I?,. The ground state of the exciton splits 
as  a result of the interaction of the electrons and the 
holes into three terms: r, x r, = r3 + r4 + r,(A; + 4 + E*).  
The exchange-interaction Hamiltonian ze, takes the 
form 

where o$h are Pauli matrices for electrons and holes. 
In the absence of spin-orbit mixing of the bands, we 
have A = 0, the terms r, and r6 have one and the same 
energy and correspond to a total exciton S = %(a + o. *), 
equal to 1, and S, = 0, * 1. These states will henceforth 
be labeled by the indices 0 and * 1. The upper level r, 
experiences a splitting A1 that amounts according to the 
data ofCU1 to approximately 2 meV, and corresponds to 
a total spin S = 0. 

In the absence of spin-orbit mixing of the bands, di- 
rect optical transitions are allowed only at e, * 0. When 
account is taken of the spin-orbit mixing, transitions 
are allowed both to the state I?,, for which only the ma- 
trix element j F 4  differs from zero and to the state r,, 
for which the following matrix elements are  not equal to 
zero: 

The splitting of the exciton state in the magnetic field 
is described by the Hamiltonian 

where H is the magnetic field intensity vector, oLHl 
= u s x  + u,,H,,, and po is the Bohr magneton. For the 
three lowest states of r 3 +  r6 with S,= 0, * 1, the Ham- 
iltonian is 

where 

According to the data ofC13' g,, = 2.7 * 0.2 and g = 1.9 
* 0.15. If E/T << Al and the splitting of the exciton states 
IWm,. is also smaller than Ai, then the state f is not 
excited if the exciton is reasonantly excited by light 
propagating along the principal symmetry axis C3. We 
shall therefore consider only the three lowest states. 

2. Longitudinal magnetic field (Faraday geometry) 

In this case there are  two optically active levels * 1 
with energies w , , ~  = w,,, * 51,,/2, excited respectively 
by right- and left-polarized light, and the vectors 

e,,=2-"(ex+ ie,) 

are the eigenvectors of the polarization. Correspond- 
ingly we have in this case in accordance with (1.24) and 
(2.2) 

where %/3= * 1. Just as above, we assume that the ex- 
citing-light line width Aw greatly exceeds the line width 
of the exciton absorption. Substituting (2.4) and (1.28) 
in (1.18) and integrating with respect to w from - to 
+ -, we obtain 

'Here and below we leave out the common factor of d,,, 
since it does not depend on the magnetic field and on 
the polarization of the light. It i s  seen from (2.5) that 
the degree of circular polarization of the radiation, 
apart from the sign, is equal to the degree of circular 
polarization of the exciting light and does not vary in a 
longitudinal magnetic field. 

In the case of excitation by linearly polarized light, 
the degree of linear polarization of the radiation, in the 
coordinate system that coincides with the polarization 
plane of the exciting light, takes the form 

where 

The degree of polarization of the radiation in a coordi- 
nate system rotated around the direction of qo by an 
angle 45" to the plane of polarization of the exciting light 
is 

If the inhomogeneous broadening i s  large and 1, << a 
<< 1, the expressions for Pi,, and PY,, take according 
to (1.26) and (1.29) the form 

(HN)= az(QN, To, T ) / ( ~ - T / ~ T o ) ,  (2.9) 

where 

-- ,, . ,, 

2ro I+Q!,'T~ 1. 
- 

At ri,'<< 7;' and a,, << 7;' formulas (2.6), (2.8), and (2.91, 
(2.11) go over into the ordinary Hanle-effect expres- 
sions which follow directly from the phenomenological 
equation (1.35): 

In this simplest case 9 i,, decreases monotonically with 
increasing HI,, and the polarization plane is rotated 
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through an angle cp = - tan'l(n,,~o), i. e., l cpl n/4 and 
9 yin increases to * i, after which it decreases. Ac- 
cording to  (2.6)-(2.8), the function 5"~,,(Hl,) becomes 
nonmonotonic at  TO- T,., namely 9;,, reverses sign a t  a 
certain value of HI,, and then decreases to zero. The 
angle of rotation of the polarization plane is I cp I -( 7/2, 
and therefore Pi',, does not reverse sign. In the case 
of strong inhomogeneous broadening, according to (2.9) 
and (2. l l ) ,  the rotation angle cp can reach values * 37/4, 
so that both P :,, and 9 I:, reverse sign in this case at  
certain values of HI,. 

3. Transverse magnetic field (Voigt geometry) 

An analysis of the experimental data shows that the 
exchange-interaction constant A of GaSe is small in 
comparison with E/T,, and does not manifest itself in the 
optical orientation of the excitons. When considering 
the general case of an arbitrary ratio T,./T~ we therefore 
put A = 0. For the case T, <<r0 we shall derive formulas 
with A t 0. 

We choose the x axis parallel to the vector HL. At A 

= 0 the two levels with energies w ~ ~ , ~ =  ~ g , ~ *  nL/2, for 
which jit2 = j0/2115 a re  excited only with light having 
e,#O, while the third level with energy w ~ , ,  = wgVo and 
with energy j$ = jo is excited only at e, # 0. In this case 
the eigenvectors of the polarization of the light a re  the 
unit vectors e, and e, and we have according to (1.24) 

Substituting (1.28) and (2.13) in (1.18) we obtain after 
integrating with respect to w 

where iPl(S2, To, T) is defined by formula (2.7). 

The degrees of linear polarization :/7!:; in the coordi- 
nate frame connected with vector HI, and of 9::; in the 
coordinate frame rotated through an angle 45" relative 
to the vector HI, a re  given by the relations 

d,-d,, (2, 2 Red., Cli" =- 7 91i,,=-. 
d,+d,, d,+d,, 

The degree of circular polarization of the radiation is 
given by 

In the case of strong inhomogeneous broadening we 
have according to (1.26) and (1.29) 

d,,=d,o(I-r/2ro), d,,=d,,'=d.~Qz(Q,/2, TO, T). 
d,=l/ld,o[l-r/2ro+Q, (Q,, TO, r )  1. (2.16) 

where the function iP8(SZ, To, T) is defined by formula 
(2.10). 

In the case T,. << TO, at  an arbitrary value of A, Eq. 
(1.35) is best solved in a basis of the state * 1,0 which 
is not diagonal at  HI C, and A t  0. Solving the system 
(1.35) for these states a t  X,, and 26, defined by formu- 
las  (2.1) and (2.3b), we get 

It  is seen from (2.15) and (2.17) that the exchange 
splitting A does not alter qualitatively the dependences 
of the degree of polarization of the radiation on H. How- 
ever, just a s  in uniaxial II-VI crystals, ''' if A-* 0 a cir- 
cular polarization of the radiation appears in a trans- 
verse magnetic field if the excitation is by light linearly 
polarized at an angle 45" to the direction of H,, and con- 
versely, when the excitation is by circularly polarized 
light, linear polarization appears, 9 :!kt 0. At AT, << 1, 
the maximum degree of 9' ,,,, or 3':;; in the latter 
amounts to l A l r, and is reached at 51,- 2/70. 

It is seen from (2.14)-(2.17) that in the case of exci- 
tation by linearly polarized light with e 1 HA the intensity 
J =  d, + d,, and the degree of polarization of the radiation 
do not change in a magnetic field. In the case of exci- 
tation by linearly polarized light with e II & the degree 
of polarization of the radiation likewise remains un- 
changed and stays equal to unity, while the radiation in- 
tensity J decreases with increasing Hl. At 7,. << TO the 
function J(HL) is monotonic and at  nLT0 >> 1 >> nL7, we 
have J =  iJ(0). At T,.- TO, J(HL) also f i rs t  decreases with 
increasing H, and then in strong fields, owing to the 
dichroism, in the magnetic field, it again increases and 
reaches n , ~ > > l  at the value ~ ( 0 ) .  If the inhomoge- 
neous broadening is strong, when the dichroism is neg- 
ligible, the intensity J reaches a minimum value J,,,,, 
< $ J ( O ) ,  and then increases and reaches a t  51,~ >> 1 the 
limiting value $J(o). Therefore in a transverse mag- 
netic field, when the excitation is by unpolarized light, 
just a s  in the case of excitation by light that is polarized 
circularly o r  linearly at  an angle 45" to the direction of 
H,, a polarization 8::; is produced. At T, <<rO the vari- 
ation of 9'::; is monotonic and the maximum value of 
I (H,)  I i s  At 7,- TO the quantity I 9'::; (H,) I goes 
through a maximum and then tends to zero at 51,~ >> 1. 
In the case of strong inhomogeneous broadening I I::; 
(H,)I goes through a maximum value larger than $, and 
in strong fields it decreases to ;. 

If the excitation is by circularly polarized light, 
Y,,,,(H~) decreases to zero with increasing HL. At T, 

<< T,,, the function 9, , , , (~~)  is monotonic. 9 ,,,,(H1) 
passes through zero at  7,- TO, reaches a minimum val- 
ue, and then tends asymptotically to zero. The vari- 
ation of ::;(H,) following excitation by light linearly 
polarized at  an angle 45" to H1 duplicates completely 
the variation of 9cI,c(HL) under circularly polarized 
pumping. 
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Thus, by measuring the change of the degree of polar- 
ization of the resonant radiation in a magnetic field, we 
can determine the values of the times TO and T, and 
ascertain whether inhomogeneous broadening takes place 
over lengths on the order of 4,. 

In conclusion, the authors thank A. G. Aronov, V. I. 
Perel', and M. I. D'yakonov for useful discussions. 

')A similar method was used by Rebane, Tekhver, and 
Khizhnyakov to describe secondary resonant radiation of im- 
purity centers in ionic crystals (see the reviewH1). 

' ) ~ i a ~ r a m s  analogous to 2c were taken into account in the cal- 
culation of the vertex part in the theory of the Fermi liquid 
intioJ, where they also turned out to be significant at a small 
summary momentum of the colliding particles. The presence 
of the singularities that arise when the light is scattered 
backward upon excitation of hot excitons with emission of op- 
tical phonons, was noted intzJ. Analogous singularities of 
backward scattering of light o r  radio waves by different in- 
homogeneities were discussed earlier in a number of papers 
(see, e. g.,  ["I). A more complete bibliography it given in 
the reviewtiz1. We are grateful to V. I. Tatarskii for call- 
ing our attention to these papers. 

s)~n the theory developed above it  was assumed that the exciton 
energy relaxation time is 7, >>rO. The phenomenological 
equation (1.35) is valid both at T, << T~ << re , when the energy 
of the exciton remains practically unchanged during the time 
70, and in the opposite limiting case T,<<TO and T ~ < < T O ,  when 
the lifetime is long enough for an equilibrium exciton distri- 
bution to be established. At T, = r0 rnnl i t  is necessary to 
take into account in (1.35) also the energy relaxation. 
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