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Formulas are derived for the vertices describing the interaction between first and second sound in He’-He*
solutions in the hydrodynamic approximation by the Hamiltonian technique. Parametric excitation of

second sound by first is analyzed.

PACS numbers: 67.60.—g

The transformation of first sound into second in Hell
was first considered by Pushkina, Rudenko and Khokh-
lov.!*2! However, Pokrovskil and Khalatnikov have
shown'®’ that consideration of thermal broadening,
which was neglected by the authors of Refs. 1 and 2, is
essential and, on the basis of the Hamiltonian technique
developed by them for the description of hydrodynamic
phenomena in a quantum liquid,*’ Pokrovskii and Kha-
latnikov investigated the interaction of first and second
sound in He!, taking into account both decay and Ceren-
kov processes. The purposes of the present work is the
consideration of the interaction of first and second sound
in superfluid He3-He* solutions on the basis of the Ham-
iltonian technique.

In comparison with pure He‘, a new characteristic ap-
pears in the He3-He* solutions—N, the number of parti-
cles of He® per unit volume, on which the thermodynam-
ic energy density € depends, along with the entropy den-
sity s and the mass density p. The differential is of the
following form:

de=Tds+tdN+udp+ (va—v.) dj, (1)

where T is the temperature, § is the chemical potential
of the He® particles, u is the “ordinary” chemical poten-
tial, v, is the velocity of normal flow, v, is the velocity
of superfluid flow, j is the normal momentum density.

The Hamiltonian is specified in the form (obtained by
a Galilean transformation to the laboratory system of
coordinates)t® 4

H=_[ &z (apv2+ivite). (2)

This Hamiltonian takes on the usual meaning upon the
substitution”
v,=Va, j=sVp+NVE,

where (p, @), (s, B) and (N, £) are pairs of canonically
conjugate variables.

We write down the equations which are given by the
Hamiltonian (2):

op ds oN

—=—VI, —=—Vsv,, —=—VNv,,

ot at v at v 3)
da o B 23
—=—p=/w} —=—T-v,Vp, —=—-[-V,VE
at p=twd T—wv. - t-wVe
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The first three equations play the role of the laws of
conservation of mass entropy, and number of He® parti-
cles; the pulse density I=j+pv, is, as usual, composed
of normal and superfluid parts. The system (3) is
equivalent to a system of hydrodynamic equations for the
superfluid He®-He* solutions, which can be found in the
literature. 8!

We note that in the expressions that have been written
down and in all subsequent equations, the quantities s
and N, T and £, B and § enter symmetrically; therefore
it makes sense to introduce unified vector symbols for
these pairs: 8(s,N), B=(B,&), T=(T,¢), which we
shall use in what follows. This method of writing down
the quantities is convenient also in that all the formulas
turn out to be suitable for the case of many-component
solutions if we mean by 8 the quantities s, N;, N,... .

Similar to Pokrovskif and Khalatnikov,'®*! we can ob-

tain expressions for the momentum flux density and the
pressure (see Refs. 5, 6):

p=sT+pp+ (v.—v.)j—e. (4)

All the quantities in the sound wave oscillate about
equilibrium values, which we shall designate in the fol-
lowing by the subscript 0. The additions to the equilib-
rium values will be denoted by 6. Linearizing the sys-
tem (3), we obtain

a8
2% V2 (8,68 +podar),
ot
a6s 1 .
_at._=_savz(_p_“soap+6a), (5)
06a 5 de 983 de
at  dp' ot os

where the normal density p, is introduced such that j
=pp(Vy—V,). It is seen from these equations that 68

« 8y; therefore, we can introduce v so that 68=8,v;
we also introduce ¥ =84,068, @¢=pyd6a, and Sp=py. We
note that the pairs (v, ¥) and (, ¢) are canonically con-
jugate variables. In these terms, the set of equations
(5) for the plane wave take the form

oM/at=k*(putqh), dv/at=k*((1+T) putou),

(6)

09,/ 0t=—0,0,evi—08,’en, OPa/0t=—0, evs—0,0,e1Mn,

where I'=p, /p, and the notation 8,=py(8/8p), 8,=8¢(8/
88) and 92=pZ(a/9p)? is introduced.
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A dispersion equation is obtained from the set (6),
having the form

(pc*)*—pc?(8,%e+20,0,6+ (14T) 9,%) T ((3,d,¢) *—d,%ed,2e) =0. (7)

(This equation can be found, in other variables, in Refs.
5,6.)

For the velocities of first (c,) and second (c,) sound,
we get from (7)

p(ci+e?) =(8,+0,) p+T d,%,

(8)

pleiie’=I((8,19,) poje— (6.11) z) .

We express the Fourier components of the quantities
which describe the wave in terms of the classical ana-
logs of the annihilation operators of phonons of first (a)
and second (b) sound. We have the relations

(a:u au’.}=iﬁn'. {bu. bu"}=i5u’. (9)

where {...} are Poisson brackets. We seek 7 in the
form

Mm=0,pA (ax+a_")+08,pB (brt+ ba'). (10)

From the system (6), we can obtain

‘ va=(pcs’~0pp) A (arta-x") +(pcs'—3pp) B (batbr),

| ikpa=pc,(0,0,e+pc.*/T') A (ar—a-»") +pcz(9,0,6+pc*/T) B (bx—b_x"), (11)

©ikgw=pcy (8,6 —pc*/T) A (a—a-x*) +pc2(8.2e—pci?/T) B(b—b-s').
Taking it into account that the pairs (n, ¢) and (v, ¢)

are canonically conjugate variables, and using (9), we

find

ke, d.e
Y L P — S \ ,
20 (3.p)* (e —c) (" o ) "
. key (I‘ d.2e )
C 2000 (ei—e?) \ o p) :

In order to consider the interaction processes of first
and second sound, we expand the Hamiltonian to the
third power in the small increments of the equilibrium
values:

H"’=Id’x[:—pﬂ(Vq>)'+%V(P 2}

(13)
(14)

1 1 1 1
+ (V) +—D—(Vy)? +—D’e] .
Pn 2 pa 6
D=nd,+va,.

By separating the coefficients for the corresponding
products of @ and b, we can obtain from (13) the vertices
corresponding to the processes of interaction of first
and second sound.'® Having this in mind, we shall con-
sider the decay of a wave of first sound into two waves
of second sound—we shall designate the corresponding
vertex as U(w, 8) (w is the frequency of the wave of first
sound, 6 is the angle between the wave vectors of the
wave of first sound and one of the wave vectors of the

~ waves of second sound), and also the Cerenkov process
of emission of a wave of second sound by a wave of first
sound—we designate the corresponding vertex as V(w,y)
(x is the angle between the wave vectors of the incident
and scattered waves of first sound, w is their fre-
quency).
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In the following, we shall also use as variables the
specific density o=s/p, c=m N/p; we denote, corre-
sponding, 0=(0,c), Dy=04(3/80), SD,=p,(3/9p) (at con-
stant ). Inthe case considered, there are two charac-
teristic parameters: I and y=Dyp/D,p. The first
parameter, as is seen from the definition, character-
izes the value of the concentration or temperature de-
pendence of the thermodynamic variables. For them we
have the expression

- (5) 5 (5)
1 P da/ cp P dc v.p.

We consider the case I'y <1, which occurs in weak
solutions of He® and He*, practically throughout the
temperature range up to the A point. Near T,, this
smallness is guaranteed by the parameter I, at very
low temperatures—by the parameter y. For the ve-
locities, the estimate (c,/c,)?~ I'y holds, and we can
obtain from (8)

(15)

pei’=Dyp, pc*=T(Dle—YD,p). (16)

Using the formulas (10)-(12), we find

m=A4,(axta-s") +yB,(bitb-s'),
i=A4,(axta_y")+(y—1) By (batb’),

ikpr=pc: (1—1) Ay (ar—aos’) +T=4pc:By (bi—b_y"), (17)

ikpr=pciYA (ar—a_y") —T''pc.By (br—b-1");
where

A=(0/2pc?)", By=(Tw./2pcs’) ',

Upon substitution in (13), we obtain the expressions

o £
92 0 e .

T T
[—1—2 cos 0 — 1‘:— Dy + — (DD P+ 210.0) ] .
2

Oy e | % 1k (18)
=———| —sin—
2p"c; L ¢

D;p).

1—- —D,1
( cos x—D, nD,p

It is seen from these expressions that the Cerenkov ver-
tex V has smallness of the order of (yc,/c,)!/? in com-
parison with the decay vertex U.

Second sound in weak He®-He* solutions in the tem-
perature range 0-0.6 K can be considered as the exci-
tation of a gas of impurity quasiparticles, the mass of
which we shall denote as m, . The energy density ¢ is
composed of the principal part £(¢) and the correction
u due to the gas of quasiparticles.

We shall assume that the solution is degenerate. Then
the formula c,=v,/V3 is valid, so that (c,/c,)®«<1,
i.e., the formulas given above are applicable to weak
He®-He* solutions at low temperatures, in contrast with
the pure He*, in which, at low temperatures, c,=c,/
V3. The smallness parameter in weak degenerate solu-
tions is the concentration c, in particular, I'~1/c, ¢,/
cy~c'’3, y~c%/% whence V~cU. We find from Eq. (18),
by using u<N%/3n,, that

o” 1
U —_——— 2
Thpie, ( 3 s’ )

" fme\trc,\ " X D/zp 2
V=g () (@) oy (T~ ee)
2p e \ s o sin 2 D,p 3 cosy ) X
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x(1 +-3Lm.D,—’—) —im.ngi-?—m.n,—i-] .
2 m. 2 m. 2 m.

(19)

We now assume that the impurity excitations can be con-
sidered to be a Boltzmann gas. Then

u xeh/"’N’/:’ Ca= (5T/3m-) lh»

whence ¢, /c;S%. We also have

r=;”.—ﬁ, 1=c%(ci"-)' , Vet (z—:~) *u.

Substituting in (18), we find the formulas which differ

from (19) only by the expressions in the square brackets:

1 1 1. D2 2
[U]=?—cos’9-—7m.0,—,;.—, [V]——'n—p——é—‘—cosx. (20)

We now consider the case of concentrated solutions of
He® in He*, where I'y~1. As is known,'® in concen-
trated solutions also (c,/c,)?«1; therefore, DZeD,p/
(D,p)?-1<«1 follows from (8). Keeping this condition
in mind, and using (10)-(12), we find:

T];.=Az(ag+a_x') +Bz(bk+b-n') )
vw=(1+T7) Az (axta_s") +(1—7~!) B (batbr’),
ikpr=pc,(1—7) 4z (ar—a-’), ikpp=pcYAz(ar—a-r’),

(1)

where

A:=(0.530Dyp) "/pc,?,  B,=%(0.50.I'D,p)"/pc,c..

Substituting these expressions in (13), we find

(D) YT
2'/’93012021

(D p)% " A D,
OO (0 1)y (0,- 2) 1
2p°c,’c, ¢, 2 Y /pn

1 9
+(y=1) (1+y(1420)) ]cosx+7(0,,+r).+l"16,)’(0,,+6,————-'-) e] )
pc, 1

U (0,+9.,+T79,) (9,+9,—77'0.) "¢,

(22)

We note that the decay vertex U is isotropic, while the '
vertex V has the smallness (c,/c;)*/? in relation to it.

In all the obtained formulas, the vertex V has the fac-
tor sin'/?(x/2), just as in pure He? which is natural
since it is connected only with the laws of conservation
and smallness of ¢, /c;. Thus the Cerenkov process
should dominate with little change in the wave vector of
first sound.

The vertices U and V can be used for the description
of the nonlinear process of excitation of second sound
by first. If we consider a stationary process with the
frequency of the exciting wave of first sound w, then
we have for the “contracted” amplitudes the equations
for the decay process

¢ (nV+a,)a=—iUb,b,,

(23)
c.(n,V+a.) by=iUab,’, c:(n.V+a,)b,=iUab,",
and the Cerenkov process
¢,(nV+a,)a=—iVa'b,
ci(n'V+a,)a’=iVab', ci(nV+a.)b=iVaa", (24)
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where n represents the unit vector along the direction of
propagation of the corresponding waves, @, and o, are
the attenuations of first and second sound.

On the basis of what has been said above on the small-
ness of the vertex V in comparison with the vertex U in
terms of the parameter ¢, /c,, we can draw the conclu-
sion that the decay process will predominate in above-
threshold region. However, the quantity ¢, /c, is nu-
merically ~0.1, which is not very small; therefore, in
specific cases a finer analysis is required. In concen-
trated solutions p, c, are close in value to the same
quantities in weak solutions.'’ Therefore, the quantity
U for weak solutions has, in comparison with its value
in concentrated solutions, a smallness of the order of
(cy/c,)? i.e., alinking of first and second sound in
concentrated solutions is stronger.

The process of parametric excitation of second sound
by first sound has the threshold a,= a,c, /U in the decay
channel and a,= (@, @,c,c,)!/?V in the Cerenkov channel.
To obtain the threshold energy flux density @ in the in-
cident wave, we can use the expression @ =c,wla|?.

The question arises as to which of the processes of
excitation of second sound “turns on” first. For weak
degenerate solutions, the expressions a,=2w%),/
3p,c3 (see Ref. 5, Eq. (67.11)). A similar expression
can be used for estimate of a; with accuracy to replace-
ment of p, by p and ¢, by c, (see Ref. 6, Eq. (8.114)),
Thus a,(w)~c"a2(w) jointly with the estimate V~cU gives
a,/a ,~c” 8, which is a small quantity only at very low
temperatures. There are data in the literature! for the
damping of second sound in weak solutions in the tem-
perature range 0.2-1 K. Herec,/c;~0.1, a,/a,~10"-
10'° (see Refs. 6 and 7); consequently, the threshold of
excitation of the Cerenkov process will be lower than
that of the decay process.

On the basis of the analysis given here, we can con-
clude that for the experimental study of parametric ex-
citation of second sound by first,z’ concentrations of
He3-He! are most suitable, since in them, on the one
hand, there is strong linking of the sounds through the
vertex, and on the other, there is less damping, which
guarantees a lower excitation threshold.

In conclusion, the author thanks I. M. Khalatnikov
for proposing the problem and useful discussions.

DGenerally speaking, the two independent functions 8 and t are
not sufficient for the descripton of j (they would be sufficient
in a three-component solution); it is therefore necessary to
introduce the Clebsch variables. However, they are elimi-
nated as in the paper of Prokrovskii and Khalatnikov. [3

2’Exp(-‘:rimental researches devoted to this process are not
known to the author.
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