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The electron states in a crystal in the presence of impurity levels near the band edge are investigated. The 
density of states in various regions of the spectrum, including the transition region between the band and 
fluctuation states, are found by the method of group expansions of the Green functions with respect to the 
interacting impurity center complexes. The broadening of the individual two-particle levels determining the 
density of states near the band edge is investigated, and the criteria for the density of the fluctuation 
states in this region to be a smooth function or to possess a fme structure are obtained. The long-range 
interaction of the impurities is considered, and the question of localization of the fluctuation states, as 
well as the question of the mobility threshold, is discussed. 

PACS numbers: 71.20.+c, 71.25.Cx, 71.55.-i 

INTRODUCTION 

A large number of investigations have of late been de- 
voted to the study of the essentially statistical energy 
spectrum of disordered systems (for greater details, 
see the review article by Elliot et ~ 1 . ~ " ) .  Important 
qualitative and quantitative results  concerning the struc- 
ture of such spectra a s  a whole have been obtained by 
~ i f s h i t z . ~ ~ ' ~ '  It i s  well known that there exist in disor- 
dered systems both band (current) states smeared out 
over the entire volume of the system and localized 
states whose wave function i s  concentrated in a finite 
volume. ~ n d e r s o n ~ ~ '  obtained for some model of a dis- 
ordered system criteria for all the states in the system 
to be localized. For the case when not all the states a re  
localized, ~ o t t ~ ' '  introduced, for the f i rs t  time, the 
concept of mobility threshold a s  some critical energy 
separating the region of current states from the region 
of localized states, the electrical conductivity changing 
discontinuously when the Fermi level crosses the mo- 
bility threshold. At the same time the density of states 
(as well a s  any other quantity described by the averaged 
one-particle Green function) can remain a continuous 
and analytic function of the energy a s  the mobility 
threshold is ~ r o s s e d . [ " ~ '  

In the present paper we investigate the density of elec- 
tron states in a crystal with impurity atoms that give 
rise to levels near the edge of the unperturbed spectrum. 
For such a system, we have available, besides the de- 
scription of the band states, certain qualitative and, in 
individual cases, quantitative  result^^^'^'^' pertaining to 
the localized states connected with the fluctuation-in- 
duced agglomeration of two o r  many impurity atoms. 
However, these theories did not describe the transition 
region between the band and fluctuation states. 

With the aid of group expansions of the single-particle 
Green function with respect to the complexes of inter- 
acting impurity atoms, we compute below in a unique 
consistent manner-in much the same way a s  was done 

ation states. In contrast to our previous paper,["' 
where we solved a similar problem for the vibrational 
spectrum, here we find the conditions under which the 
density of states near the renormalized band edge is a 
smooth function of the energy. If these conditions a re  
not fulfilled, then the density of states may exhibit in- 
dividual peaks corresponding to pairs, triplets, etc., 
of impurity atoms located at distances smaller than the 
average. Furthermore, we find an expression for the 
unaveraged Green function which describes the interac- 
tion between the impurities and which is the analog of 
the electron wave function. For energies outside the 
band and transition regions, such a function at great 
distances decreases exponentially with increasing dis- 
tance between the impurities, i. e . ,  the states in this 
energy region a r e  localized. As the transition region 
is approached, the group expansion for the unaveraged 
Green function becomes divergent, and it becomes im- 
possible to infer whether or not the state is localized. 
On the other hand, inside the band, right up to the tran- 
sition region, the attenuation of the band states over a 
wavelength is slight, and such states a re  current states. 
Consequently, the mobility threshold should, if it exists, 
be localized in the present model inside the narrow 
transition region. 

1. GROUP EXPANSIONS FOR THE GREEN 
FUNCTIONS I N A Y S T ~ L  WITH M~XPURITIES 

We shall consider the simplest and often-used model 
for  the electron subsystem of a crystal with randomly 
distributed impurity atoms, in which the change in the 
potential a t  an impurity site is taken into account, but , 

the change in the overlap integrals is neglected. In 
such a model the principal characteristic features of the 
behavior of a disordered system a r e  manifested. The 
Hamiltonian of the electron subsystem in the single- 
band approximation without allowance for the interelec- 
tron interaction has the form 

in Refs. 9-12-the density of states in a wide energy 
range near the edge of the unperturbed spectrum, in- H=Ho+H,, Ho= e,at'&.,, ~ , = ~ z a h . , ~ .  

s.0 

(1 
kc 

cluding (in the case of not too high impurity concentra- 
tions) the transition region between the band and fluctu- Here 
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where a t , ,  ab, are  the Fermi operators for an electron 
'with wave vector k and spin cr (we drop the spin indices 
below), V is the matrix element of the perturbation, the 
index s runs over the si tes occupied by the impurities, 
and the R, a r e  their radius vectors. We shall assume, 
fo r  simplicity, that the dispersion law obtaining near 
those extremal points, k,,, , of the Brillouin zone that 
correspond to the lower band edge E, has an isotropic 
character (E= 1): 

The group expansions of the equal-time (advanced) 
Green function 

a 

< A I B > x - M ~ ~  ( [ A  ( t ) ,  B(0) ]+)eim'+"dt -.. 
can be carried out in different representations. A com- 
pletely renormalized representation and an unrenormal: 
ized one were constructed which,, for the 
diagonal function ( (a , l~; ) )~ ,  respectively assume the 
forms 

Let us write down the group expansion of the polar- 
ization operator of the unrenormalized representation: 

and N is the number of sites in the lattice. In the ex- 
pansion (5) the first  term in the brackets corresponds 
to electron scattering by isolated impurity atoms; the 
second, to electron scattering by pairs of impurity 
atoms, etc. A similar structure is possessed by the 
group expansion of the renormalized polarization oper- 
ator Rk, where instead of the 9:,, the components be- 
come 

and in expressions of the type A,, ,A, ., , A,, ,A, ,, ,,A, .., , 
etc., the summation is performed over all the noncoin- 
cident wave vectors. In this case the first  two terms 
of the group expansions of Rk  and fit coincide in form. 

As is well known, a number of physical quantities (the 
density of states, the cross  section for light absorption, 
etc. ) a r e  determined by the diagonal Green function. 
For their determination, it is necessary to average the 
expressions (4) over the random distribution of the im- 
purity centers, it being possible, on account of the self- 
averaging nature of the diagonal, function, (4a), in the 
renormalized representation, to directly average the 

polarization o p e r a t ~ r . ~ ' ~ " ~ '  As can be seen from (5), 
the group expansions a re  constructed in such a way that 
the summation in each term is performed over the non- 
coincident impurity states. As a result, the averaging 
amounts to the replacement of each sum over the im- 
purity s i tes  s by a sum, multiplied by the impurity con- 
centration c ( c  = n / ~ ,  where n is the number of si tes 
occupied by impurities), over all  the si tes I. It is con- 
venient to  transform the averaged renormalized repre- 
sentation in such a manner that we can neglect in it the 
limitations in the summation over. the wave vectors. 
As a result, we have 

Besides the foregoing, other representations of the 
Green functions are  also possible. Below we shall also 
use a representation that is renormalized to  first  order 
in the concentration: 

Here 

where in expressions of the type A:,,A:,, , etc., the 
wave vectors in neighboring cofactors do not coincide. 
After averaging, (10) assumes a form similar to (a), 
but with the first  term in the brackets absent. 

Notice that the regions of convergence of the group 
expansions of the various representations do not, gen- 
erally speaking, coincide, and below one o r  another 
representation will be used, depending on the conver- 
gence of i ts  group expansion. 

2. CONVERGENCE OF THE GROUP EXPANSIONS 
AND THE DENSITY OF STATES IN  THE 
NEIGHBORHOOD OF THE BAND EDGE 

In the vicinity of the band edge, the resonance de- 
nominator, 1 - V I O, entering into (5) and (6) can be 
represented in the form 

n '11 zoV 8,. I - v  ( )  -(co -a,; 
E, 

(11) 

E,-E '1. 
a .I, (12) 

where the quantity E l  is of the order of the band width 
(for a simple cubic lattice ~ ; ' = m a ~ / n ) ,  a =v1I3, v being 
the volume of the unit cell, z o  is the number of extreme 
points of the Brillouin zone that correspond to E, . Be- 
low the parameter Ic,lzo plays the role of a character- 
istic impurity concentration. 

Let the perturbation V be such that 

1156 Sov. Phys. JETP 45 (6) .  June 1977 M. A. lvanov and Yu. G. Pogorelov 11 56 



In such a case an isolated impurity atom in the crystal 
creates a localized level whose energy l ies near the 
band edge (when c:/'> 0, a localized level with energy 
E0=EC - C;/'E, splits off from the band, while when c:/' 
< 0, a virtual level exists within the band). 

A complex spectral distribution ar ises  at a finite im- 
purity concentration, the band states being preserved 
and there arising fluctuation levels separated from the 
band states by a transition region. The density of elec- 
tron states of such a disordered crystal can be found 
from the well-known relation 

where the factor 2 takes account of the spin states. The 
averaged diagonal Green function 

can be taken in any of the above-considered represen- 
tations: In this case the completely renormalized rep- 
resentation (4a) turns out to be convergent within the 
band and the states can be described with the aid of 
plane waves. 

A. Let us first  consider the case when the impurity 
concentration is less  than the characteristic quantity: 
c << ~colzo. The band states a re  then described by the 
dispersion law 

and the decrement 

yk=Ao%(&r) [I+ ( X ( E ~ ) ) ~ ] - ' ;  
" E,g(E) 

X (E) = (:) - 
zoc: ' An= (f 1"s. 

The quantity & determines the shift of the edge of the 
band states. 

The expressions (15) and (16) a re  valid a s  long a s  
I k -  k,,, I >>k,,,, where k,,,= c / (a~ ,c ; /~ ) ;  the attenuation 
over a wavelength is then slight. The minimum wave- 
vector value k,,, allows us to estimate the width of the 
transition region, which width turns out to be of the or-  
der of A,, where 

The density of states g@) within the band is, up to 
terms of higher order in c/(  Icolzo), equal to 

Here G2= (Ec + A. - -)/El, while 

2 # z o  E-E, '11 

go (E) = (--) - E ,  (-) El 

is the density of states in the unperturbed crystal. 

The fluctuation states ar ise  a s  a result of the random 
agglomeration of the impurity atoms. Their energy 
spectrum is, generally speaking, a collection of b-func- 
tion peaks corresponding to the poles of the individual 
terms of the group expansion. Since Icol << 1, the repul- 
sion of the levels in pairs of impurities located a t  dis- 
tances considerably greater than the interatomic dis- 
tances, leads to a situation in which the corresponding 
two-center levels fairly densely fill the fluctuation spec- 
t ra l  region adjoining the edge of the band states (such 
pairs produce virtual levels inside the band). It is con- 
venient to describe the density of states in this region 
(G2>0) with the aid of the representation (9), which 
takes account of the shift of the edge of the band states. 
Replacing in the corresponding averaged group expan- 
sion the summation over the discrete s i tes  1 by integra- 
tion, we obtain the density of states averaged over an 
energy interval greater than the distance between the 
individual two-center levels. In this case, when G2 
>> A, /El, the group expansion turns out to be conver- 
gent, and the density of states is determined by the con- 
tribution from the two-center levels. Taking into ac- 
count the fact that the quantity A : ~  has, for G2 > 0, the 
form 

where 

we obtain 

c2 
n, (Rd a 

I- ~o~lex~(-~~~)sign(c~'-~) 
"El- ( ~ A ) Y . E , ~ ~ ~ - ~ ~ ; I  l+aRe 

(21 
Here ni is the relative number of the I sites, where the 
quantity oo, assumes the value oi and R t  is determined 
by the equation 

'I, R,= loil la-co I-' exp(-a&). (22) 

Let the structural factor 

be nonzero (in the general case x 3 0, since I oi I g 1). 
Then near the band edge the expression (21) becomes 
equal to (2 /n)1 /2czX/(zo~1c,"~s~);  i t  is valid, a s  has al- 
ready been noted, when c2 >> A, /El, and diverges a s  
5- 0. 

In the case of the appearance of a localized level, the 
group expansion (9) ceases to converge in the vicinity of 
this level, where I E - Eo 1 - c ' /~c~"~E,  . At the same 
time the unrenormalized representation (4b) converges 
here, the density of states being described, a s  before, 
by the formula (21), where we need only replace 6 by 
a. In this case, when I a - c;/' I <CC~/', the density of 
states assumes, according to (21) and (22), the formc2' 
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where no corresponds to uo= 0. The expression (24) is 
applicable outside a narrow neighborhood (of width of 
the order of the concentration broadening, b2, of the 
local level) of the energy Eo,  where none of the group 
expansions converges. In the c << 1 c, lz, case under con- 
sideration, we can show that 

Notice that the performed analysis is, when 6'- 1, 
also inapplicable far  from the band edge, where the 
density of states is determined by the agglomeration of 
a large number of impurities. 

If in the region adjoining the band edge the broadening 
of the two-center fluctuation levels is greater than the 
level spacing, then the replacement of the summation 
over 1 by integration can be justified also in the case of 
the completely renormalized representation (4a). The 
corresponding group expansion (8) turns out to be con- 
vergent with respect to the small parameter c /  l c, lz, 
both inside the band and in the transition and fluctuation 
regions (but not too close to a local level). Substituting 
(4a) and (8) into (14), we obtain, similar to what was ob- 
tained in Ref. 12, a self-consistent equation for the de- 
termination of the density of states. It is not difficult 
to  show by solving this equation with allowance for the 
two-impurity clusters that, for x > 0, the density of 
states near the band edge (I 61 <<c;/') can be represented 
up to terms of higher order in smallness in the parame- 
t e r  c/lcolzo in the form 

where f ( x )  is a universal function not depending on the 
impurity concentration and being the only real and posi- 
tive root of the equation 

For - (r2 >> Al /El the expression (25) goes over into (19) 
while for (r2 >> A, /El it goes over into (21). In the inter- 
mediate region, f (x)  can easily be tabulated for a given 
X. The plot of f (- x)  for x = 1 is shown in Ref. 12. 

A distinct case is the x = 0 case, which obtains when 
to the band edge E, corresponds the only extremal point 
k,,= 0, while the impurity is such that c;l3> 0. In this 
case the density of states is described inside the band 
and in the transition region (except a t  the outer edge) 
by the expression (19) and in the fluctuation region (6' 
> 0) by the expression (21), which in this case remains 
finite a s  6 -  0. If we can replace the summation over 
the sites by integration, then there also exists for the 
x = 0 case a systematic procedure, similar to the one 
described earlier in Ref. 12, with the aid of which the 
density of states can be obtained in the form of a con- 
tinuous function in the entire energy region under con- 
sideration. Whereas for x # 0  it was sufficient to take 
account of only the two-impurity clusters, for X =  0 we 
should also consider the three-impurity clusters. How- 

ever, the latter clusters turn out to be important only at 
the edge of the transition region, where the expressions 
(19) and (21) join smoothly onto each other. Notice that 
the thus obtained density of states cannot be represented 
near the band edge with the aid of a universal function 
like (25). 

B. At high impurity concentrations, when c >> l co l zo , 
the region, A2, of the concentration broadening of an 
impurity level, where every group expansion diverges, 
turns out to be of the order of ( C / Z , ) ~ / ~ E ~ ,  and exceeds 
both the width of the transition region and the distance 
from the level to the band edge. Inside the band, allow- 
ance for the group expansions leads to small corrections 
to the density of states, corrections which were given 
earlier in Ref. 12. In the fluctuation region of the spec- 
trum, where G2 >> A ~ / E ~ ,  the density of states is de- 
scribed, a s  before, by the formula (21), and is equal to 

The expression (27) coincides in form with the one ob- 
tained in Ref. 8. 

-. 

3. BROADENING OF THE TWO-CENTER LEVELS AND 
THE CRITERIA FOR THE RESOLVABILITY OF THE 
FINE STRUCTURE IN  THE DENSITY OF STATES 

To derive for c <<Icolzo the density of states (25), 
which is continuous in the vicinity of the band edge, we 
assumed that the broadening of the individual two-center 
levels was greater than the level spacing. If these con- 
ditions a re  not fulfilled, then the density of states in the 
transition region cannot be derived with the aid of the 
above-considered group expansions. Nevertheless, the 
representation (9) can be used in the fluctuation region 
in this case, and in the density of states can be resolved 
peaks that correspond to the individual levels, The ex- 
pression (21) is then proportional to the probability for 
the appearance at the given energy of the most intense 
(two-center) fluctuation levels, and describes the ener- 
gy-averaged density of states. 

The two-center level energy E,,, can, a s  can be seen, 
for example, from (5) and (a), be determined from the 
condition A,,, (E,,, )=  0, where 

and is a function of R,,, and us,, . To the levels adjoin- 
ing the band edge correspond such distances, R,, , , be- 
tween the impurities that 

R... sign c!>al a,.. lei" (2x)-". 

The possible values of R,, in the lattice have a dis- 
creteness AR,, ,-a2/2 R,, , (R,, , >>a). The correspond- 
ing discreteness of the energy levels is equal to AE,. 
= ( 8 ~ ~ ~ , / 8 ~ ~ ~ ,  ) AR,,, , where in the region O< (r2 <<c2,l3 
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aE... cf~,(c~-alo..*l(2n)'~R~.sign~~) -- A 
aR..- R.,. (I-lo,.rl sign cr) 

(30b) 

for +o, IU,,. ~ s i g n c i / ~ +  1. 

If we allow for the interaction of the impurity pair s 
and s' with distant impurities s", then the line shape of 
the two-center level E, is determined by the expression 
f,,. (A,, . (EN, where 

Here 

and the bar denotes averaging over the random distri- 
bution of the impurities s'. Carrying out this averaging 
for c << 1, we obtain 

- 
f . . . (A) = exp(itA-cp.., ( t ) )  dt ,  

- w  

where 

Taking into account the fact that the dominant con- 
tribution to the line broadening is due to the impurities 
st', located at distances R from the si tes s and s' of the 
order of the mean interimpurity distance 7 (7 = (4n/ 
3)-'/ 'c-'/ 3a >> R,, .), and that F is a smooth function of R, 
we can go over in (32) from summation over I to inte- 
gration (with allowance for the discrete values of o,, , 
o,,,). As a result, we obtain for (u<cl" 

The factor X(x)= 1 when x = 1. The quantities rl and' 
r, play the role of distribution widths on the scale of 
A,,, (E). Their power dependence on c stems from the 
fact that, when &<clr3 ,  the expression for F when R - ? is a power function of R, i. e., is a when x + 0 
and a R-' for x = 0. If, on the other hand, & >c'l3, then 
the behavior of F becomes, when R - T,  exponential, 
and the distribution width is of the order of 

Notice that, for the model under consideration, the 
inhomogeneous broadening, which is described by the 
expression (31), predominates outside the region, A,, 
of concentration broadening of the local level, exceed- 
ing the broadening due to the other mechanisms (for 
example, due to the resonance two-pair interaction). 

Comparing the broadenings r1 and r, with the level 
discreteness on the scale of 4,. (E), which is equal to 

we can easily see that, wh& ~ s c ' ~ ~ ,  the broadening of 
the two-center levels is greater than their discreteness 
if the impurity concentration satisfies the conditions 

This result will also be valid in this case for the 
higher-order fluctuation levels. As a result, any a r -  
bitrarily slight bare  broadening guarantees a smearing 
out of the fine structure in the density of states in this 
energy region. In this case, a s  has already been noted, 
we can go over from summation over the discrete in- 
dices I to integration in the completely renormalized 
representation (4a), and the density of states in the 
transition region is described by the expression (25) (or 
by the analogous expression for x = 0). 

As can be seen from (34), the broadening of the fluc- 
tuation levels decreases a s  we go away from the band 
edge, and in the region where 

the density of states ceases to be a smooth function of 
the energy and the peaks corresponding to the individual 
levels get resolved. If the conditions (35) a re  not ful- 
filled, then the individual levels a r e  resolved in the en- 
t i re  fluctuation region (with the exception of a narrow 
neighborhood, ~ , ( c c ~ ) " / ~  >> Az , of the local level), and 
the transition region cannot be described with the aid of 
the considered group expansions. A similar consider- 
ation for  high concentrations ( c  >> 1 co  1 zo) shows that the 
individual two-center levels a r e  resolved when 

(it can be seen that this difference exceeds the concen- 
tration broadening ( - c ~ / ~ E ~ )  of a localized level). 

4. INTERACTION OF THE IMPURITY CENTERS AND 
THE CONDITIONS FOR THE LOCALIZATION OF THE 
FLUCTUATION STATES 

Let us consider the unavenged, nondiagonal Green 
function ((a, la:,))B, which describes the amplitude of 
the probability that an electron in a state with energy E 
is located at time t =a, at  the site s t  if  at t = 0 i t  was lo- 
cated at the site s. According to ~nderson,'" the be- 
havior of such a function at great distances R,,, deter- 
mines whether o r  not the state with energy E is local- 
ized. 

Using, for  example, the representation that is renor- 
malized to f i rs t  order in the concentration, we can de- 
rive for the function ((a,la:,))" the following group ex- 
pansion: 

1159 SOV. Phys. JETP 45 (6). June 1977 M. A. lvanw and Yu. G. Pogorelov 1159 



I 
<a,la..+)' = 

1 (++ A~.P.,..~,/A,,~+AL~.A~..,. .+...). 
V(1-V3') A,' ."+...' A,.*-F....r- 

(38) 
The expression (38) is a complex function of R,,, and 

E, and each term in it, starting from the second, is a 
random quantity which depends on the random arrange- 
ment of the impurities with respect to the selected si tes 
s, s'. If the f i rs t  term exceeds both the mean values and 
the mean fluctuations of the subsequent terms, then the 
ser ies  (38) is convergent in the statistical sense, and i t  
can be approximated by the expression (for IA:,, I << 1) 

<a.la..+)' = 
A,:. 

V(l-V3') 
'h E,  (Re 9 O  (E,) ) exp(-tM..* (2n)Ih/a) 

R.., (a-c;)' (39) 

Let us consider the region of the spectrum where C? 
> 0 and, for simplicity, le t  us restrict  ourselves to the 
case zo= 1. We can show, with allowance for the limi- 
tations in the summation over k in quantities of the type 
A~ , ,A :  ,,,, , that a t  sufficiently large distances R ,,,, 
such that IA:,, 1 << 1, the mean value of the random quan- 
tities from (38) in the given region a r e  small, and 
therefore we should estimate their fluctuations. The 
greatest contribution is made by the fluctuations in the 
quantity 

- - 

Here we should, generally speaking, drop in the sum 
over s", the terms for which 1 Fa,,, , ,  I ?  1, but these 
limitations will not be important below. The probability 
distribution for the quantity X,,, has the form 

where 

Bearing in mind that Fa,, <<A:,. , let  us compare A:, . 
with the width, r,, , , of the distribution P(X, ,  , ), which 
width can be estimated from the condition Jl,, , (r:, )-  1. 
In the expression (39), the characteristic decay range 
of the function ((a,la:,))" is a / 6 ;  therefore, we shall 
consider the values of R , , , zu /~ .  It can be shown that 
a t  sufficiently large R,,, the width of the distribution 
(41) is of the order of . ,  

It can be seen from this that, for the group expansion 
(38) to converge, it is necessary that 

when c << 1 col, which is valid outside the transition re- 
gion and outside some neighborhood of the local level, 
o r  that 

when c >> l c o  I .  Furthermore, the condition R,,,< R,,,, 
where 

should be fulfilled. 

At greater distances the "direct" interaction of the 
impurities, which is described by the expression (39), 
is replaced by an "indirect" interaction via intermediate 
impurity centers. 

Thus, in the above-indicated regions of the spectrum 
the Green function ((a, lad,))", which is the analog of the 
wave function of an electron with energy E, is described 
by the expression (39) for R,, ,< RHm. Since here Rli, 
>>a/;, there exists a fairly broad region of R,. values 
where the wave function falls off exponentially with the 
range a / ; .  Therefore, in accordance with Anderson's 
analysis,c4' the states with such an energy a r e  localized 
states. This is also corroborated by the fact that, a s  
shown above, the width of the individual levels is deter- 
mined by the inhomogeneous broadening. 

As the transition region is approached, the localiza- 
tion radius increases like (E  - E, - A ~ ) " / ~ ,  attaining a 
value -aci f  g/c. On the other hand, inside the band (out- 
side the region A,), the states a r e  current states and, 
a s  can be seen from (15) and (16), the mean f ree  path, 
a s  the transition region is approached, is also of the or- 
der of ac i f  '/c = l/k,,, . Thus, in the present model, in 
which an impurity level is located near the band edge 
and other electron-level broadening mechanisms a r e  not 
considered, the transition from current states to local- 
ized states occurs inside the transition region A,, where 
the mobility threshold introduced by ~ o t t ' ~ '  may, con- 
sequently, be located. 

The authors a re  grateful to I. M. Lifshitz for drawing 
their attention to the analysis of the unaveraged function 
describing the interaction between the impurities. 
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