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A theory is developed of the muonium mechanism of the relaxation of the spin of positive muons in nonnal 
metals. An equation is derived and solved for the spin density matrix; the equation takes consistent 
~ccount of the hyperfine structure of the muonium atom and is valid in the entire range of realistic 
temperatures and external magnetic field. The depolarization and spin precession of the p+ meson are 
analyzed. It is shown that the longitudinal and transverse relaxation times have minima as functions of the 
temperature and of the external magnetic field, and the frequency shift of the muon spin precession is 
determined. A number of experimental ways of unequivocally answering the question of the existence of 
muonium atoms in nonnal methods are indicated. 

PACS numbers: 76.90. +d 

The question of the coexistence of muonium in metals, where Ho is the Hamiltonian of the dynamic subsystem, 
o r  the identical question of the charge state of mon- HT is the Hamiltonian of the thermostat, V  is the po- 
atomic hydrogen, has not been unequivocally answered tential of the interaction of the dynamic subsystem with 
to this day. It is not excluded, for examples, that in the thermostat. As usual, we assume the off-diagonal 
some metals muonium exists, but is not produced in part  of the thermostat interaction potential to be equal 
others. It is therefore necessary to consider two vari- to zero (or to be included in H,). 
ants. In this article we analyze the relaxation and pre- 

We choose a s  the basis the known equations of the cession of the p*-meson spin in metals, assuming that 
a hydrogenlike Mu atom has been produced. 

NMR and ESR theoriesc6"': 

It is obvious that the problem of the muon spin relaxa- 
tion is analogous in principle to the calculation of the 
relaxation times of the nuclear spin of a paramagnetic 
impurity center. This question was considered rela- 
tively recently inc182', but the results a r e  valid only in 
certain limiting cases, since no consistent account has 
been taken of the influence of the nuclear magnetic mo- 
ment on the electron spin relaxation. In addition, in 
the analysis of the behavior of Mu the picture of muon 
spin precession, which was naturally not considered 
inc1p21, is important. 

The muonium atom in polarizable media (metals, 
semiconductors) was considered where certain 
regularities in the behavior of muonium have been re- 
vealed. It was noted correctly inc4' that the electron 
moment becomes renormalized in a polarized medium, 
a fact not allowed for inc3'. In all other respects the 
initial equations obtained incs1 from phenomenological 
considerations, and inc4' on the basis of an analysis of 
the exchange scattering in a polarized gasc51 a re  prac- 
tically identical. These studies, however, likewise dis- 
regarded the reaction of the muon magnetic moment on 
the electron spin. As a result, for example, the equi- 
librium state obtained in these studies do not satisfy the 
Gibbs distribution (seec3', formula (15)). It is therefore 

where fiwu = E ,  - E , ,  E ,  a re  the eigenvalues of H,, and 
the coefficients a r e  given by 

where fiw,,, = E, - E,. , E, a r e  the eigenvalues of H,, 
the symbol 9 means that the sum (4) must be understood 
in the sense of the principal value, and pa, is the ther- 
mostat density matrix. It is assumed that the thermo- 
stat  is in a state of thermodynamic equilibrium and pa, 
= gaeexp[(F - &,)/TI. 

The actual form of the interaction potential is deter- 
mined by the model of the thermostat. In metals, the 
relaxation of the muonium electron spin is due to ex- 
change scattering by the electrons of the medium. As 
u ~ u a 1 , ~ " ~ ~ ~ ~ ~ '  we use the model Hamiltonian 

v (r) = (lln) t o.a,6 (r-r,) , 

necessary to develop a consistent theory of the relaxa- 
tion process in polarizable media, in order, on the one where J is the exchange interaction constant, n i s  the 

hand, to ascertain the region where the earlier results oe and are the Pauli 

a re  valid, and to obtain on the other hand new qualita- operators of the electrons of the muonium and of the 

tive laws. medium. It is obvious that Fmana f 0, SO that the diago- 
nal part of the thermostat interaction will be incorpor- 

1. We write the Hamiltonian of the system in the ated in the Hamiltonian Ho, and i t  is necessary to sub- 
form stitute in (3) and (4) V =  8 - 8,, where ( g,),, = 2 ,Pmana 

H=H,+H,S V, (1) XPaa. 
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In the calculation of the matrix elements we assume 
that the metal-electron wave functions a r e  plane wave, 
and neglect their distortion near the muonium. We 
shall therefore not consider in this article any question 
connected with the Kondo effect. The muonium wave 
function is an S function of the hydrogen atom with an 
effective radius a. The coefficients (3) take the form 

the summation is over the spin variables of the elec- 
trons of the medium, and 

tiw= 2peB is the electron-spin precession frequency, B 
is the external magnetic field, n ( x )  is the Fermi dis- 
tribution function, and co= tiz/2ma2. As seen from (7), 
f (cf, 0 ) s  1. For metals we have tii2/cf , T / E ~  << 1 (cf is 
the Fermi level), the integral in (6) can be easily esti- 
mated, and we obtain 

where 

is the renormalized magnetic moment of the electron, 
and 

is the renormalized magnetic moment of the muon. 

The f i rs t  correction to formula (16) was obtained 
inc4]. In second order, the hyperfine-interaction fre- 
quency and the magnetic moments of the electron and 
the muon a r e  renormalized. Estimates show that these 
corrections can reach 10%. It is easily seen that it is 
possible subsequently to substitute in the formula (2) 
for the relaxation coefficients the energy levels corre- 
sponding to the effective Hamiltonian (14). To simplify 
the notation, we shall therefore omit from now on the 
tilde, and let  wo, w, and f stand throughout for the re- 
normalized quantities. 

The eigenfunctions of the Hamiltonian (14), a s  is well 
.known, a re  

The first  symbol denotes here the state of the muonium 
electron, the second the state of the p' meson, the mag- 
netic field is directed along the z axis, and 

The eigenvalues of the Hamiltonian (14) a r e  equal to 

where 

Since n1 and H,- cia, i t  follows that by neglecting terms 
of order A ~ w ~ E ; ~  we obtain ultimately 

(12) 
The coefficients in (4) a r e  calculated analogously, and 

the energy-shift matrix is of the form 

(r,,) =- (JpJet) (Ba.) -3gre1I 
+hr,goo(a.a,)4g[r, (1+f/2)+r21~.(Ba.) -2I',gp,(Bo,), (13) 

where 5 = 1 p, /pe  1 ,  I is a unit matrix, while r, rl, and 
r, a re  positive constants of the order of unity. Thus, 
Ho+ r a re  replaced in (2) by the effective Hamiltonian 

where 

~3,=0~(i+4gr,)  

is the normalized frequency of the hyperfine interaction 
in the metal, 

We write down Eq. (2) for the spin density matrix of 
the muonium in operator form, substituting (12) in (2): 

where G is a matrix with elements g(w,,) o;, , is a 
matrix with elements o, -g(w,,), G ,  is a matrix with 
eleinents g (w,,) of,, and 

The coefficients g(ol,) determine the frequencies of the 
transitions between the different levels and can be in- 
terpreted a s  "effective collision frequencies." We note 
that at Awl, >> T the coefficients g(w,,) increase linearly 
with w,,, meaning that under these conditions electrons 
with energies E 3 cf - Awl,, can also take part in the scat- 
tering. 

Equation (21) describes the behavior .of the muonium 
spin density matrix at all realistic temperatures and ex- . 
ternal magnetic field. The stationary (asymptotic) solu- 
tion is the Gibbs distribution. 
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We shall next be interested in the p'-meson polariza- 
tion P , ( t ) =  Sp(u,p), which takes in the chosen basis the 
form 

2. w e  present an expression for P, in the thermo- 
dynamic equilibrium state 

and 

- 
At the presenistate of the experimental art, the 

asymptotic value of the muon polarization P,(-) can be 
observed if r,,, ST,, where 7,,, and 7, a re  the relaxa- 
tion and muon lifetimes, respectively. 

We shall show that P,(.o) can differ noticeably from 
the equilibrium polarization of the free muon ~ y ( . o )  
= tanh(gw/2 T). At low temperature and in strong fields 
liw 2 T (this corresponds to B 2 10' G at T- 1 K) the 
muon polarization in muonium is equal to 

- - 

longitudinal components 

As seen from the system (26), during the f i rs t  stage 
t > ~ ( 4 5 o v ) - ~  the levels 1 and 2 a r e  completely freed 
(with exponential accuracy) and the components p2, a re  
damped. Levels 3 and 4 a re  populated respectively at 
the expense of levels 1 and 2. Using (23), we can easily 
show that the muon polarization is conserved in this 
case: We thus have for  the second relaxation stage the 
initial condition P,( t )  P, (0) and the obvious equality 
pss(t)+p4,(t)= 1. The system (26) reduces to a single 
equation for the polarizationP,(t), and we obtain 

P, ( t )  = ~ . ( m )  (i-e-Tclf) +P. (0) e-'s-'l, (27) 

where 

and can differ noticeably from the polarization of the 
free p' meson. For example, at T = 0.5 OK, B = 10' G, 
w,= 0.1 w,, (w, = 2X 10'' sec" is the frequency of the 
hyperfine interaction in vacuum) we have P,(-)= 0.025 
as against pFW(m)= 0.015. In principle i t  is therefore 
possible to search for muonium via analysis of the 
equilibrium state. The most convenient experiment is 
probably in a field perpendicular to the polarization at 
the initial instant of time. We note that in such a 
scheme, by reversing the field direction, we can carry 
out a compensation experiment. 

3. In the general case, the system (21) breaks up into 
a system of five equations, two Hermitian-conjugate 
systems of four equations, and two Hermitian-conjugate 
equations. The density-matrix components which de- 
termine P, and P, will henceforth be called longitudinal 
and transverse, respectively. 

We obtain the solution of the system (21) for strong 
external fields exp(lio/2 T) >> 1. In cases of practical 
interest, the obvious conditions R o o  << T, gfiw << T are  
satisfied. The longitudinal components have here two 
characteristic relaxation times, fast and slow. Physi- 
cally this means to the fact that the population of the two 
higher triplet levels decreases with a short time 
[g(w,,)]", after which the system arrives relatively 
slowly a t  a thermal equilibrium. 

Under the condition exp@w/2 T) >> 1 we have for the 

is the reciprocal of the longitudinal relaxation time. 

A time of the same order was obtained int1'. This is 
perfectly natural, since under the condition two << T we 
go over to the model assumed int1'. If two- T, then the 
analysis of the system (21) is perfectly similar to that 
presented above, and we obtain for the longitudinal re- 
laxation time 

For the transverse components of the density matrix, 
the system (21) is in the same approximation of the 
form 

d - i h o  00 
pi, + - (oO-25o)p,,=-4-p,2 - - (pis-PZ'), 

d(vt) 2v T o 
d - o 0 0  

d(vt) 
(pi,-p,,) +i- (pIa-p~O +iz (PIII+PIO - 

h o  Roo 
=-4 (1 + %) (pis-p2&) - (~18+p2') 
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The solution is obtained in exactly the same way a s  
for the system (26): 

P- ( t )  =P+'(t) =P- (0) exp [- (z2-l+i8,) t ] ,  (31) 

where r2= 2r1 is the transverse relaxation time, and the 
precession frequency 

is independent of temperature. These results  a r e  pre- 
served also a t  Kwo- T and tic w - T. 

As seen from (32), we can search for muonium in 
metals by measuring the shift a, in comparison with 
g w .  At the present time we can resolve muon preces- 
sion frequencies lower than 10' sec", s o  that the pro- 
posed experiment is possible at B -  5X 10' to 10' G and 
at TSO. 1 K. 

4. If there is no external magnetic field, then we ob- 
tain for the density-matrix components of interest to us 
the system 

where 

The characteristic equation of the system (33) is of the 
form 

At high collision frequencies v >> w,, the solution is 
the particular case of high temperatures and weak fields, 
which will be considered below, while for low collision 
frequencies we have, accurate to terms of order (v/w,)', 

In this case we obtain for the polarization (23), with the 
same accuracy, 

P( t )  = (exp (-hit) + exp (-Re hzt) [cos 
+ ( d o o )  (3ai-b-2) sin w0t])P(0)/2.  

If the times A t -  wi' a re  not resolved under the exper- 
imental conditions, then only an exponential decrease 
of the polarization from P(0)/2 is observed, at a rate 
XI. In particular, for infralow temperatures we have 

5. For high temperatures T >>Kw, Kw, the matrices 
G, e, and G, can be expanded in a complete se t  of 4 x 4  
spin matrices. Retaining only the terms linear in KW/T 
and Rw,/T, we write these matrices in the form 

' 

where 4, o$ and ul, 01: a r e  respectively the spin oper- 
ators of the muonium electron and of the c(+ meson. 

Using the expansion (39)-(41), we linearize Eq. (21) 
and obtain 

p+ih-'[H,,,, p] =2v(o,pa,-3p 

+ie,,, (tionl2T) o,lpa,'-[~ (hoo.) + (hoo,)p]/ZT 

+i(hoo/8T) e~,(o,"po;o,'-o;o,'po.") 
- (hoo/4T) [ (ae%) p+p (0.0,) I). (42) 

Equation (42) differs from that proposed intgs4' for the 
description of the relaxation processes a t  infinite tem- 
peratures. The relaxation term is determined by the 
polarization of the muonium electron, and the stationary 
solution is a Gibbs distribution. 

We obtain the solution of the system (42) in standard 
fa~h ion . [~~- '~ '  For the longitudinal component of the 
muon polarization a t  v >> wo we obtain, accurate to terms 
of order (w, /v)' inclusive, 

Formula is valid also a t  v << w,, except that the formula 
for  P,(t) contains rapidly oscillating terms, that are . 

averaged out in the observation. Thus, formula (43) 
can be used for interpolation without restrictions. It 
is seen that 7;' has a maximum. The decreasing branch 
has obtained already inc1']. , 

The transverse component of the polarization at v >> w, 
is determined by a single root ~ , ( t )  = ~ ~ ( 0 )  exp[- (7;' 
*iCi,)t], where we have, accurate to terms of order 
(wo /vI2, 

If the las t  term of (45) can be neglected, we can express 
the precession frequency in the form 

which agrees with the precession frequency given 
At v << wo the solution practically coincides 

with the result obtained in"". 

As seen from (43), the maximum of T;' is reached 
a t  (8 v)' = w:+ w2. Then 7;' is equal to 

Thus, a maximum can be observed even a t  wo- 10' sec-', 
which corresponds for a field B - 10'-10~ G to 7;'- - (lo4-lo5) sec-'. The estimates yield v = (10~-10'~) To 
sec-', and accordingly the maximum should be observed 
a t  a temperature T -0.1-10 K. As seen from (44), the 
quantity 7,' has no maximum and decreases monotonical- 
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ly with increasing temperature. At the maximum of 
7;' the value of 7;' (at w >> w,) is 

At the specified values of w a id  wo we always have 
7-&< 7: C 2 7i1-. 

It follows from (28) that the relaxation rate T;'= 7i1/2 
in strong fields (exp@w/2 T) >> 1) increases linearly with 
increasing temperature, and consequently 7;' also has 
a maximum, but a t  temperatures lower than the maxi- 
mum of 7;'. For fields B - 10'-lo5 G, the m a x i m m  of 
7 1  is reached a t  a temperature T - 0.1-10 K. The max- 
imum of 7;' in such fields should occur a t  a temperature 
T - 10-100 K. Experiments in such fields make i t  pos- 
sible to observe muonium at a level w,- (10~-10') se~" .  
In strong fields, the relaxation time given by formula 
(28) differs by a factor of two from the value of 7;' cal- 
culated from formula (43) a t  (8 v ) ~  << wZ. In the case 
when (8 v)' >> w$j+ 3, formulas (43) and (44) go over into 
the corresponding results ofL'? We note that at high 
temperatures, in contrast toL1], w, and w, a r e  unequal 
and differ strongly a t  8 v - wo and 8 v - o. It is precise- 
ly in this region that the experimental values of 7;' giv- 
en inc1' a r e  smaller than 4 /32 v. Although in the case 
analyzed inc1] (but not considered here) the electron 
shell had an angular momentum 7/2, the qualitative as- 
pect of the effect remains unchanged and i t  can be as- 
sumed that the discrepancy between theory and experi- 
ment is due to unaccounted-for terms with o, and w. 

We note in conclusion that the theory can be extended, 
with very slight elaboration, to cases when the total 
angular momentum of the electron shell of the impurity 
center is 1/2, and the spin of the nucleus is arbitrary. 

The theory can be generalized with practically no change 
to include an analysis of the behavior of muonium in 
semiconductors. 

The authors thank B. G. ~ e i i i k m a n ,  I. I. Gurevich, 
and I. A. Malkin for useful discussions of the results. 
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