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The Green's function method is used to calculate the magnetic susceptibility ~ ( o )  of dilute paramagnets 
with allowance for the spin correlation via the phonon field. The equation obtained for X" depends both 
on the frequency distribution function and on the coordinates of the spins. It is shown that allowance for 
the correlations leads to the appearance of a "dip" on the EPR line, the magnitude of the dip being 
determined by the distribution function of the centers over the volume of the crystal. In the case of EPR 
on a "supergrating" (i.e., if the paramagnetic-center density contains a spatially-periodic component), the 
effect is not small if the wavelength of the resonant phonon coincides with the period of the supergrating. 
The depth of the dip is proportional to the spin-phonon coupling constant, and the width of the dip is 
equal to the reciprocal Wethe of the phonon. 

PA& numbers: 75.30.Cr, 75.20.-g, 76.30. - v  

1. INTRODUCTION cle approach will be formulated a s  the requirement that 

In the study of the shape of the electron paramagnetic the correlation corrections be small. 

resonance (EPR) line or  of the rate of the spin-lattice 
relaxation (SLR) in sufficiently dilute paramagnets, the 2. EPR LINE SHAPE WITH ALLOWANCE FOR THE 

direct dipole-dipole interaction between the spins does CORRELATION CORRECTIONS 

not manifest itself in the experiment. In these cases i t  Let the system under consideration be described by 
is customary to use the single-particle approximation, the Hamiltonian (for simplicity we confine ourselves to 
the mathematical formulation of which features the ne- the case S = 1/2) 
glect of the correlation, due to the spin-phonon interac- 
tion, between the different spins. The magnetic suscep- 

N 

28 = C (282+28,L,) +%'. 
tibility is in this case an additive quantity (in terms of 

1-1 

the number of spins) and is equal to Nx, , where N is the 
number of particles and X, is the magnetic susceptibility . Here 
of one particle. 

Aminov and ~ o c h e l a e v ~ "  have considered the EPR 
line shift due to spin-phonon interaction Zint, and the 
complete Harniltonian (1) in the calculations. However, 
the spin Green's functions were calculated in the lowest 
order in lint without allowance for the correlations be- 
tween the different centers, and could therefore be ob- 
tained in fact from the single-particle Hamiltonian. The 
influence of the paramagnetic spins on the acoustic pho- 
nons were considered by Al'tshuler and ~ o c h e l a e v [ ~ '  and 
by E'eddersc3' for the case of non-concentrated paramag- 
nets, and also by Elliott and  arki ins on'^' and by Hoener- 
lageC5' for paramagnetic spins with periodic structure. 
Inc2'33 however, the correlations between the spatially 
remote spins were neglected, and the results ofc4*51 
cannot be applied to spins randomly distributed over the 
volume of the crystal. 

Yet the use of the single-particle Hamiltonian in place 
of the Hamiltonian of the total system (i. e., the neglect 
of the correlations between the different spins) in the 

where a =X, Y, 2; R, , w i, and S', are  the coordinate, 
the resonant frequency, and the a-th projection of the 
spin of the j-th paramagnetic center, B t  is the spin- 
phonon coupling constant, k = (k, s), k is the wave vector, 
s is the polarization of the acoustic phonon, and a;  and 
a, a re  the creation and annihilation operators of the k-th 
phonon. Here wd depends in random fashion on the 
number j of the center, s o  that in the case of inhomo- 
geneous broadening the fluctuations of w,f determine the 
width o and the shape of the EPR absorption line. 

The external static magnetic field H is directed along 
the Z axis, and the alternating magnetic field along the 
Y axis: H, = Hl sinw t. We consider the lattice in the 
harmonic approximation: 

calculation of the EPR line shape, of the phonon spec- 
trum, o r  of the rate of the SLR calls for a justification. If H1 is small enough, then the complex magnetic sus- 

Interest attaches to the effect of the correlation between ceptibility of the system can be written in the linear- 

the spins in dilute paramagnets, in the EPR spectra, response appro~imation[~': 

and in the SLR, and also their dependence on the char- 
acter of the spin distribution. N 

xxr(m) = - 2 ~  (@) 'Gxx,  Gxr=<SxlSx>m, S. = C S.', (4) 
The criterion for the applicability of the single-parti- ~ - ,-1 
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so that X(w)=X'(w)+iX''(w) is expressed in terms of the 
Fourier transform of the time-dependent temperature 
Green's function Gxx a t  the frequency o of the external 
alternating field. The imaginary part  of expression (4) 
determines the line shape of the EPR absorption signal. 

It is seen from the definition (4) that i t  is convenient 
to introduce the spin Green's functions that connect the 
spin operators of two particles: G$'= ((s: IS:')), where 
p = + , -, 2; S, = S, *is,. For G:; we can write down 
equations of motion (see, e. g. ,["5'). The latter contain 
the mixed spin-phonon Green's functions ((s;(u, 
*a',)lS:')). We have confined ourselves to allowance 
for nine equations for the foregoing Green's functions. 
This approximation, a s  we shall show, already includes 
the correlation effects and enables us to take into ac- 
count the direct process in the SLR." The results a re  
thus valid a t  sufficiently low temperatures, when single- 
phonon processes predominate. 

Using the approximations assumed and con- 
fining ourselves to frequencies close to resonance, i.e., 

we arrive at a system of N linear algebraic equations 
for the Fourier transforms of the sought Green's func- 
tions G ;I' = G (w). Since the derivation of analogous 
equations is described in detail in the literature (see, 
e. g. ,['I, and especially Eqs. (2.25), which a r e  analo- 
gous to Eqs. (6) of our paper when (5) is taken into ac- 
count), we present here only the final result: 

where RIj. =Rj-Rj. ,  

B,*=~/ , (B ,xr iBky) ,  B-,+=-B,-', -k=( -k ,  s). 

The function Gif '  is expressed in terms of G?': 

ri' G" ((o = - G + x ( - ~ ) ,  

from which we see that, since = w * wd +a!, i t  follows 
that 

Here 

(o*op3 (2(nr)+1)Toa@*l - C B ~ Z B - , ~  
(a* o o j ) = - o k Z  

k 

The function G!'' in the right-hand side of (6) can be 
neglected alongside with JV', in view of (5). 

The first  term2' in expression (7) for a describes a 
two-quantum process, in which the passage of a spin 
between Zeeman levels is accompanied by simultaneous 
emission (or absorption) of a phonon w, and a phonon W. 

An estimate shows that near resonance, if (5) is satis- 
fied, the contribution of this relaxation mechanism is 
negligibly small in comparison with the ordinary single- 
phonon mechanism. For B,  we have used the approxi- 
mation 

where E is the spin-phonon coupling constant and No is 
the number of unit cells in the crystal. 

Thus, the EPR line broadening due to  the spin-phonon 
coupling, and the shift of the resonance frequencies a r e  
determined by the second term of (7). The contribution 
of Re a! to the EPR frequency shift was considered 
in[' 1 

The phonon broadening of the EPR line is expressed 
in t e rms  of the SLR time TI- (Irn a!)-'. Since we a r e  
considering temperatures so  low that single-phonon 
processes predominate, so that T;'< los4 Hz, the ex- 
perimentally observed inhomogeneous EPR line width is 
o_> 10' Hz >> T? for most objects. Thus, the case of 
most practical significance is 

The inequality (9) is the main condition for the conver- 
sions of the perturbation-theory ser ies  in our problem, 
a s  will be shown below. 

The reason for the broadening of o may be hyperfine 
and superhyperfine interactions. The scatter of the lo- 
cal fields and of the deformations due to the crystal-lat- 
tice defects. We denote the,shape of the inhomogeneous- 
ly broadened EPR line by g(wb - z) (z is the central 
frequency of the line), and introduce accordingly in N- 
dimensional space defined by the aggregate w i ,  w:, . . . , 
w: (o-space). However, a s  seen from Eq. (6), G_ de- 
pends also on the coordinates of the centers (R-space). 
We introduce the distribution function in the w XR space: 

so that WdwdR is the probability that the spins will land 
simultaneously in the w-space volume element dw 
= IIi=ldwi and in the configuration-space element dR 
= IIj,,d3~, (I$ W ~ W ~ R  = 1). 

The problem is thus simplified and consists now of 
finding the distribution of the solutions N of Eqs. (6) 
given the distribution function W(w, R). This problem 
can be solved if the spin-phonon coupling constants a r e  
small  enough to  admit of a corresponding iteration se- 
ries. Assuming that the smallness of the higher-order 
terms in the iteration ser ies  is a sufficient condition 
for i t s  convergence, we write down the solution (6) after 
the f i rs t  iteration step and sum the result in accordance 
with (4) over j and j'. For the Green's function of the 
total spin we obtain 
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The superior bar in (10) denotes averaging over w, 
while ( 0  a), denotes averaging over the configurations, 
The second term in (10) reflects a new effect-spin cor- 
relation via the phonon field. The iteration series (10) 
converges if T;' is small enough. In fact, averaging 
over o in (lo), together with condition (9), makes it 
possible to use for G,"'(w) the pole approximationc6' 
(i. e., Im (l/S2?) - r6(w - od)). After integrating with 
respect to w, the first  term in the iteration series (9) 
is equal to d ( w )  = const -g(w - G) - l / o  and the second 
term is equal to G!"(w)-Ti1/$. The succeeding terms 
decrease in proportion to  (T;'/U)~. 

3. RANDOM DISTRIBUTION. ZEEMAN 
FREQUENCIES INDEPENDENT OF THE CENTER 
COORDINATES 
r - 
1 

Let 

(Vo is the volume of the crystal). This case is trivial 
in the sense that, a t  the accuracy a t  which Eqs. (6) were 
obtained, the result does not differ from that dictated by 
the single-particle approach, i. e., the EPR signal is an 
exact replica of the distribution function of the resonant 
spin frequencies. This conclusion follows from an anal- 
ysis of the equation for  the spatial Fourier components 

and is too cumbersome to present here. The absence 
of correlation effects is a consequence of the satisfac- 
tion of two conditions: 1) multiplicativity of the distri- 
bution function, and 2) randomness of the impurity dis- 
tribution over the crystal volume. 

The fact that no multiparticle effects manifest them- 
selves in the EPR line shape in the case of a random 
uncorrelated distribution of the impurities in the volume 
does not mean, however, that the single-particle ap- 
proach is altogether valid under these conditions. In- 
deed, let us dwell on the problem of relaxation of N 
paramagnetic spins which do not interact directly with 
one another. In the N =  1 approximation, standard per- 
turbation theory yields for the rate of the direct pro- 
cess (S=$)C71 

where (n,) = n  (o,) is the Planck factor. On the other 
hand, the relaxation of the spin packet that make up the 
inhomogeneously broadened line is determined by the 
imaginary part of the poles of the Green's f~nct ion,"~ 
and according to (6) and (7) we can also obtain T;' from 
(ll), but now (n,) is the statistical mean value of the 
operator n, (3) over the total Hamiltonian (1). 

Let us estimate (n,). To this end we use the results 
of the preceding paper,[81 where we obtained the phonon 
correlation function for a random distribution of the 
spins over the volume of the crystal 

(12) 
Here II,(w) and r,(w) a r e  the real and imaginary parts 
of the polarization operator, and we obtain for s=$ 
and o > 0, using the approximation (8), 

whereg(w - G) is the line-shape function and C =N/No 
is the spin concentration. Thus, (n,) and (S,) can be 
jointly obtained from the solution of the system of in- 
tegral equations 

' i  <2nr+l) - - <a-a-2; er-cr*+ >. do. 
2n -- 

(15) 

The system (15), (16) can be approximately solved by 
a procedure similar to that described in Zubareds re- 
view,[g' by substituting in the right-hand sides the cor- 
responding mean values for the extremely small spin- 
phonon coupling constant. Replacing in this manner 
(S,) by - ($) tanh (/3o/2) in (13) and (14), we substitute 
(12) in (15). If g(w- 5 )  is a Lorentzian of width o and 
y " E C tanh (po/2) >> 02/w,, then calculation of the in- 
tegral yields 

where w i  is an insignificantly renormalized frequency 
of the phonon k. In the case of the opposite inequality, 
ywk<<02, the result hardly differs from the Planck fac- 
tor  2n(w,)+ 1 dictated by the single-particle approach. 

Thus, the multiparticle effects (the concentration ef- 
fects) can appear in the SLR even for a random distri- 
bution of the impurity centers, since the condition yw, 
>>u2 can be easily reached a t  reasonable values of E ,  

C, and T. The relaxation time becomes dependent on 
the detuning of the microwave and is twice a s  long a t  the 
center of the EPR a s  on the wing. 

4. MANIFESTATION OF FREQUENCY-SPATIAL 
CORRELATION I N  THE EPR LINE SHAPE 

Assume that all N spins a r e  of the same sort, and 
that the inhomogeneous broadening of the EPR line is 
determined by the interaction of the latter with defects 
in the crystal-lattice structure. It is assumed that the 
spins do not distort the field of the defects and a re  ran- 
domly distributed over the volume, i. e., 

where W,(w, R )  is the N-dimensional distribution func- 
tion of the frequencies a t  a given configuration of R and 
W,(R)dR is the probability of realizing the latter. Then, 
at fixed positions of the defects, the resonant frequency 
of the j-th center depends only on the proper coordinate 
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R . We regard w i  = w0(Rj) a s  a random scalar field; 
W;(W;, . . . , w i )  is the N-dimensional distribution func- 
tion that defines this field. In the approximation used 
to obtain (lo), i t  suffices to take into account the one- 
dimensional and two-dimensional distribution functions 

w?) (%', R j ;  oaf, Rr) = S . . . S , d g ~ ,  (a, R). - t"#l,P 
N-1 

The functions w!', i S N  a r e  subject to the consistency 
condition, i. e., W"' depends only on the coordinates of 
i centers.c10' 

We confine ourselves to the case of a homogeneous 
isotropic field wo(R) (physically this means macroscopic 
homogeneity and isotropy of the sample), so  that 

w!" (a(, R,; woi', R,.) =w? (oo2, od', Rjj*), 
- - 

the average frequency w:= w does not depend on the co- 
ordinate, the second moment w m  = B f j .  depends only 
on the distance Rjj , = I R , - R,, I between two centers, 
and we assume that the interaction of the spins with the 
defect leads to a normal distribution of the frequencies. 
 hen^'" 

Since we a r e  interested in the qualitative aspects of 
the problem, we approximate the correlation coefficient 
K j j .  by a very simple piecewise-smooth function3': 

The correlation radius R, introduced in (19) is of the 
order of the average distance between the line-broaden- 
ing defects.* Using (18) and (19), let  us estimate the 
correction G'" due to the second term in (10). Substi- 
tuting (8) in (10) we obtain after summing over k in the 
isotropic Debye model 

where v is the average speed of sound in the crystal 
and w, is the Debye frequency. 

In the high-temperature approximation (pw << 1) the 
averaging of the factor (s;) (S:')/O! S2i ' is carried out 
for an arbitrary K,, ,  , after which the results can be 
averaged over the configurations that realize the ran- 
dom distribution. The integral over the volume of the 
crystal is taken in general form subject to the addition- 
al requirements 

The first  means that the correlation radius is smaller 
than the wavelength of the resonant phonon. At micro- 
wave frequencies - loi0 Hz and a t  v - 6 X  lo5  cm/sec this 
condition becomes a restriction on the concentration of 
the broadening defects, Ndel /VO >> loi5 ~ m - ~ ,  which is 
perfectly reasonable. The second requirement means 
in fact under EPR experimental conditions o << i;j and is 
always satisfied. 

The result of the calculations can be represented in 
the form ( 1  = 2) 

G:: is determined by the first  term of (10) and is pro- 
portional to g ( w  - Z) (in this case-Gaussian). The cor- 
relation function reaches a maximum at the line center, 
where i t  is negative. In addition, G"' is proportional 
to E/U, and also to the mean number of the spins in the 
volume of the sphere with the correlation radius 
~ T N R ; / ~  Vo. 

Thus, if a spatial-frequency correlation is realized 
and the spin-phonon coupling constant is large enough, 
one should expect a "dip" to appear in the center of the 
inhomogeneously broadened EPR line. The magnitude 
of the effect is proportional to the reciprocal tempera- 
ture p= K / k ,  T and can be determined in principle from 
the temperature dependence of the shape of the inhomo- 
geneously broadened EPR line. The relative value of 
the maximally expected effect, according to (21), is 

Let N / V o =  10i9 cm-', (w/w,)~ E/U= T;'/u = lo-', T = 4.2 
K, w = 2 r .  loi0 Hz, then G(~' /G 'O'  = - 3 . loi7 R: . Conse- 
quently, the effect is observable if Re= 0.7.10" cm, 
i. e., if the paramagnetic centers, the distance between 
which is 5 100 A ,  have frequencies correlated in ac- 
cordance with (18), then the EPR signal intensity a t  the 
center of the line will decrease by 30% at T = 4.2 "K and 
will be restored with increasing temperature. 

5. ONE-DIMENSIONALLY PERIODIC DISTRIBUTION 
OF CENTERS 

In this section we neglect the correlation between the 
resonance frequencies of two spins, so  that, just a s  in 
the case of the random distribution (Sec. 3), 

Now, however, we consider a parametric-center dis- 
tribution function in R space in the form 

A distribution close to (23) can be realized in holograph- 
i c  gratings when the impurities introduced into the crys- 
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tal a r e  capable of going over from a nonparamagnetic 
state to a paramagnetic state (or vice versa) under the 
influence of laser  radiation.["' In this case a is the 
holographic-grating constant, and the modulation factor 
m is determined by the effectiveness of the realignment 
of the centers. Another obvious example of realization 
of (23) is a one-dimensional supergrating with period a. 
In either case, p (Z  ) need not necessarily be a harmonic 
function. It is more correct to regard (23) a s  the zeroth 
and first  terms of the expansion of p(Z)  in a Fourier se- 
ries. 

We proceed to an analysis of G:',:. The multiplicativ- 
ity of W permits an immediate averaging over the fre- 
quencies. As a result 

does not depend on the number of the centers and is 
taken outside of the sign of summation over j and j'. 
The remaining factor exp(ik R,, , ) can be easily aver- 
aged with a weight (23). After summation over j and j', 
we get 

N (x exp ( k ~ ~ , )  ) = 2nNb (k . ) I (k , )  [46 (k.)  +mb (ka+kl) +m6 ( k k - k L ) ] ,  
I' 

(24) 
where k ,  = 2n/a. Expression (24) was obtained in the 
limit N, No- m, N/No=C = const. The f i rs t  term in the 
square brackets of (24) corresponds to a random dis- 
tribution of the impurity centers and make no contribu- 
tion to G$;. The two other terms in (24) show that the 
correlation between the spins present in the one-dimen- 
sional supergrating is due to two phonons (six, if ac- 
count is taken of the three polarization branches) that 
propagate in both directions along the Z axis of the 
crystal and whose wavelength is the constant of the su- 
pergrating. 

Direct substitution of (24) in (10) leads to a divergence 
as w- wb because we have s o  fa r  not taken into account 
phonon scattering not connected with the considered 
centers in the crystal. Addition of terms that take into 
account the interaction in the phonon system to the Ham- 
iltonian (3) of the ideal harmonic grating leads to a 
smearing of the pole in the expression for J%, so  that 
w, / (d-  w:) in (10) is replaced by the factor 

[ (02-o:) /o ,+i2r , (ok)  1-1. (25) 

The damping r,(w,) depends on the magnitude and on 
the mechanism of the phonon interaction with the lattice- 
structure defect. Thus, if the crystal is close to ideal 
and the mass defect and the local deformations due to 
the prescence of paramagnetic impurities can be ne- 
glected, then the phonon mean free path is determined 
at low temperatures by the sampie dimensions, i. e., 
r,(w,)= 2r  v, vil/'. In other cases r,(w,) can substan- 
tially exceed this value. Phonon scattering by point de- 
fects and dislocations was considered intlZ1. 

Substituting (25) and (24) in (10) we obtain ultimately 

where 

Here v , ,  and v ,  a r e  the velocities of the longitudinal and 
transverse acoustic oscillations. The effect due to the 
second term in the square brackets of (26) becomes sub- 
stantial when the two conditions w =  G and w=. w, a r e  
satisfied. Whereas the f i rs t  condition denotes simply 
resonance at the Zeeman frequency, the second is the 
condition w,,,~ w that the microwave mode be a t  reso- 
nance with the acoustic mode, whose wavelength coin- 
cides with the constant of the supergrating. Just as in 
the case of correlation between resonant frequencies of 
the spins, this effect can be observed in the form of a 
dip on the EPR line. The relative depth of the dip in 
the case of exact resonances w = Z = w, is 

and in the case, say, C = lo-=, w, / r b ( w )  - lo3, m - lo-' 
i t  can reach several dozen percent at typical c and o 
when c/o- lo4 and T =4"K (v, i s  the multiplicity of de- 
generacy of the acoustic branch s). 

If g(w - Z) is a Lorentzian with width o, then expres- 
sion (26) can be written in different form: 

The quantity x, = 3~~ c~,w,mC I (S,) 1 now plays the same 
role at the saturation factor, i. e., the EPR signal is 
saturated resonantly at the frequency w, of the super- 
grating even at low microwave powers. If the phonon 
lifetime is 7, = r;:(w,) >> Tz = 2/o, then the dip is narrow 
and its width is A-  27;' << o. The depth of the dip is de- 
termined by the spin-phonon coupling, and the position 
is determined by the period of the supergrating. 

From the point of view of the experimental verifica- 
tion of the theory, the authors regard a s  the most prom- 
ising an investigation of EPR with holographic grat- 
ings," since the condition w = w, is reached at typical 
values w ,,,, = 2n. 10'' Hz, v,  = 6 x  lo5  cm/sec, and a . 
= 6000 hi .  We note that by observing the dip of the EPR 
line for supergratings in sufficiently pure samples with 
small phonon damping, it is possible to determine the 
sound velocities of the longitudinal and transverse 
acoustic mode v, = a  w,,,, /2n with practically the same 
accuracy with which w,,,, and a can be measured. 

6. CONCLUSION 

Spin correlation via the phonon field causes, gener- 
ally speaking, the single-particle approach to be invalid 
in the calculation of X ( w )  o r  TI (Sec. 2). In the case of 
an inhomogeneously broadened EPR line, the correla- 
tion corrections contain the factor (c/o) c tanh (~w/2) ,  
which makes X(w) non-additive (in the number of spins) 
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and causes TI to depend on the concentration (Sec. I), 
and also gives r i s e  to new temperature dependence of 
these quantities. An estimate of these effects has  shown 
the following: If the centers  are randomly distributed 
and if a correlation exists between the spatial and fre- 
quency distributions, the maximum attainable depth of 
the dip in the EPR signal is of the order  of 10% at R ,  
= 70 di and N/v ,=  loi9 cm-', at a n  inhomogeneous EPR 
line width u= 1 Oe, and at a spin-lattice relaxation ra te  
T;'= lo3 Hz. The periodic distribution of the centers  
over the crystal  leads to a depth of the dip on the order  
of several dozen per  cent at the usually realized EPR 
parameters (see Sec. 5) and at a relative concentration 
mC - of the periodically distributed centers. The 
spin-lattice relaxation t ime depends, when the multi- 
particle characterist ics  are taken into account, on the 
microwave detuning and its values f rom the center and on 
the wing of the EPR signal can differ by a factor  of two. 

Particular interest attaches to the investigation of 
EPR with holographic gratings made up of paramagnetic 
impurities. If the wavelength of the resonant phonon co- 
incides with the period of such a grating, a strong cor- 
relation appears between spins separated by distances 
on the order  of or smal ler  than the phonon mean f r ee  
path. This correlation is realized via phonons with 
wave vectors directed along the axis  of the supergrating. 
One can expect holographic supergratings t o  act under 
conditions of resonant pumping as acoustic analogs of 
lasers, and to serve as a source of coherent hypersonic 
waves. 

The authors thank M. F. DeIgen fo r  interest  in  the 
work and for  a discussion of the results. 

''TO take Raman relaxation processes into account it would be 
necessary to solve equations for higher Green's functions of 
the type ((S$ak +a, l ~ d ' ) )  . 

' ' ~ n  expression for O{ is  given inc8'. 

 he law governing the decrease of the correlation function 
with distance is  determined by the actual model of the inter- 
action of the spins and defects; Eq. (19) should be regarded 
as a rough but convenient method of representing, in the 
form of a polynomial, functions of the type exp (-R$~,/RE), 
in terms of which K(Rjj,) is  expressed. 

 he considered correlation (frequency-spatial correlation) 
is  determined exclusively by the random field of the lattice 
defect and does not depend on the paramagnetic spins; how- 
ever, a s  seen from (lo), it causes the spin Green's functions 
G"' to be finite at j* j ' .  

5 ' ~ t  f o U o ~ s  from the communication of Bishop, Strom, and 
Taylor, Ci5' reporting EPR of photoexcited localized cases in 
amorphous arsenic, that in amorphous semiconductors one 
can obtain supergratings wfth large spin concentration. 
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