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With irreversible relaxation taken into account, a relatively complete and detailed classification is 
presented for the sets of responses, such as optical induction or photon echo, which appear in large 
samples of matter as a result of multipulse excitation. Allowance is made for the responses that appear 
during the intermediate stages of the excitation process and for the responses after the end of the 
excitation process. The excited samples are regarded as quantum systems consisting of a large number of 
identical noninteracting particles with a discrete nondegenerate finite equidistant energy-level spectrum 
describable with the aid of energy-spin concepts. The operator of the interaction of the field of the pulses 
is linear in the energy spin. The transverse and longitudinal irreversible relaxations are accounted for by 
phenomenological spin operators defined by time-dependent differential equations whose averaging yields 
equations of the Bloch type. A new matrix method of investigating the solutions of these equations is 
developed. Some examples of possible technical applications of the relations obtained in this paper are 
discussed. These relations, in particular, can help choose the most convenient sequences of exciting pulses 
for the measurement of the times of transverse and longitudinal irreversible relaxation, and can also be 
useful in the development of spin, acoustic, and optical memory elements. 

PACS numbers: 42.65.G~ 

A natural continuation of Dicke's ideasC'' w a s  the the- 
o re t ica l  prediction of the photon-echo phenomenon.[21 
Photon echo in ruby w a s  observed experimentally in a 
number of studies.C31 A relatively detailed theory of 
photon echo was  given int4] on the b a s i s  of the fo rmal i sm 
developed by Dicke.[" A photon echo is a sharply direc-  
tional coherent beam (spontaneous coherent  emission)  
that contains information on the dynamics of optical 
quantum sys tems  and on the external  genera tors  that il- 
luminate the medium, and appears  a f te r  two l a s e r  pulses  
a r e  applied to a quantum An analogous sit- 
uation a r i s e s  in  the c a s e  when quantum s y s t e m s  a r e  ex- 
cited with hypersound and terasound ( v -  10" ~ec- ' ) , '~ '  
and a l s o  i n  the c a s e  of a combination of optical and 
acoust ic  exciting pulses.[8' 

Multipulse spin-echo excitation h a s  aroused consider- 
able theoretical and experimental interest."-"' It ap- 
p e a r s  that multipulse excitation should a l s o  b e  of inter-  
e s t  in  the region of photon and phononC51 echo, a l l  the 

m o r e  s ince experiments  have already been performed 
on three-pulse excitation of s ignals  of the photon-echo 
type.c121 In addition, the spiked s t r u c t u r e  of a giant 
l a s e r  pulse is a typical example of multipulse excita- 
tion.[13' This  h a s  made necessary  a detailed theory of 
multipulse excitation, par t icular ly with allowance f o r  
i r revers ib le  relaxation, o r  a t  l eas t  a n  initial t reatment  
of the s imples t  and most  graphic case.  Such a theory 
is needed a l so  f o r  the analysis  of problems connected 
with the development of spin memory  elements.["' 
Similar  memory  elements ,  using the phenomena of pho- 
ton and phonon echo, a r e  a l s o  possible. 

Jaynes and  loom["' have considered different general  
mat r ix  methods f o r  the investigation of the solution of 
modified Bloch equations. They have a l s o  made the 
f i r s t  attempt, to our  knowledge, to analyze the general  
c a s e  of excitation of spin s y s t e m s  by a n  a r b i t r a r y  num- 
b e r  n pulses  without allowance f o r  i r revers ib le  relaxa-  
tion. The methods considered in the i r  papers ,  however, 
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did not lead to concrete final results on n-pulse excita- 
tion and only preliminary remarks were made on this 
subject. Gryaznov and ~ h a s t n o v ~ ' ~ '  have considered 
theoretically multipulse excitation of photon echos with 
the aid of a single particular sequence of pulses, with- 
out allowance for irreversible relaxation. An approxi- 
mate theory of irreversible damping of echo signals ex- 
cited by certain specific multipulse sequences, with ac- 
count taken of the Hamiltonian of the spin-spin interac- 
tion, was considered inCQ'. 

The first  indication that photon echo can be described 
by equations of the Bloch type is contained inc4]. It ap- 
pears that it is precisely such a phenomenological the- 
ory of multiple excitation of echo signals, with allow- 
ance for irreversible relaxation, which should be the 
initial stage of the description, since it is simplest and 
most graphic, and admits of exact solutions, whereas 
an exact solution of this problem with allowance, say, 
for the Hamiltonian of the spin-spin interaction of a 
large number of particles, is utterly impossible. Be- 
sides, the Bloch equations and their solutions a re  highly 
symmetrical and a re  very simple. 

It is obvious that to obtain detailed final results in the 
case of the excitation of spin systems by general se- 
quences consisting of an arbitrary of n pulses i t  would 
be necessary either to supplement the methods consid- 
ered inc7'Q1 or to use a different approach. In the pres- 
ent paper we develop a new general matrix method that 
leads to the indicated goal. 

The results obtained in the present paper allow us to 
make an important physical conclusion: multipulse ex- 
citation of quantum systems is of great physical interest 
precisely from the point of view of the influence of the 
irreversible relaxation on the echo signals, since these 
numerous responses all depend in general differently on 
the time of the irreversible relaxation, and consequently 
each of them should carry new information on the pro- 
cesses and mechanisms of irreversible relaxation. In 
this paper we have adhered to the style of Jaynes and 
  loom,^" in order to make our results readily applica- 
ble also to spin echo. 

1. SOLUTION OF FUNDAMENTAL EQUATIONS 

The object of the investigation in the exposition that 
follows will be a system of N ( N =  1, 2, . . . ) identical 
noninteracting particles with a discrete multilevel equi- 
distant nondegenerate energy spectrum. A generaliza- 
tion of the Dicke theory['' was carried out by Solovarov 
and ~ a ~ i b a r o v . ~ ' ~ '  In this paper we investigate only one 
case out of all those considered incL5', namely transi- 
tions of the dipole type between neighboring levels of 
each particles. Just a s  inc15', we shall describe the 
spectrum of each particle with the aid of the concept of 
the energy spinc16' of the corresponding quantity R (R 
= ,  1 ,  2, . . . ) Using the energy-spin concept, we de- 
scribe the considered system with the aid of a static 
Hamiltonian in the ~chrzd inger  representation 

Here wo is the angular frequency corresponding to a 
transition between neighboring levels of unperturbed 
particles, wo+ Awj is the frequency of the perturbed j- 
th particle, while Rjl, Rjz, and R j J  a r e  the operators 
of the cartesian components of the energy spin of the j- 
th particle, o r  more simply speaking, the usual well- 
known and well-investigated spin operators. In the ex- 
position that follows we shall use the following univer- 
sally employed complex linear combinations of spin 
operators: 

It is obvious that at the instant of time t the system 
(1) can be in a thermodynamic-equilibrium state de- 
scribed by a density matrix p in the Schrtidinger repre- 
sentation 

where t; = - ticuo/kB T, k ,  is the Boltzmann constant, and 
T i s  the temperature. Assume that, starting with the 
instant of time t = 0, the system (1) is acted upon after 
certain time intervals by n periodic coherent resonant 
pulses from several external generators of different 
type (optical, acoustic, etc. ) with frequency wo. 

To describe the system (1) on which n pulses act we 
introduce phenomenological spin operators Rj(y),h.lr(t), 
specified by the following fundamental equations 

- 
aR,m phen ( t ) -  ($1 , 

at 
H1.19 phsn ( ~ ) R J ( I ' )  phen ( t )  

1'-O.*l 

1-171 + [* - Z U O ( m ) ] - ~ ~ ( ~ ) ~ ~ ( 0 ) .  ta0, 
m-l To ,  

where Tz and TI a r e  certain numerical parameters, 
Uo(m)= U-(t- t,)- ~ + ( t -  t,), to, and t, a re  the respec- 
tively instants of the beginning and end of the action of 
the m-th pulse on the system (1) (with to,= O), and u_(x) 
U + ( x )  a r e  asymmetrical unit step functions of real  vari- 
able."" The matrix elements H::, phen(t) contain quan- 
tities that take into account the wave character and the 
amplitude of the field, the constants that characterize 
the interaction of the field with the particles, the pa- 
rameters TI and T2, a s  well a s  the sums of the step 
functions that describe the multiplicity of the pulses. 

We call attention to the fact that averaging (taking the 
trace) of the left-hand and right-hand parts of Eqs. (4) 
with the density matrix (c) yields equations of the Bloch 
typecL8' for the mean values of the components of the en- 
ergy spin. We note in this connection that it follows 
from the general theory of the equations of motion for 
mean values of functions of spin operatorscLQ1 that in 
real  approximations the Bloch equations a re  valid not 
only for the spin R = 3 ,  but also for  the spin R = 1. 
After averaging (4), the parameter Tz acquires a physi- 
cal meaning of the time of irreversible relaxation of the 
mean values of transverse components of the energy 
spin, while T1 acquires the physical meaning of the time 
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of irreversible relaxation of the mean value of the lon- 
gitudinal component of the energy spin. 

.- 
~ a n t m a k h e r ~ ~ ~ '  has shown that the solution of Eqs. (4) 

can be written in the form 

I 

' + PI? phen (f t')Bu.~(t')dt', t30* 
0 1 -@,*I 

1-17'1 
t,(7'1(t)- Ru~')phen' (0) r 

n-1 

- Rjc1) phen (0) ~Rjtr), 7, 'f1=Ov * 1, 

where the third-order matrix 6agn(t, t') is by way of 
an evolution operator and is a r n a t r i ~ a n t ' ~ ~ '  usually writ- 
ten in the form of the universally employed symbolic ex- 
ponential with the aid of a Dyson chronological operator 
for the time-dependent perturbation theory series.c21' 

Using the properties of step the proper- 
t ies of the m a t r i ~ a n t , ~ ~ ~ '  and the properties of the solu- 
tion (5), we can write a final expression for Rj(,,)ph.n(t) 
a t  the instants of time t >t ,  (t, is the instant when the 
action of the last  n-th exciting pulse on the system (1) 
terminates) in the following form: 

tat., 
7.-0, *1; m--p+l, p+2,. . . , n. (6) 

In the right-hand side of (6) the operators a re  only the 
quantities Q. In addition (6) contains elements of the 
matrices A'"'. The expressions for the elements of the 
matrices A'"' and for the operators Q can be written in 
the following symmetrical form: 

In (6) and (7) we used the following notation: 

where aj(,, a re  complex numerical quantities that do not 
depend on the time and take into account the wave char- 
acter and the field amplitude of the m-th pulse, and 
also constants that characterize the force of the inter- 
action of the field with the particles. 

By investigating (5) with the aid of the properties of 
step  function^^"^ and the properties of the matrizantCz0' 
for instants of time t that satisfy the condition t, 3 t 3 0, 
we can show that in the general case relation (6) is valid 
for  instants of time t satisfying the condition to,+, 3 t 3 t, 
(v  = l ,2 , .  . . , n - I), provided n in (6)-(8) is replaced by 

v. Consequently, this method can be used to investigate 
those responses of the system (1) which appear in the 
course of i ts  multipulse excitation, with allowance for 
irreversible relaxation, and which occur (in time) be- 
tween the exciting pulses. It is this method that we 
shall use in the exposition that follows. 

2. ECHO-SIGNAL POWER WITH ALLOWANCE FOR 
IRREVERSIBLE RELAXATION 

We consider the case when the pulse acting on the sys- 
tem (1) constitute traveling plane waves. In this case 
the quantities Oj(,) (8) a re  the same for all particles,c6' 
Ojcm) = 8, (m = l ,2,  . . . , n), and the quantities aj(,) in (8) 
take the form 

a,(,,=i3, exp (ik,r,), Ikml=wolvm, m-1, 2, .  .., n, (9) 

where lq,, is the wave vector of the field of the m-th 
pulse in the sample, v ,  is the absolute value of the 
phase velocity of the propagation of the m-th pulse in 
the sample, r, is the radius vector of the mass center 
of the j-th particle, 0, is a complex constant that takes 
into account the initial phase of the field of the m-th 
pulse and does not depend on the index j . 

We consider the radiation of the system (I), due to 
the spontaneous transitions of the dipole type between 
neighboring levels of each particle. The coherent part 
of the power of this radiation in a unit solid angle in the 
direction of the wave vector k a t  the instant of time t 
>t, can be obtained, when account is taken of (3) and (6), 
from the formula 

I* phen (k. t )  = l o ( k ) C  exp[ik(r,-r,) ] 

Here Z2 phen(k, t )  is the coherent part of the radiation pow- 
e r  (this part is proportional to N~ - N), ZO(k) is the pow- 
e r  that an isolated two-level (with spin R = +) particle 
in an excited-state radiates into a unit solid angle in the 
direction of k,"' and v is the absolute value of the phase 
velocity of the wave field of the spontaneous radiation of 
the particle system. With the aid of (6) we can easily 
investigate relation (lo), even without writing it out in 
detail. It is obvious that in the general case, in order 
for the coherent part of the radiation power to reach 
maximal (macroscopic) values, i t  is necessary that the 
formula for  Z2 ,,,(k, t) have some terms independent of 
the indices j and I in the expression that follows the 
two symbols of summation over the particles. In addi- 
tion it is necessary that the exponential factors that con. 
tain the relaxation times To and T, and describe the 
damping of these terms with time, t a t , ,  be close to 
unity. All this takes place when, in the general case, 
the following conditions a re  simultaneously satisfied 
(for any one fixed aggregate of the values from y,, 
Y z ,  . . ., yn-,= 0, * 1): 

2 
exp [ - - (t-t.+iy.~r.+~y,~n+. . .+~y.-,~r.-~) ] = 1, 

Tt 
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where a t  n = 1 we should have t = tl , k = k, , exp[- 2( t 
- t l ) / ~ 2 ] =  1, and the exponential containing T1 should be 
identically equal to unity. It must be borne in mind that 
if a set  of values for y,, y,, . . . , y,-l is chosen in one 
of the relations ( l l ) ,  then only the same set  of values 
can be substituted in all the remaining relations (11). 

We note that relations (11) were obtained under the 
assumption that the following conditions a re  satisfied: 

In this case it is possible to disregard, as  we did in 
( l l ) ,  the terms containing factors of the type 1 
- exp(- r, /T,) ( p  = l , 2 ,  . . . , n)  and present in (lo), since, 
first, they a re  not characteristic, second, the behavior 
of these factors is in a certain sense the opposite of the 
behavior of the exponential in ( l l ) ,  which contains the 
time of the irreversible relaxation TI ,  and third, these 
factors can be close to zero when relations (11) and (12) 
a r e  satisfied. 

From relation (11) and from all the foregoing argu- 
ments i t  follows that n-pulse excitation causes the sys- 
tem (1) to emit superradiant coherent signals of the echo 
and free-induction type, characterized by appearance 
times and by wave vectors satisfying the relations (11). 
The damping (fall-off) of these signals in the course of 
time ( t  2 t,) a s  a result of the irreversible relaxation is 
described by exponential factors that contain the relaxa- 
tion times T1 and T2 and enter in (11). It follows from 
(10) that the foregoing signals can be amplified to a def- 
inite limit o r  weakened until they vanish completely, by 
varying the quantities e l ,  O,, . . . , O n ,  that take into ac- 
count the powers and durations of the exciting pulses. 

Relations (11) contain the condition t 2 t,, and conse- 
quently relations (11) determine the responses of the 
system ( I )  to n-pulse excitation that appears after the 
last n-th exciting pulse. 

If 7, i s  less  than any of the remaining time intervals 
between pulses, then the echo signal that is least in- 
fluenced by the existence of the process of irreversible 
transverse relaxation described by the time T2, cor- 
responds in (11) generally to the condition y l =  1, y2= y3 
= . . = 7,-, = 0. This response appears a t  the instant of 
time t = t,+ r1 with a wave vector k =  k, + k, - k, and atten- 
uates (falls off) within a time t 2 t, in proportion to the 
factors 

t-t,+r, T~+T,+. . .+T"-, 
exp -2- ( T, ), exp(-2 TI i .  

The influence exerted on this response by the irreversi-  
ble longitudinal relaxation described by the time T1 is 
seen here to be relatively strong. At n 2 3 this response 
has a maximal power, if the conditions O1 = O2 = n/2, O3 
= 8,= . - . = On-,= n, O n =  n/2 a r e  satisfied. The fact that 
such a response should really exist (be observable) can 
be seen from the following simple physical considera- 
tions. 

After the f i rs t  90" pulse, maximum transverse com- 
ponents of the energy spin a re  produced, and conse- 
quently irreversible transverse relaxation should act in 
the time interval T, between the first  and second pulses. 
In the same time interval, the longitudinal components 
of the energy spin is equal to zero, so that the irrever- 
sible longitudinal relaxation should not act. The ex- 
pressions agree with this fact, since they contain damp- 
ing with a relaxation parameter T, in the time r1 and no 
damping with the parameter TI. After the second 90" 
pulse and the succeeding 180" pulses, a maximum lon- 
gitudinal component is produced, and consequently ir- 
reversible longitudinal relaxation should act in the in- 
tervals T,, r3,.  . . , Tn-, between the second and third, the 
third and fourth, etc. In the same intervals, the trans- 
verse components a r e  equal to zero, and consequently 
no irreversible transverse relaxation should act. The 
obtained formulas agree with this, since they contain 
damping with aparameter  Ti in the time T 2  + r3 +. . a +  Tpl 

and no damping with parameter T2. Finally, after 
-- - 

after the last (n-th) 90" pulse, maximum transverse 
components appear, and consequently transverse re- 
laxation should act, and the longitudinal component is 
equal to zero, and consequently the longitudinal relaxa- 
tion should not act. The obtained formulas agree with 
this, since they contain damping with the parameter T2 
in a time t - tn 0 and no damping with the parameter 
TI. This echo signal has no damping with the relaxation 
parameter T,, with time intervals r2, r3,. . ., rn-~ ,  but 
does have damping with the parameter T2 with a time 
interval r l ,  and consequently the damping of this signal 
with parameter T2 does not depend on the number of ex- 
citing pulses. We propose to use this echo signal for 
observation under multipulse excitation, when T2 is 
very small and T1 >> T2, and it is necessary to eliminate 
the influence of the irreversible transverse relaxation. 

In the echo signal we encounter s o  to speak a "length- 
ening" of T, to T, at T2 << TI. We note that at n = 3 this 
is the ordinary stimulated echo (SE) signal, while a t  n 
> 3 it can be regarded a s  the multipulse analog of stim- 
ulated echo (MASE). Naturally, MASE can also be used 
to measure TI .  We note that MASE, unlike SE, van- 
ishes if one of the 0, ( v =  3,4,. . . , n =  1) is equal to n/2, 
i. e. ,  if one of the intermediate v-th pulses is a 90" 
pulse. It follows therefore that if an additional fourth 
90" pulse is applied in the time interval T,, then the 
signal corresponding to the ordinary SE and appearing 
at a time TI after the last  exciting pulse, vanishes. We 
note that at O1 = 8, = n/2, 8,= 8,= - . . = n, 0, = n/2 there is 
no MASE in the time interval between the pulses of this 
n-pulse exciting sequence. 

One of theecho signals which is least effected by the 
existence of the irreversible longitudinal relaxation de- 
scribed by the time T1 corresponds in (11) in the gener- 
al case to the condition 

when n i s  odd and to 
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when n is even. This response appears at  the instant 
of time 

with a wave vector 

This response attenuates (falls off) with time in propor- 
tion to the factor 

The exponential that contains T1 is equal to unity in this 
case. The influence of irreversible transverse relaxa- 
tion described by the time T, on this response is seen 
to be the largest. This response has maximum power 
if the conditions 8, = ~ / 2 ,  8, = 8, = . . = O n =  r are  satis- 
fied, but this is none other than the usual sequence of 
the Carr  and Purcell type,[81 and consequently, this 
echo signal can be used to measure the time Tz. The 
fact that such a response really exists can also be dem- 
onstrated with the aid of approximate simple physical 
considerations, analogous to those used for MASE. We 
note that the damping of the echo signal with T1 does not 
depend on the number of exciting pulses, since there is 
no such damping altogether for arbitrary n. 

We note also that a t  no responses is there any damp- 
ing with a parameter TI with changing running time t 
- t, 2 0 in contrast to the damping with the parameter 
Tz 

In addition, after the n-th pulse there exists a free- 
induction signal that is altogether independent of T, at 
the initial instant of time, i. e., this signal can be ob- 
served even under the condition T1 > T~ + r2 +. . . + T,-~ 

>> T, . This does not take place for echo signals, since 
the maximum intensities of the echo signals are  always 
decreased as  a result of the Tz relaxation. 

We call attention to the fact that the n-th exciting 
pulse is followed by responses that do not agree with the 
simple physical considerations analogous to those ad- 
vanced for MASE. 

We note that the irreversible relaxation processes 
have little effect at  t >  2tn ,  for in the case of our series 
no responses appear at all at these times. 

If the sequence of exciting pulses is such that all the 
intervals between these pulses are  equal to zero (7, = T, 
-... - = = O), and all these pulses a re  different in all 
other respects, then the maximum number M?' of re- 
sponses is determined by the relation 

These responses do not differ from one another in 
their appearance time, since they all appear at t = t ,  
and a r e  free-induction signals. However, if there a re  
many different spontaneous-emission modes in the sam- 

ple, then all these signals will differ from one another 
in the propagation direction. We note that in this case 
all the terms of (10) a r e  realized, since the number of 
all the essentially different terms in (10) is also equal 
to 3"-'. There a r e  no "ghost" echo signals[221 in this 
case. 

For one common sequence of exciting pulses, the 
maximum total number M'" of responses, with allow- 
ance for the echo signals that appear in the interval be- 
tween all pairs of neighboring exciting pulses, under 
the  condition^,^^^+^^+.. . +T,~#O ( v = 1 , 2  ,..., n - I ) ,  
is determined by the following relation: 

It follows from relation ( l l ) ,  (17), and (18) that by 
choosing a sequence of n pulses it is possible to obtain 
echo signals in arbitrary prescribed instants of time and 
to obtain emission of physical fields with arbitrary wave 
vector and with the required damping on account of the 
parameters T1 and Tz . 

We note that the total (integrated) coherent part of the 
power of the coherent spontaneous radiation of the sys- 
tem (1) can be obtained by integrating expression (1) for 
Izphm(k, t )  over all the angles that determine the direc- 
tion of the wave vector k ,  for example, using the pro- 
cedure employed inc". 

Obviously, the theory considered by us can describe 
real pulse excitation of a system of particles, if the fol- 
lowing conditions a r e  satisfied 

where T,, is the time of the reversible transverse re- 
laxation due to the spread Awl of the resonant frequen- 
cies. The restrictions (19) follow from the fact that in 
our theory (in particular, in Eqs. (4)) no account was 
taken of reversible and irreversible transverse and of 
irreversible longitudinal relaxation during the time of 
action of the exciting pulses on the system (1). They 
were taken into account only in the intervals between 
the pulses. 

The relations obtained in,this paper can help predict 
which of the sequences of the excited pulses will exert 
the strongest influence on the character of the spin-spin 
interaction (on the "spin-spin" ~ a m i l t o n i a n ) . ~ ~ '  These 
relations can help select for each concrete substance 
and for each concrete experimental setup the exciting- 
pulse sequences that a re  most convenient for the experi- 
ment, and in particular for the measurement of the re- 
laxation times T1 and T,, a s  was done in[8'11'2s'. 

We note that the theory of multipulse excitation per- 
mits a better understanding of the echo phenomenon even 
in the two-pulse case. In addition, this theory provides 
a general approach to the echo phenomenon, since it not 
only makes it possible to obtain the solution for very 
large n, but also a general solution for n = 1 and 2, which 
demonstrates the general regularities of the echo in gen- 
eral  and of two-pulse echo in particular. 
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We point out that in the case of energy transitions be- 
tween neighboring levels there should be no difference in 
principle between multilevel particles and two-level par- 
ticles. The effect of many levels manifests itself only 
in that the right-hand side of (10) contains the value of 
the spin R. The calculation scheme and the matrix 
method used here to take into account the symmetry of 
the indices y are applicable, however, also to the fol- 
lowing: a) investigations of arbitrary transitions (in an 
equidistant spectrum), particularly those described by 
bilinear combinations of spin operators; b) in the case 
when the relaxation matrix is usedcz4' instead of phe- 
nomenological spin operators; c )  in the investigation of 
the solution of the modified Bloch with al- 
lowance for the diffusion term by the method of Das and 
sa~a~cls'25' 

In conclusion, I am grateful to U. Kh. Kopvillem and 
V. V. Samartsev for useful discussions, valuable re- 
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