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Feynman vacuum diagrams with a non-zero chemical potential renormalid in a manner are used 
to obtain relativistic and radiative corrections to the energy of the ground state of an atom. Corrections 
are obtained in the lowest (second) order of perturbation theory which are the sum of contributions of the 
Lamb shift, vacuum polarization and the Breit correction for the electrons of an atom in an effective 
external field. Numerical calculations are carried out for a number of neutral atoms using both the 
semiclassical and the nonrelativistic approximations. 

PACS numbers: 31.30.J~ 

8 1. INTRODUCTION and no one has succeeded in finding a simple algorithm 

~n connection with the increase in the accuracy of ex- fo r  calculating the corrections to the energy using Per- 

perimental investigations and the improvement of calcu- turbation theory. We note in this connection that the 

lational methods recently there has been a growth in the well-known Gell-Mann-Low formulasc4' contain differ- 

interest in relativistic corrections to the theory of a entiation with respect to the bare charge and the obvi- 

many-electron atom. In their simplest form they a r e  ously noncovariant time cut-off and a r e  therefore inap- 

taken into account by means of the relativistic equations propriate for use with renormalized quantities. 

of the ~ a r t r e e -  Fock self -consistent field based on the 
Dirac equation (cf., for example, Ref. 1). A further 
improvement in the calculation requires the solution of 
two theoretical problems. Firstly, i t  is necessary to 
have a convenient apparatus for the calculation of the 
energy of a many-electron relativistic atom taking into 
account the retarded interaction between electrons. 
Secondly, it is necessary to carry out a renormalization 
of the mass and of the charge of the electron. These 
problems a re  interconnected, since a convenient calcu- 
lation of the energy f i rs t  of all presupposes just the pos- 
sibility of carrying out a program of renormalization 
without operating in the intermediate stages with diver- 
gent nonphysical quantities. 

Earlier  ~ a b s o v s k i r  and one of the authors of the pres- 
ent paper proposed a method of calculating the renor- 
malized energy of the atom consisting of extracting 
from the renormalized many-electron Green's function 
the effective Hamiltonian for the interaction between 
electrons.L51 The interaction potential in this case 
turned out to be nonlocal and nonunique. The principal 
disadvantage of such a method, along with i t s  certain 
artificiality, is associated with the fact that in this case 
each Feynman diagram is in fact counted twice: once 
a s  a contribution to the potential, and a second time a s  
an iteration of the potential in the lowest order in deter- 
mining the energy. This leads to a sharp increase in 
the amount of calculation. However, this method also 

It should be emphasized that no difficulties of princi- has serious advantages-thus, i t  encounters no difficulty 

exist in carrying out the program of renormalization with degenerate ground states and enables one to deter- 

fo r  an atom. The corresponding many-electron Green's mine also the excited energy levels. 

function in an external field can evidently be renormal- For the calculation of the energy of a nondegenerate 
ized in the usual manner. However, to extract in a ground state of the electron shell of an atom a more 
simple manner from such a Green's function the value natural and simple method of calculation appears to be 
of the energy of the atom appears to be possible only in one based on the quantum-field-theoretic technique with 
the simplest cases of one- o r  two-electron atoms.[2v33 a given non-zero chemical potential p. The renormal- 
For a greater number of electrons the equations for  the ization and the determination of the energy for relativis- 
many-electron Green's function a r e  very complicated t ic Fermi-systems in the case of zero external field and 
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temperature were considered in Refs. 6,7, and in the 
case of non-zero external field and temperature in Refs. 
8,9. In the present paper, which to a large extent is 
based on the results of Ref. 9, we apply the general the- 
ory for finding the energy of a relativistic Fermi-sys- 
tem to the case of an atom with filled shells. The ex- 
pression for the energy of the ground state of an elec- 
tron shell turns out to be renormalized and finite. In 
the lowest (second) order of perturbation theory it, a s  
should be expected, consists of contributions from the 
Breit correction, the Lamb shift and the vacuum polar- 
ization calculated using the self-consistent atomic po- 
tential. In carrying out the numerical calculation we us t  
the semiclassical approximation and an expansion in 
powers of Z a  ( Z  is the nuclear charge, a is the fine 
structure constant). The values of the corrections ob- 
tained for neutral atoms with different values of Z a re  
exhibited in Table I at the end of Sec. 4. 

52. THE ENERGY OF THE GROUND STATE OF A 
RELATIVISTIC ATOM 

It is well known that an explicit expression for the 
energy of the nondegenerate ground state of a Fermi- 
system is given in perturbation theory by the sum of 
connected vacuum Feynman diagrams (up to the factor 
2ni6(0)).['~' In the relativistic case this expression is 
not renormalized, i. e., i t  contains the bare charge and 
mass  of the electron, and, moreover, i t  diverges for 
large virtual momenta of the electrons and photons. 
The renormalization of the charge and of the mass of 
the electron in vacuum diagrams can be carried out by 
introducing the corresponding counterterms in the inter- 
action Lagrangian. This corresponds to  the elimination 
of divergences in the vacuum diagrams associated with 
the internal insertions of the polarization of the vacuum 
and of the proper mass of the electron (for details cf., 
Ref. 9). The sum of vacuum diagrams V* obtained after 
such a renormalization, however, still remains infinite. 
The point is that the total energy of the system includes 
nonobservable contributions: the energy of the vacuum 
and the energy of the interaction between charges which 
renormalize the external field. The separation out of 
these contributions has been carried out previously.cg' 

If, a s  is usually done, one associates with the energy 
E and the number of particles N the quantity !J = E  - 0 
(52 is the thermodynamic potential of the system at a 
temperature equal to zero), then, a s  has been shown in 
Ref. 9, the observable part of 52 is expressed in terms 
of the renormalized sum of the vacuum diagrams V* by 
the relations 

62 ( p ,  A''') -62 (0, 0 )  =- (V+%jD 1 o f ) ,  

v=v-r I o - 1 ~ 2 ~ a z ~ / a ~ z  I OA, 

j - -av /a~.  

Here A"' and A a re  the renormalized external and total 
fields in the system. A symbolic method of recording 
is used in which all the quantities a re  regarded a s  ma- 
tr ices in the configuration space in terms of the vector 
indices of the photons. The symbol 1 ,  r e fers  to zero 
chemical potential and external field. D 1 is the renor- 
malized total Green's function for the photon familiar in 

the usual quantum electrodynamics for vacuum. The 
quantity j has the physical meaning of the observable 
current in the system. The vacuum diagrams V*  must 
be evaluated in the external field A which satisfies the 
equation 

where D"' is the f ree  photon propagator. 

Since j itself is related to V* by Eq. (3), it is clear 
that the system (2)-(4) represents a complex system of 
equations with respect to the unknowns v*, A, and j. 

We now turn to the specific problem of determining 
the shift in the energy of an atom a s  a result of taking 
relativistic effects into account. The interaction of 
electrons with a quantized electromagnetic field leads 
to an explicit change in V by an amount 6V (addition of 
new diagrams to v*). This is accompanied by a change 
also in the external field A by an amount 6A. The total 
change in V is obtained by adding the explicit 6V and the 
change due to the variation 6A: 

The quantity M can be obtained f rom Eq. (4) in the' 
form 

Substituting (6) and (5) into expression (1) we obtain the 
shift 60, which corresponds to adding new diagrams to 
v: 

In order to go over to the shift in the energy of the 
electron shell of an atom 6 E  we subtract from (7) i t s  
value for  p = 0 and make use of (8): 

Then we have 

It can be seen that the shift in the energy is a sum of 
contributions of the additional vacuum diagrams them- 
selves and of the contributions due to the change in the 
form of the photon propagator 6 0  l o  . We shall utilize 
this formula also in subsequent discussion. It should 
be noted that the use of quantum-field perturbation the- 
ory to obtain V is possible only if the ground state of the 
atom is not degenerate. Therefore in future we shall 
consider only atoms with filled shells. 

$3. RADIATIVE AND RELATIVISTIC CORRECTIONS 
TO THE ENERGY OF AN ATOM IN  THE LOWEST 
ORDER OF PERTURBATION THEORY 

- -- 

We assume that the starting zero-order approximation 
for  the description of the atom is the system of relativ- 
istic Hartree-Fock equations with Coulomb interaction 
between electrons. By relativistic and radiative correc- 
tions we respectively understand corrections due to the 
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c3 FIG. 1. 

effects of magnetic interaction, retardation and self-ac- 
tion of electrons which a r e  not contained in the relativ- 
istic Hartree-Fock equations. These corrections arise,  
on the one hand, a s  a result of the interaction of elec- 
trons with the transverse part of the quantized electro- 
magnetic field, and on the other hand a s  a result of vac- 
uum polarization. In the lowest order of perturbation 
theory they a r e  described by the diagram of Fig. 1 for 
6V and by the diagram of Fig. 2 for 6D l o. The wavy 
line with a crossbar corresponds to the transverse part  
D I of the photon propagator in the Coulomb gauge: 

(In (10) 0, p= 0, 1, 2, 3; s, q = 1, 2, 3. ) The solid double 
line corresponds to the electron propagator (with the 
chemical potential p )  in the external field A(p), deter- 
mined by Eq. (4). 

In principle A(p) can contain a vector potential. In 
the lowest order of perturbation theory the vector po- 
tential leads to corrections to the energy corresponding 
to a direct Breit interaction. For the filled shells un- 
der consideration, however, the vector potential and the 
direct Breit corrections vanish and in the Hartree- Fock 
equations i t  is sufficient to take into account the pure 
Coulomb interaction. We note that the term correspond- 
ing to the exchange (Coulomb) interaction between elec- 
trons does not appear in (4). It is artificially added to 
A(p)  and this corresponds to taking into account the 
diagram analogous to Fig. 1, but with the Coulomb 
(longitudinal) propagator D ~ ' ( P )  =gaogeo /p2. 

We turn to a detailed examination of (9). The dia- 
gram of Fig. 2 has been calculated repeatedly, and it 
remains for us to utilize the old results for 6 0  1 ,  (cf., 
for example, Ref. 11). In doing so  we note that the 
fourth term in (9) describes the usual vacuum polariza- 
tion in the field of the nucleus A"', while the fifth term 
corresponds to the polarization in the field created by 
the charge of the electrons. The term p6N is equal to 
zero since 6E determined from (9) is much smaller than 
the spacing between the levels and the corresponding 
change in the number of particles is 6N= 0. 

To establish the physical meaning of the difference 
6V(p,A (p)) - 6V(O,A (0)) we introduce the quantity 

We have of course 

Therefore taking (2) into account we represent V in the 
form 

where the quantity W(A(p)) is determined by the formula 

and has the physical meaning of a renormalized energy 
corresponding to the external field A(p) in vacuum. 

Utilizing (11) we rewrite the contribution in which we 
a r e  interested of the vacuum diagrams to the energy 
shift in the form 

Explicitly in the Furry representationt12' the electron 
propagator is given by 

where $, is the complete se t  of solutions of the Dirac 
equation in the external field A(p) corresponding to  the 
energy levels 6,.  

We break up ~ ( " ( p , A ( p ) )  into two terms: 

Gcol (p, A ( p ) )  =G"' (0,  A ( p ) )  +AG(O', 

where 

The first  difference in (13) can correspondingly also be 
broken up into two terms: 

6V'(p, A(p) ) -6Vt ' (A  ( p ) ) = 8 v ~ + 6 v ~ ,  

where 

According to the renormalization procedure for V* (cf., 
Ref. 9) the quantity 2, is the usual mass operator of 
quantum electrodynamics in the lowest order of pertur- 
bation theory in the Furry representation less  the sub- 
tractive term corresponding to the renormalization of 
the electron mass: 

Expression (16) is finite, since if we represent 2, i n  
the form 

then C, is a finite expression for the proper mass of the 
electron in the field A, while the second term makes a 

FIG. 2. 
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zero contribution to 6VL (in virtue of the properties of 
the functions $,). 

Taking into account the fact that in (14) summation is 
carried out only over the occupied levels in the atom 
(&,< p), it can be easily seen that 6VL is simply the sum 
of the Lamb shifts of the electrons of the atom, while 
6VB is the sum of the exchange matrix elements corre- 
sponding to the magnetic interaction of the electrons 
taking retardation into account (the exchange correction 
due to Breit), 

The quantity 6W(A(p)) is the change in the energy of 
the field due to the interaction with the electron-posi- 
tron vacuum (i. e., terms of the fourth, sixth, etc. or- 
der in the field). As can be shown, the contribution 
6W(A(p))- 6W(A(O)) is of the order ~ ( Z f f ) ~  Ry and is 
negligibly small in comparison with the Lamb and the 
Breit corrections. 

54. EVALUATION OF THE CORRECTIONS IN  THE 
SEMICLASSICAL APPROXIMATION 

For a direct calculation of the contributions 6VL and 
6VB we f i r s t  of all consider the motion of the atomic 
electrons themselves to be nonrelativistic. Such an ap- 
proximation is valid for all  the electrons in the atom 
under the condition Z a  << 1. If Z a -  1 then the nonrela- 
tivistic approximation does not hold only for the inner- 
most electrons, which i t  is then necessary to take into 
account by a more rigorous method. In the nonrelativis- 
tic approximation one can in the usual manner make a 
transition from the Dirac bispinors to the Pauli spinors. 

Further calculations a r e  completely analogous to the 
calculation of the Lamb shift in a hydrogen-like atom 
and of the Breit correction to the interaction of two 
 electron^.^'^' As a result we obtain the following non- 
relativistic expressions for the energy shifts 6EL = - 6VL 
and 6EB = - 6VB which represent simply sums of known 
expressions for the Lamb shift and the Breit correction 
for all the electrons in the atom: 

Here we have 

Q, is the nonrelativistic wave function for  the electron 
in level n; the sum over n includes only filled levels, 
and over n '  only the unfilled ones; we se t  x equal to 
z2a2m;  p ( r )  is the density of the electrons in the atom; 
q ( r )  is the field in which the electrons move, i. e., the 
zero-order approximation for A (p). 

In (21) n", just a s  n, takes on only values corresponding 
to filled levels, while the summation over the spins has 
already been carried out. Everywhere the system of 
units li= c = 1 is used in which a =  e2/4n. 

It is necessary to add to these shifts the analogous 
contribution from vacuum polarization (cf., (9)): 

~n going over from (9) to (22) we utilized the available 
expression 6D lo= 4 ~ ~ 6 ~ ( r ) / 1 5 r n ~  (cf., for example, Ref. 
11). 

For the calculation of p ( r )  and also of the matrix ele- 
ments appearing in (18), (19), and (21) and for the sum- 
mation over the states we utilize the quasiclassical ap- 
proximation. Of course, this approximation is too 
rough for the innermost electrons. However, we ex- 
pect that for a general estimate of the contribution made 
by relativistic and radiative corrections to the energy 
of all the electrons the semiclassical approximation 
yields sufficiently sensible results (particularly since 
in principle one can improve the calculation by taking 
the lower levels into account more accurately). One 
should expect particularly good accuracy for the con- 
tribution to the corrections due to electron-electron 
interaction which is associated with the behavior of the 
wave functions in the region relatively far from the 
nucleus. 

We consider the radial matrix element appearing in 
(18) of the form 

where X n r , / ~  is the radial wave function for the electron, 
while @(r) is an arbitrary smooth function. If we ap- 
proximate xnr, by i t s  semiclassical expression and uti- 
lize the saddle-point method for the evaluation of the in- 
tegral then @,r,,nr,,,l can be calculated explicitly. 

Let E,, > E ,  , then @nr,,nr, = 0, while 

Here the following notation has been introduced: 

(with p;~ (YO) = P:, ,+I(Yo)), 

Y,, and Y,, a re  the boundaries of the physical region. 

Substituting the expression of the form (23) for the 
matrix elements into (18) we, remaining beyond this 
within the framework of the semiclassical approxima- 
tion, replace the oscillating squares of the cosines by 
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Q and go over from a summation over the levels to in- 
tegration over E by using the relation 

We succeed in carrying out a part of the integrations 
explicitly, while the remaining integration over the dis- 
tance of the stationary point from the origin r0 has to be 
carried out numerically. In the course of this r, varies 
over the region corresponding to the classical motion of 
the electrons in the given external field q ( r )  with the 
centrifugal energy (1 + $)'/2rnr 2. It is clear that this 
region is finite. 

As regards the expressions for K, bE, and 6Ep, in 
order to calculate them it is sufficient to know only the 
electron density. After making the replacement (24) 
and,carrying out the summation over I by the corre- 
sponding integration p ( r )  in the physical region turns 
out to be equal to 

The contribution to (19) and (22) made by terms contain- 
ing b3(r)  and proportional to the electron density at the 
origin requires special consideration. Here the contri- 
bution is made only by the s-electrons. We sought the 
value of the wave function a t  the origin assuming that at 
small distances from the nucleus the wave function coin- 
cides with the Coulomb function with an accuracy up to 
the normalization constant which we determined in the 
semiclassical approximation. After this the summation 
over the levels was carried out by using (24). Finally, 
we calculated the contribution made by the first  two 
terms to the expression (21) for the Breit correction in 
the approximation of weakly inhomogeneous plasma. In 
other words, we obtained i ts  spatial density considering 
the electron distribution to be homogeneous, and then 
integrated it over the whole space taking into account the 
dependence of the Fermi momentum on the coordinate. 

As a result of these calculations we obtained the fol- 
lowing expressions for the corrections to the energy due 
to the Breit (exchange) interaction, vacuum polarization 
and the Lamb shift (cf., (17)): 

TABLE I. Relativistic and radiative correc- 
tions for neutral atoms with different 2. t)  

corrections. 
I 1 I I 

TABLE 11. Contribution due to the electron-electron inter- 
action." 

- 
b shift Vacuum z l k < ~ t ~ ~ ~ t i o J  z iLmbs~t [zrnt i ;J  2 1.9 1 polarization 

10 -om1 0,0005 

2 15 I -0.M7 -Ot033 0.002 1: 1 $E 1 # I I $&:i3 
') Energy in Ry . 

The integral J is taken over the region where p ( r )  > 0, 
while the integrals in (29) a r e  taken over the region 
where the expression under the radical a r e  positive 
(from this condition it follows that the summation over 
I is limited by v ) .  

These formulas contain the potential p ( r )  in which the 
atomic electrons move. For the numerical calculations 
we restricted ourselves to neutral atoms ( p  = 0) with Z 
c 40, having in mind the applicability of the nonrelativis- 
tic approximation. For q ( r )  we used the approximation 
due to ~ietz'"': 

The values that we have obtained for the energy shifts 
of the electron shell in Ry a r e  exhibited in Table I. 

The table shows results  not only for atoms with filled 
shells. In the semiclassical approximation the effects 
associated with the incomplete filling of the shells a re  
not taken into account, and conclusions can be regarded 
valid for any atoms with Z c 40. One should only keep 
in mind that for atoms with unfilled shells the correc- 
tions associated with the direct Breit interaction a r e  
different from zero and must be added to the corrections 
obtained here. 

As has been pointed out earlier, the semiclassical 
approximation apparently can yield the greatest accuracy 
fo r  the estimation of the contribution to the corrections 
made by the electron-electron interaction. In order to 
estimate the contribution made by the inter-electron 
interaction to the Lamb shift and to the vacuum polariza- 
tion one can proceed in the following manner. We cal- 
culate separately the value of these corrections for the 
pure Coulomb interaction and subtract them from the 
corrections given in the f i rs t  two columns of Table I. 
The values of the contribution made by the interaction 
between the electrons obtained in this manner a r e  shown 
in Table 11. 
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Possible rotational relaxation channels in a molecular gas that can be described by selection rules for 
nonspherical scattering are considered. It is shown that the selection rules for nonspherical scattering can 
be either exact or approximate. In the former case, the rules are due to some general symmetry 
properties of the interaction between the molecules; in the latter case, they are due to the dynamics of 
the particles and, in particular, they depend on the ratio of the moments of inertia of the molecules and 
on departures from equilibrium in the gas. It is shown that the selection rules obtained in this paper do 
not differ significantly from the Born-scattering selection rules. Selection rules are obtained for rotational 
transitions that are forbidden in the case of scattering by an atom, but are possible for scattering by a 
molecule. 

PACS numbers: 34.50.E~ 

1. INTRODUCTION 

Rotational relaxation i n  a polyatomic gas, i. e . ,  the 
redistribution of rotational-level populations a s  the sys- 
tem tends to  the equilibrium s ta te  may occur  a s  a resu l t  
of the complicated charac te r  of the nonspherical interac-  
tion between the molecules along different channels. The 
existence of severa l  rotational relaxation channels in  
polar g a s e s  (for example, CH3CN, CH3F, C2H5CN) is in- 
dicated by experiments  on the anomalous Senftleben ef- 
f e ~ t . [ " ~ '  Gordiets et  al. have discussed the possibility 
of a l a s e r  f o r  the microwave band, using the rotational 
t ransi t ions of molecules f o r  which the probabilities of 
excitation t rans fe r  with A J +  0 and A K #  0 on collision 
a r e  different ( J  and K  a r e  the angular momentum and 
the angular momentum component along an internal 
axis). 

The number of possible relaxation channels, and the 
relationship between the probabilities of excitation 
t ransfer ,  a r e  determined by the selection r u l e s  f o r  
transitions between rotational l eve l s  during collisions 
between molecules. These selection r u l e s  can be gov- 
erned by general  symmetry  principles, f o r  example, 
t ime  reversa l ,  inversion, and point symmetry  of the 
molecule. Moreover, a s  will  be  shown below there  may 
be selection r u l e s  governed by the dynamics and inter- 
action of the molecules. 

The descript ion of rotational relaxation i n  the poly- 
atomic c a s e  encounters  definite difficulties because of 
the absence of adequate experimental  data  on the non- 
spher ica l  scat ter ing of  molecule^^^'^^ and because of the 
complexity of highly nonequilibrium kinetic problems. 
Severa l  papers  have been published i n  recen t  y e a r s  on 
the inelast ic  scat ter ing of polar  molecules, investigated 
by double microwave-microwave~51 and infrared-micro- 
wave resonance.[B41 These methods consis t  of measur-  
ing the  change in the absorption of microwave radiation 
corresponding to a definite t ransi t ion between rotational 
levels  whose population changes a s  a resu l t  of the appli- 
cation of the pump radiation a t  the t ransi t ion frequency 
between two o ther  l eve l s  (rotational o r  vibrational-ro- 
tational), and collisional t ransi t ions between p a i r s  of 
levels.  By retuning the  frequency of the incident micro-  
wave radiation and measuring the  absorption i n  the p res -  
ence  of the pump radiation, i t  is possible t o  determine 
the s e t  of rotational s t a t e s  occupied by the excited mole- 
cu les  a f te r  collisions. A s  a resu l t  of such studies, and 
s tudies  by the method of modulated double microwave 
r e s ~ n a n c e , ~ ' ~ ' " ~  i t  h a s  been possible t o  establ ish colli- 
s ional  selection r u l e s  f o r  a number of po la r  molecules. 

The select ion r u l e s  a r e  discussed by 0kat5' in  the 
B o r n  approximation. This  discussion makes  use of the 
nonspherical model scat ter ing potentialc12' which takes 
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